Prony Filtering of Seismic Data

Czasopismo : Acta Geophysica
Tytuł artykułu : Prony Filtering of Seismic Data

Autorzy :
Stanisławska, I.
Space Research Center Polish Academy of Sciences,
Popielawska, B.
Space Research Center Polish Academy of Sciences,
Vashisth, A. K.
Department of Mathematics, Kurukshetra University, Kurukshetra, India, akvashishth@kuk.ac.in,
Rani, K.
Department of Mathematics, Government Post Graduate College, Hisar, India, karya4@gmail.com,
Singh, K.
Department of Mathematics, Guru Jambheshwar University of Science and Technology, Hisar, India, profkbgju@gmail.com,
Kotyrba, A.
Central Mining Institute (GIG), Katowice, Poland, a.kotyrba@gig.eu,
Kortas, Ł.
Central Mining Institute (GIG), Katowice, Poland, l.kortas@gig.eu,
Stańczyk, K
Central Mining Institute (GIG), Katowice, Poland, k.stanczyk@gig.eu,
Mitrofanov, G.
Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, georgymitrofanov@rambler.ru,
Priimenko, V.
Laboratory of Petroleum Engineering and Exploration, North Fluminense State University Darcy Ribeiro, Macaé, RJ, Brazil, slava@lenep.uenf.br,
Abstrakty : Prony filtering is a method of seismic data processing which can be used to solve various geological and production tasks, involving an analysis of target horizons characteristics and a prediction of possible productive zones. This method is based on decomposing the observed seismic signals by exponentially damped cosines at short-time intervals. As a result, a discrete Prony spectrum including values of four parameters (amplitude, damping factor, frequency, phase) can be created. This decomposition occurs at many short-time intervals moving along an observed trace. The combined Prony spectrum of the trace can be used to create images of the trace through a selection of some values of the parameters. These images created for all traces of a seismic section provide an opportunity for locating zones of frequency-dependent anomalous scattering and absorption of seismic energy. Subsequently, the zones can be correlated with target seismic horizons. Analysis and interpretation of these zones may promote understanding of the target horizons features and help to connect these features with the presence of possible reservoirs.

Słowa kluczowe : data and signal processing, stacks imaging, parameter estimation, attenuation, prony transform,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2015
Numer : Vol. 63, no. 3
Strony : 652 – 678
Bibliografia : 1 Berti, E., V. Cardoso, J.A. González, and U. Sperhake (2007), Mining information from binary black hole mergers: A comparison of estimation methods for complex exponentials in noise, Phys. Rev. D 75, 12, 124017, DOI: 10.1103/ PhysRevD.75.124017.
2 Beylkin, G., and L. Monzón (2005), On approximation of functions by exponential sums, Appl. Comput. Harmon. Anal. 19, 1, 17-48, DOI: 10.1016/j.acha.2005.01.003.
3 Bracale, A., P. Caramia, and G. Carpinelli (2007), Adaptive Prony method for waveform distortion detection in power systems, Int. J. Elec. Power Energy Sys. 29, 5, 371-379, DOI: 10.1016/j.ijepes.2006.10.005.
4 Brekhuntcov, A., Yu. Ilein, A. Jedkov, and G. Mitrofanov (2001), Prediction of production features on Prony-filtration results. In: EAGE 63rd Conference and Technical Exhibition, 11-15 June 2001, Amsterdam, Netherlands, 345-348.
5 Chui, C.K. (1992a), An Introduction to Wavelets, Wavelet Analysis and its Applications. Vol. 1, Academic Press, San Diego, 264 pp.
6 Chui, C.K. (ed.) (1992b), Wavelets: A Tutorial in Theory and Applications, Wavelet Analysis and its Applications. Vol. 2, Academic Press, San Diego, 723 pp. de Prony, G.R. (1795), Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l’alkool, à différentes températures, J. École Polytech. Flor. Plair. 1, 22, 24-76 (in French).
7 Fedortsov, V.K., E.V. Bazhanova, Yu.M. Ilein, and G.M. Mitrofanov (2004), Solution of some application tasks under studying of NGK reservoirs on the basis of wave fields decomposition by the Prony method, Gornye Vedomosti 3, 81-85 (in Russian).
8 Fomel, S. (2013), Seismic data decomposition into spectral components using regularized nonstationary autoregression, Geophysics 78, 6, O69-O76, DOI: 10.1190/geo2013-0221.1.
9 Gabor, D. (1946a), Theory of communication. Part 1: The analysis of information, J. Inst. Elect. Eng. 93, 26, 429-441, DOI: 10.1049/ji-3-2.1946.0074.
10 Gabor, D. (1946b), Theory of communication. Part 2: The analysis of hearing, J. Inst. Elect. Eng. 93, 26, 442-445, DOI: 10.1049/ji-3-2.1946.0075.
11 Gabor, D. (1946c), Theory of communication. Part 3: Frequency compression and expansion, J. Inst. Elect. Eng. 93, 26, 445-457, DOI: 10.1049/ji-3-2.1946.0076.
12 Gritsenko, S.A., S. Fomel, and V.S. Cherniyak (2001), Filtering using Prony’s method. In: Geophysics. The Jubilee Volume “50th Khantymansiiskgeofizika”, Euro-Asian Geophysical Society, Moscow, Russia, 24-26 (in Russian).
13 Grossmann, A., and J. Morlet (1984), Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15, 4, 723-736, DOI: 10.1137/0515056.
14 Helle, H.B., O.H. Inderhaug, V.P. Kovaljev, A.G. Madatov, and G.M. Mitrofanov (1993), Complex seismic decomposition – application to pore pressure prediction. In: EAGE 55th Conference and Technical Exhibition, 7-11 June 1993, Stavanger, Norway, 132-139, DOI: 10.3997/2214-4609.201411369.
15 Holmström, K., and J. Petersson (2002), A review of the parameter estimation problem of fitting positive exponential sums to empirical data, Appl. Math.
16 Comput. 126, 1, 31-61, DOI: 10.1016/S0096-3003(00)00138-7.
17 Hu, S.-L.J., W.-L.Yang, and H.-J. Li (2013), Signal decomposition and reconstruction using complex exponential models, Mech. Syst. Signal Process. 40, 2, 421-438, DOI: 10.1016/j.ymssp.2013.06.037.
18 Kahn, M.H., M.S. Mackisack, M.R. Osborne, and G.K. Smyth (1992), On the consistency of Prony’s method and related algorithms, J. Comput. Graph. Stat. 1, 4, 329-349, DOI: 10.1080/10618600.1992.10474589.
19 Kovaljev, V.P., and G.F. Telepnev (1981), Method of implicit periodicity in study of dynamic problems of seismic waves, Rep. Ukr. Acad. Sci. 5, 38-47 (in Russian).
20 Kovaljev, V.P., A.G. Madatov, and G.M. Mitrofanov (1992), Complex convolution decomposition (CCD) and new possibilities at detail investigation of attenuation. In: EAGE 54th Conference and Technical Exhibition, 1-5 June 1992, Paris, France, 267-275.
22 Kumaresan, R. (1983), On the zeros of the linear prediction-error filter for deterministic signals, IEEE Trans. Acoust. Speech Sign. Process. 31, 1, 217-220, DOI: 10.1109/TASSP.1983.1164021.
23 Lee, J.-H., and H.-T. Kim (2005), Selection of sampling interval for least squares Prony method, Electron. Lett. 41, 1, 47-49, DOI: 10.1049/el:20056678.
24 Lobos, T., J. Rezmer, P. Janik, H. Amaris, M. Alonso, and C. Álvarez (2009), Application of wavelets and Prony method for disturbance detection in fixed speed wind farms, Int. J. Elec. Power Energy Sys. 31, 9, 429-436, DOI: 10.1016/j.ijepes.2009.03.019.
25 Marks, R.J., II (2009), Handbook of Fourier Analysis & Its Applications, Oxford University Press, New York, 800 pp. Marple, S.L. Jr. (1987), Digital Spectral Analysis with Applications, Prentice-Hall, Englewood Cliffs.
26 Mitrofanov, G.M., and V.I. Priimenko (2011), Prony filtration of seismic data: theoretical background, Rev. Bras. Geofís. 29, 4, 703-722.
27 Mitrofanov, G.M., and V.I. Priimenko (2013), Prony filtering of seismic data: mathematical and physical modelling, Rev. Bras. Geofís. 31, 1, 151-168.
28 Mitrofanov, G.M., H.B. Helle, V.P. Kovaliev, and A.G. Madatov (1993), Complex seismic decomposition – theoretical aspects. In: EAGE 55th Conference and Technical Exhibition, 7-11 June 1993, Stavanger, Norway, 235-242.
29 Mitrofanov, G.M., T.V. Nefedkina, and L.Sh. Girshgorn (1998a), Aspects of Pronitransformation applying in seismic data processing, Ann. Geophys. 16, Suppl. Part I, 156-161.
30 Mitrofanov, G.M., Z. Zhan, and J. Cai (1998b), Using the Proni transform in processing of Chinese seismic data. In: SEG 68th Ann. Meeting, 13-18 September 1998, New Orleans, USA, 1157-1159.
31 Mitrofanov, G.M., A.N. Bobryshev, and V.G. Savin (1999), Using Prony filtering for the identification of perspective zones in hydrocarbon deposits. In: Proc. 3rd Scientific-Practical Conf. “Ways of Realization of Oil and Gas Potential of the KMAO”, Khanty-Mansiysk, Russia, 281-294 (in Russian).
32 Mitrofanov, G.M., T.V. Nefedkina, A.N. Bobryshev, V.G. Savin, and V.G. Popov (2001), Applying Prony filtering for seismic wave field analysis with the purpose of perspective zones determination in exploration of oil/gas reservoirs. In: Geophysics. The Jubilee Volume “50th Khantymansiiskgeofizika”, Euro-Asian Geophysical Society, Moscow, Russia, 92-100 (in Russian).
33 Mitrofanov, G., V. Priimenko, and D.M. Soares Filho (2003a), Development of the Proni filtering method. In: 8th Int. Congr. Brazilian Geophysical Society, August 2003, Rio de Janeiro, Brazil.
34 Mitrofanov, G., V. Priimenko, D.M. Soares Filho, R.M. Misságia, M.H. Grochau, and R.G. Lima (2003b), Using the Proni filtration in geological and production tasks. In: 8th Int. Congr. Brazilian Geophysical Society, August 2003, Rio de Janeiro, Brazil.
35 Mitrofanov, G., S. Smolin, and L. Slepokurova (2006), Determination of permeability zones and traps by means of the Proni filtration method. In: 68th EAGE Conference and Exhibition incorporating SPE EUROPEC 2006, Vienna, Austria, DOI: 10.3997/2214-4609.201402075.
36 Orlov, Y.A., G.M. Mitrofanov, I.F. Rakhmenkulova, and T.V. Kurdujkova (1999), Testing the Proni filtering by model data. In: EAGE 61st Conference and Technical Exhibition, 7-11 June 1999, Helsinki, Finland, DOI: 10.3997/ 2214-4609.201407884.
37 Osborne, M.R. (1975), Some special nonlinear least squares problems, SIAM J. Numer. Anal. 12, 4, 571-592, DOI: 10.1137/0712044.
38 Osborne, M.R., and G.K. Smyth (1991), A modified Prony algorithm for fitting functions defined by difference equations, SIAM J. Sci. Stat. Comput. 12, 2, 362-382, DOI: 10.1137/0912020.
39 Osborne, M.R., and G.K. Smyth (1995) A modified Prony algorithm for exponential functional fitting, SIAM J. Sci. Comput. 16, 1, 119-138, DOI: 10.1137/0916008.
40 Potts, D., and M. Tasche (2010), Parameter estimation for exponential sums by approximate Prony method, Signal. Process. 90, 5, 1631-1642, DOI: 10.1016/ j.sigpro.2009.11.012.
41 Therrien, C.W. (1992), Discrete Random Signals and Statistical Signal Processing, Prentice Hall, Englewood Cliffs, 727 pp.
DOI :
Cytuj : Stanisławska, I. ,Popielawska, B. ,Vashisth, A. K. ,Rani, K. ,Singh, K. ,Kotyrba, A. ,Kortas, Ł. ,Stańczyk, K ,Mitrofanov, G. ,Priimenko, V. , Prony Filtering of Seismic Data. Acta Geophysica Vol. 63, no. 3/2015
facebook