Projection of low flow conditions in Germany under climate change by combining three RCMs and a regional hydrological model

Czasopismo : Acta Geophysica
Tytuł artykułu : Projection of low flow conditions in Germany under climate change by combining three RCMs and a regional hydrological model

Autorzy :
Eshagh, M.
Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden; Department of Geodesy, K.N.Toosi University of Technology, Tehran, Iran, eshagh@kth.se,
Teisseyre, R.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, rt@igf.edu.pl,
Lizurek, G.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, lizurek@igf.edu.pl,
Asfahani, J.
Atomic Energy Commission, Damascus, Syria, cscientific@aec.org.sy,
Baddari, K.
Laboratory of Physics of the Earth UMBB, Boumerdes, Algeria, doyenfs@umbb.dz,
Bose, S. K.
Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur, West Bengal, India, sujitbose@yahoo.com,
Romanowicz, R. J.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, romanowicz@igf.edu.pl,
Pagliara, S.
Department of Civil Engineering, University of Pisa, Pisa, Italy, s.pagliara@ing.unipi.it,
Huang, S.
Potsdam Institute for Climate Impact Research, Potsdam, Germany, huang@pik-potsdam.de,
Abstrakty : The present study is aimed to: (a) project future low flow conditions in the five largest river basins in Germany, and (b) to account for the projections uncertainties. The eco-hydrological model SWIM was driven by different regional climate models (REMO, CCLM, and Wettreg) to simulate daily river discharg es in each study basin. The 50-year low flow was estimated for the period 1961 to 2000, and its return period was assessed for two scenario periods, 2021-2060 and 2061-2100, using the generalized extreme value distribu tion. The 50-year low flow is likely to occur more frequently in western, southern, and parts of central Ger- many after 2061, as suggested by more than or equal to 80 per cent of the model runs. The current low flow period (from August to September) may be extended until late autumn at the end of this century. The return period of 50-year deficit volume shows a similar temporal and spatial pattern of change as for the low flow, indicating slightly less severe con- ditions with lower confidence. When compared with flood projections for the same area using the same models, the severer low flows projected in this study appear more pronounced, consistent, and have lower uncertainty.

Słowa kluczowe : low flow, RCMs, SWIM, Germany, climate scenarios,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 1
Strony : 151 – 193
Bibliografia : Arnold, J.G., J.R. Williams, A.D. Nicks, and N.B. Sammons (1990), SWRRB: A Basin Scale Simulation Model for Soil and Water Resources Management, Texas A&M University Press, College Station; 255 pp.
Arnold, J.G., P.M. Allen, and G. Bernhardt (1993), A comprehensive surfacegroundwater flow model, J. Hydrol. 142, 1-4, 47-69, DOI: 10.1016/0022-1694(93)90004-S.
Braithwaite, R.J., and Y. Zhang (2000), Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model, J. Glaciol. 46, 152, 7-14, DOI: 10.3189/172756500781833511.
Bronstert, A., V. Kolokotronis, D. Schwandt, and H. Straub (2007), Comparison and evaluation of regional climate scenarios for hydrological impact analysis: General scheme and application example, Int. J. Climatol. 27, 12, 1579-1594, DOI: 10.1002/joc.1621.
Coles, S. (2001), An Introduction to Statistical Modeling of Extreme Values, Springer Verlag, London, 228 pp.
Dynesius, M., and C. Nilsson (1994), Fragmentation and flow regulation of River systems in the northern third of the world, Science 266, 5186, 753-762, DOI: 10.1126/science.266.5186.753.
Enke, W., T. Deutschländer, F. Schneider, and W. Küchler (2005a), Results of five regional climate studies applying a weather pattern based downscaling method to ECHAM4 climate simulation, Meteorol. Z. 14, 2, 247-257, DOI: 10.1127/0941-2948/2005/0028.
Enke, W., F. Schneider, and T. Deutschländer (2005b), A novel scheme to derive optimized circulation pattern classifications for downscaling and forecast purposes, Theor. Appl. Climatol. 82, 1-2, 51-63, DOI: 10.1007/s00704-004-0116-x.
Farr, T.G., P.A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriquez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, and D. Alsdorf (2007), The Shuttle Radar Topography Mission, Rev. Geophys. 45, RG2004, DOI: 10.1029/2005RG000183.
Feyen, L., and R. Dankers (2009), Impact of global warming on streamflow drought in Europe, J. Geophys. Res. 114, D17116, DOI: 10.1029/2008JD011438.
Fleig, A.K., L.M. Tallaksen, H. Hisdal, and S. Demuth (2006), A global evaluation of streamflow drought characteristics, Hydrol. Earth Syst. Sci. 10, 4, 535- 552, DOI: 10.5194/hess-10-535-2006.
Gelfan, A.N., J.W. Pomeroy, and L.S. Kuchment (2004), Modeling forest cover influences on snow accumulation, sublimation, and melt, J. Hydrometeor. 5, 5, 785-803, DOI: 10.1175/1525-7541(2004)005<0785:MFCIOS>2.0.CO;2.
Graham, L.P., J. Andréasson, and B. Carlsson (2007), Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods – a case study on the Lule River basin, Clim. Change 81, Suppl. 1, 293-307, DOI: 10.1007/s10584-006-9215-2.
Gustard, A., and A.J. Wesselink (1993), Impact of land-use change on water resources: Balquhidder catchments, J. Hydrol. 145, 3-4, 389-401, DOI: 10.1016/0022-1694(93)90065-H.
Harboe, R. (1988), Including daily constraints in a monthly reservoir operations model for low-flow, Adv. Water Res. 11, 2, 54-57, DOI: 10.1016/0309-1708(88)90037-1.
Hattermann, F.F., V. Krysanova, F. Wechsung, and M. Wattenbach (2004), Integrating groundwater dynamics in regional hydrological modelling, Environ. Model Softw. 19, 11, 1039-1051, 10.1016/j.envsoft.2003.11.007.
Hattermann, F.F., M. Weiland, S. Huang, V. Krysanova, and Z.W. Kundzewicz (2011), Model-supported impact assessment for the water sector in Central Germany under climate change – A case study, Water Resour. Manage. 25, 13, 3113-3134, DOI: 10.1007/s11269-011-9848-4.
Hennegriff, W., J. Ihringer, and V. Kolokotronis (2008), Prognose von Auswirkungen des Klimawandels auf die Niedrigwasser-verhältnisse in Baden-Württemberg, Korrespond. Wasserwirtsch. 6, 1, 309-314, DOI: 10.3243/kwe2008.06.003 (in German).
Hisdal, H, K. Stahl, L.M. Tallaksen, and S. Demuth (2001), Have streamflow droughts in Europe become more severe or frequent?, Int. J. Climatol. 21, 3, 317-333, DOI: 10.1002/joc.619.
Hock, R. (2003), Temperature index melt modelling in mountain areas, J. Hydrol. 282, 1-4, 104-115, DOI: 10.1016/S0022-1694(03)00257-9.
Hock, R. (2005), Glacier melt: a review of processes and their modelling, Prog. Phys. Geog. 29, 3, 362-391, DOI: 10.1191/0309133305pp453ra.
Hooghoudt, S.B. (1940), Bijdrage tot de kennis van enige natuurkundige grootheden van de grond, Versl. Landb. Onderz. 46, 14, 515-707 (in Dutch).
Huang, S., C. Hesse, V. Krysanova, and F.F. Hattermann (2009), From meso- to macro-scale dynamic water quality modelling for the assessment of land use change scenarios, Ecol. Model. 220, 19, 2543-2558, DOI: 10.1016/j.ecolmodel.2009.06.043.
Huang, S., V. Krysanova, H. Österle, and F.F. Hattermann (2010), Simulation of spatiotemporal dynamics of water fluxes in Germany under climate change, Hydrol. Process. 24, 23, 3289-3306, DOI: 10.1002/hyp.7753.
Huang, S., F.F. Hattermann, V. Krysanova, and A. Bronstert (2012), Projections of climate change affected river flood conditions in Germany by combining three different RCMs with a regional hydrological model, Climatic Change, DOI: 10.1007/s10584-012-0586-2.
Hurkmans, R., W. Terink, R. Uijlenhoet, P. Torfs, D. Jacob, and P.A. Troch (2010), Changes in streamflow dynamics in the Rhine basin under three high resolution regional climate scenarios, J. Climate 23, 3, 679-699, DOI: 10.1175/2009JCLI3066.1.
IPCC (2007a), Climate Change 2007 – The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 996 pp.
IPCC (2007b), Climate Change 2007– Impacts, Adaptation and Vulnerability -Summary for Policymakers. Working Group II Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 996 pp.
Jacob, D. (2001), A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin, Meteorol. Atmos. Phys. 77, 1-4, 61-73, DOI: 10.1007/s007030170017.
Kay, A.L., H.N. Davies, V.A. Bell, and R.G. Jones (2009), Comparison of uncertainty sources for climate change impacts: flood frequency in England, Climatic Change 92, 1-2, 41-63, DOI: 10.1007/s10584-008-9471-4.
Koskova, R., S. Nemecková, and C. Hesse (2007), Using of the soil parametrisation based on soil samples databases in rainfall-runoff modelling. In: A. Jakubíková, V. Broza, and J. Szolgay (eds.), Proc. Adolf Patera Workshop “Extreme Hydrological Events in Catchments”, 13 November 2007, Bratislava, Slovakia, 241-249 (in Czech).
Krysanova, V., A. Meiner, J. Roosaare, and A. Vasilyev (1989), Simulation model ling of the coastal waters pollution from agricultural watershed, Ecol. Model. 49, 1-2, 7-29, DOI: 10.1016/0304-3800(89)90041-0.
Krysanova, V., D.I. Müller-Wohlfeil, and A. Becker (1998), Development and test of a spatially distributed hydrological / water quality model for mesoscale watersheds, Ecol. Model. 106, 2-3, 261-289, DOI: 10.1016/S0304-3800(97)00204-4.
Krysanova, V., F.F. Hattermann, and F. Wechsung (2005), Development of the ecohydrological model SWIM for regional impact studies and vulnerability assessment, Hydrol. Process. 19, 3, 763-783, DOI: 10.1002/hyp.5619.
Lenderink, G., A. Buishand, and W. van Deursen (2007), Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach, Hydrol. Earth Syst. Sci. 11, 3, 1145-1159, DOI: 10.5194/hess-11-1145-2007.
Maidment, D.R. (ed.) (1993), Handbook of Hydrology, McGraw-Hill, New York.
Majewski, D. (1991), The Europa-Modell of the Deutscher Wetterdienst. In: ECMWF Seminar Proc. “Numerical Methods in Atmospheric Models”, Vol. 2, 147-191.
Mauser, W., T. Marke, and S. Stoeber (2008), Climate change and water resources: Scenarios of low-flow conditions in the Upper Danube River Basin. In: IOP Conf. Ser.: Earth Environ. Sci. 4, 1, 012027, DOI: 10.1088/1755-1307/4/1/012027.
Middelkoop, H., K. Daamen, D. Gellens, W. Grabs, J.C.J. Kwadijk, H. Lang, B.W.A.H. Parmet, B. Schädler, J. Schulla, and K. Wilke (2001), Impact of climate change on hydrological regimes and water resources management in the Rhine basin, Climatic Change 49, 1-2, 105-128,DOI: 10.1023/A:1010784727448.
Monteith, J.L. (1965), Evaporation and environment, Symp. Soc. Expl. Biol. 19, 205-234.
MPI (Max-Planck-Institute) (2008), Globaler Klimawandel und regionale Konsequenzen: REMO – ein regionales Klimamodell, http://www.giwep.de/fileadmin/pdf/ pr%C3%A4sentation_mpi_meteorologie_2008.pdf.
Orlowsky, B., F.-W. Gerstengarbe, and P.C. Werner (2008), A resampling scheme for regional climate simulations and its performance compared to a dynami cal RCM, Theor. Appl. Climatol. 92, 3-4, 209-223, DOI: 10.1007/s00704-007-0352-y.
Paterson, W.S.B. (1994), The Physics of Glaciers, 3rd ed., Elsevier, Oxford.
Pfister, C., R. Weingartner, and J. Luterbacher (2006), Hydrological winter droughts over the last 450 years in the Upper Rhine basin: a methodological approach, Hydrol. Sci. J. 51, 5, 966-985, DOI: 10.1623/hysj.51.5.966.
Priestley, C.H.B., and R.J. Taylor (1972), On the assessment of surface heat flux and evaporation using large-scale parameters, Mon. Weather Rev. 100, 2, 81-92, DOI: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.
Richardson, C.W., and J.T. Ritchie (1973), Soil water balance for small watersheds, Trans. ASAE 16, 1, 72-77.
Ritchie, J.T. (1972), Model for predicting evaporation from a row crop with incomplete cover, Water Resour. Res. 8, 5, 1204-1213, DOI: 10.1029/WR008i005p01204.
Rockel, B., A. Will, and A. Hense (2008), The regional climate model COSMOCLM (CCLM), Meteorol. Z. 17, 4, 347-348, DOI: 10.1127/0941-2948/2008/0309.
Sangrey, D.A., K.O. Harrop-Williams, and J.A. Klaiber (1984), Predicting groundwater response to precipitation, ASCE J. Geotech. Engrg. 110, 7, 957-975, DOI: 10.1061/(ASCE)0733-9410(1984)110:7(957).
Schaefli, B., B. Hingray, M. Niggli, and A. Musy (2005), A conceptual glaciohydrological model for high mountainous catchments, Hydrol. Earth Syst. Sci. 9, 1/2, 95-109, DOI: 10.5194/hess-9-95-2005.
Schönwiese, C.D., T. Staeger, and S. Trömel (2006), Klimawandel und Extremereignisse in Deutschland. In: Klimastatusbericht 2005, Deutscher Wetterdienst, Offenbach, 7-17 (in German).
Smakhtin, V.U. (2001), Low flow hydrology: A review, J. Hydrol. 240, 3-4, 147-186, DOI: 10.1016/S0022-1694(00)00340-1.
Smedema, L.K., and D.W. Rycroft (1983), Land Drainage: Planning and Design of Agricultural Drainage Systems, Cornell University Press, Ithaca, 376 pp.
Stahl, K., H. Hisdal, L. Tallaksen, H.A.J. van Lanen, J. Hannaford, and E. Sauquet (2008), Trends in low flows and streamflow droughts across Europe, UNESCO Report, Paris.
Stahl, K., H. Hisdal, J. Hannaford, L. Tallaksen, H. van Lanen, E. Sauquet, S. Demuth, M. Fendekova, and J. Jordar (2010), Streamflow trends in Europe: evidence from a dataset of near-natural catchments, Hydrol. Earth Syst. Sci. 14, 2367-2382, DOI: 10.5194/hess-14-2367-2010.
Steppeler, J., G. Doms, U. Schättler, H.W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric (2003), Meso-gamma scale forecasts using the nonhydrostatic model LM, Meteorol. Atmos. Phys. 82, 1-4, 75-96, DOI: 10.1007/s00703-001-0592-9.
Svensson, C., Z.W. Kundzewicz, and T. Maurer (2005), Trend detection in River flow series: 2. Flood and low-flow index series, Hydrol. Sci. J. 50, 5, 811-824, DOI: 10.1623/hysj.2005.50.5.811.
Teutschbein, C., and J. Seibert (2010), Regional climate models for hydrological impact studies at the catchment scale: A review of recent modeling strategies, Geography Compass 4, 7, 834-860, DOI: 10.1111/j.1749-8198.2010.00357.x.
Themeßl, M.J., A. Gobiet, and A. Leuprecht (2011), Empirical-statistical downscaling and error correcton of daily precipitation from regional cli mate models, Int. J. Climatol. 31, 10, 1530-1544, DOI: 10.1002/joc.2168.
Walker, K.F., and M.C. Thoms (1993), Environmental effects of flow regulation on the lower river Murray, Australia, Regul. Rivers Res. Manag. 8, 1-2, 103-119, DOI: 10.1002/rrr.3450080114.
Wechsung, F., A. Hanspach, F.F. Hattermann, P. Werner, and F. Gerstengarbe (2006), Klima und anthropogene Wirkungen auf den Niedrigwasserabfluss der mittleren Elbe: Konsequenzen für Unterhaltungsziele und Ausbaunutzen, Potsdam Institut für Klimafolgenforschung, Potsdam. http://www.glowa-elbe.de/pdf/publications/elbe_nw_1p31.pdf (in German).
Williams, J.R., K.G. Renard, and P.T. Dyke (1984), EPIC – a new model for assessing erosion’s effect on soil productivity, J. Soil Water Conserv. 38, 5, 381-383.
Wittenberg, H. (2003), Effects of season and man-made changes on baseflow and flow recession: case studies, Hydrol. Process. 17, 11, 2113-2123, DOI: 10.1002/hyp.1324.
WMO (World Meteorological Organization) (1974), International Glossary of Hydrology, WMO, Geneva.
WMO (World Meteorological Organization) (2008), Manual on low-flow estimation and prediction, Operational hydrology report No. 50.
Zelenhasić, E., and A. Salvai (1987), A method of streamflow drought analysis, Water Resour. Res. 23, 1, 156-168, DOI: 10.1029/WR023i001p00156.
DOI :
Cytuj : Eshagh, M. ,Teisseyre, R. ,Lizurek, G. ,Asfahani, J. ,Baddari, K. ,Bose, S. K. ,Romanowicz, R. J. ,Pagliara, S. ,Huang, S. , Projection of low flow conditions in Germany under climate change by combining three RCMs and a regional hydrological model. Acta Geophysica Vol. 61, no. 1/2013
facebook