Regressive-transgressive cyclothem with facies record of the re-flooding window in the Late Silurian carbonate succession (Podolia, Ukraine)

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Regressive-transgressive cyclothem with facies record of the re-flooding window in the Late Silurian carbonate succession (Podolia, Ukraine)

Autorzy :
Gaetani, M.
Dipartimento di Scienze della Terra, Universita’ di Milano, Italia,,
Meço, S.
Fakulteti Gjeologji-Miniera,Tirana, Albania,,
Rettori, R.
Dipartimento di Scienze della Terra, Universita’ di Perugia, Italia,,
Henderson, C. M.
Department of Geoscience, University of Calgary, Canada,,
Tulone, A.
Dipartimento di Scienze della Terra, Universita’ di Perugia, Italia,,
Łuczyński, P.
Institute of Geology, University of Warsaw, Al. Żwirki i Wigury 93; PL-02-089 Warszawa, Poland,,
Kozłowski, W.
Institute of Geology, University of Warsaw, Al. Żwirki i Wigury 93; PL-02-089 Warszawa, Poland,,
Skompski, S.
Institute of Geology, University of Warsaw, Al. Żwirki i Wigury 93; PL-02-089 Warszawa, Poland,,
Abstrakty : The term “re-flooding window” was recently proposed as a time-interval connected with the transgressive stage of present day peri-reefal development. In the analysis presented here, a fossil record of a re-flooding window has been recognized. Nine Late Silurian carbonate sections exposed on the banks of the Dnister River in Podolia (Ukraine) have been correlated base on bed-by-bed microfacies analysis and spectral gamma ray (SGR) measurements. Correlated were sections representing settings ranging from the inner part of a shallow-water carbonate platform to its slope, through an organic buildup. The reconstructed depositional scenario has been divided into six development stages, with the first three representing a regressive interval and the latter three a transgressive interval of the basin’s history. The re-flooding window has been identified at the beginning of a transgressive part of the succession. Surprisingly, it is characterized by an extremely fast growth of a shallow, tide-dominated platform and by deposition of calciturbiditic layers in a more basinal area. The interpreted succession is a small-scale model illustrating the reaction of carbonate depositional sub-environments to sea level changes and determining the facies position of the stromatoporoid buildups within the facies pattern on a Silurian shelf. The use of SGR analyses in shallow water, partly high-energy, carbonate facies, both for correlation purposes and for identifying depositional systems, is a relatively new method, and thus can serve as a reference for other studies of similar facies assortment.

Słowa kluczowe : wody płytkie, węglan, sylur, Podole, re-flooding window, spectral gamma ray record, shallow water carbonates, Late Silurian, Podolia,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2015
Numer : Vol. 65, no. 3
Strony : 297 – 318
Bibliografia : 1. Abushik, A.F. and Evdokimova, I.O. 1999. Lagoonal to normal marine Late Silurian – Early Devonian ostracode assemblages of the Eurasian Arctic. Acta Geologica Polonica, 49, 133–143.
2. Adams, J.A.S. and Weaver, C.E. 1958. Thorium to uranium ratios as indicators of sedimentary processes; example of concept of geochemical facies. AAPG Bulletin, 42, 387–430.
3. Aigner, T. 1985. Storm depositional systems. Lecture Notes in Earth Sciences, 3, 1–174.
4. Baarli, B.G., Johnson, M.E. and Antoshkina, A.I. 2003. Silurian stratigraphy and palaeogeography of Baltica. In: E. Landing and M.E. Johnson (Eds), Silurian Lands and Seas: paleogeography outside of Laurentia. New York State Museum Bulletin, 493, 3–34.
5. Bábek, O., Přikryl, T. and Hladil, J. 2007. Progressive drowning of carbonate platform in the Moravo-Silesian Basin (Czech Republic) before the Frasnian/Famennian event: facies, compositional variations and gamma-ray spectrometry. Facies, 53, 293–316.
6. Bjerkéus, M. and Eriksson, M. 2001. Late Silurian reef development in the Baltic Sea. GFF, 123, 169–179.
7. Bosellini, A. 1984. Progradation geometries of carbonate platforms: examples from the Triassic of the Dolomites, northern Italy. Sedimentology, 31, 1–24.
8. Carpentier, M., Weis, D. and Chauvel, C. 2013. Large U loss during weathering of upper continental crust: the sedimentary record. Chemical Geology, 340, 91–104.
9. Cherns, L. 1983. The Hemse-Eke boundary: facies relationships in the Ludlow of Gotland, Sweden. Sveriges Geol Undersökn, C 800, 1–45.
10. Davies, G.R. and Smith Jr, L.B. 2006. Structurally controlled hydrothermal dolomite reservoir facies: an overview. AAPG Bulletin, 90, 1641–1690.
11. Droxler, A.W. and Schlager, W. 1985. Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas, Geology, 13, 799–802.
12. Drygant, D. 1984. Correlation and conodonts of the Silurian–Lower Devonian deposits of Volyn and Podolia. Kiev Naukova Dumka, 1–192. In Russian
13. Du, X., Rate, A.W. and Gee M.A.M. 2012. Redistribution and mobilization of titanium, zirconium and thorium in an intensely weathered lateritic profile in Western Australia. Chemical Geology, 330-331, 101–115.
14. Durrance, E.M. 1986. Radioactivity in geology (principles and applications), 441 pp. Ellis Horwood Ltd. Halsted (Press John Wiley and Sons); Chichester.
15. Dypvik, H. and Eriksen, D.O. 1983. Natural radioactivity of clastic sediments and the contributions of U, Th and K. Journal of Petroleum Geology, 5, 409–416.
16. Einasto, R.Z., Abushik, A.F., Kaljo, D.P., Koren’, T.N., Modzalevskaya, T.L. and Nestor, H.Z. 1986. Silurian sedimentation and the fauna of the East Baltic and Podolian marginal basins: a comparison. In: D.P. Kaljo and E. Klaamann (Eds), Theory and Practice of Ecostratigraphy. Institute of Geology, Academy of Sciences of the Estonian SSR, Tallinn, pp. 65–72.
17. Einasto, R.Z. and Radionova, M. 1988. Stromatolites and oncolites in the Ordovician and Silurian carbonate facies of Pribaltika. In: V.N. Dubotalov and T.A. Moskalenko (Eds), Calcareous algae and stromatolites, pp. 145–158. Nauka, Sibirskoje Otdelenije; Novosibirsk. In Russian
18. Emery, D. and Myers, K.J. 1996. Sequence stratigraphy, 297 pp. Blackwell Science; Oxford.
19. Fahraeus, L.E., Slatt, R.M. and Nowlan, G.S. 1974. Origin of carbonate pseudopellets. Journal of Sedimentary Petrology, 44, 27–29.
20. Feng, J-L. 2011. Trace elements in ferromanganese concretions, gibbsite spots, and the surrounding terra rossa over-lying dolomite: their mobilization, redistribution and fractionation. Journal of Geochemical Exploration, 108, 99–111.
21. Fernandez-Caliani, J.C. and Cantano, M. 2010. Intensive kaolinization during a lateritic weathering event in South-West Spain. Mineralogical and geochemical inferences from a relict paleosoil. Catena, 80, 23–33.
22. Flodén, T., Bjerkéus, M., Tuuling, I. and Eriksson, M. 2001. A Silurian reefal succession in the Gotland area, Baltic Sea. GFF, 123, 137–152.
23. Flügel, E. 2004. Microfacies of carbonate rocks – analysis, interpretation and application, 976 pp. Springer; Berlin.
24. Galan, E., Fernandez-Caliani, J.C., Miras, A., Aparicio, P., and Marquez, M.G. 2007. Residence and fractionation of rare earth elements during kaolinization of alkaline peraluminous granites in NW Spain. Clay Minerals, 42, 341–352.
25. Gritsenko, V.P., Istchenko, A.A., Konstantinenko, L.I. and Tsegelnyuk, P.D. 1999. Animal and plant communities of Podolia. In: A.J. Boucot and J.D. Lawson (Eds), Palaeocommunities: a case study from the Silurian and Lower Devonian, pp. 462–487. Cambridge University Press; Cambridge, New York, Melbourne.
26. Gu, J., Huang, Z., Fan, H., Jin, Z., Yan, Z., and Zhang, J. 2013. Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan-Zheng’an-Daozhen area, Northern Guizhou Province, China. Journal of Geochemical Exploration, 130, 44–59.
27. Handford, C.R. and Loucks, R.G. 1993. Carbonate depositional sequences and systems tracts—responses of carbonate platforms to relative sea-level change. In: R.G. Loucks and R. Sarg (Eds), Carbonate Sequence Stratigraphy; Recent Advances and Applications. American Association of Petroleum Geologists Memoir, 57, 3–41.
28. Hesselbo, S.P. 1996. Spectral gamma-ray logs in relation to clay mineralogy and sequence stratigraphy, Cenozoic of the Atlantic margin, offshore New Jersey. In: G.S. Mountain, K.G. Miller, P. Blum, C.W. Poag, and D.C. Twitchell (Eds), Proceedings of the Ocean Drilling Program: Scientific Results, 150. College Station, TX, 411–422.
29. Hubmann, B. and Suttner, T. 2007. Siluro-Devonian Alpine reefs and pavements. In: J.J. Alvaro, M. Aretz, F. Boulvain, Munnecke, D. Vachard, and E. Vennin (Eds), Palaeozoic reefs and bioaccumulations: climatic and evolutionary controls. Geological Society of London, Special Publications, 275, 95–107.
30. Huff, W.D., Bergström, S.M. and Kolata, D.R. 2000. Silurian K-bentonites of the Dniestr Basin, Podolia, Ukraine. Journal of the Geological Society of London, 157, 493–504.
31. James, N.P., Kendall, A. and Pufahl, P.K. 2010. Introduction to biological and chemical sedimentary facies models. In: N.P. James and R.W. Dalrymple (Eds), Facies Models 4, pp. 323–339. The Geological Association of Canada.
32. Jorry, S.J., Droxler, A.W. and Francis, J.M. 2010. Deepwater carbonate deposition in response to re-flooding of carbonate bank and atoll-tops at glacial terminations. Quaternary Science Reviews, 29, 2010–2026.
33. Kaljo, D. 1970. Silur Estonii (The Silurian of Estonia). Academy of Sciences of the Estonian SSR, Tallin, 343 pp. In Russian with English abstracts
34. Kaljo, D. 1977. Facii i fauna Silura Pribaltiki (Facies and fauna of the Baltic Silurian). Academy of Sciences of the Estonian SSR, Tallin, 286 pp. In Russian with English abstracts
35. Kaljo, D., Grytsenko, V., Martma, T. and Mõtus, M-A. 2007. Three global carbon isotope shifts in the Silurian of Podolia (Ukraine): stratigraphical implications. Estonian Journal of Earth Sciences, 56, 205–220.
36. Kershaw, S. 1990. Stromatoporoid palaeobiology and taphonomy in a Silurian biostrome on Gotland, Sweden. Palaeontology, 33, 681–705.
37. Kershaw, S., Li, Y. and Guo, L. 2007. Micritic fabric define sharp margins of Wenlock patch reefs (middle Silurian) in Gotland and England. In: J.J. Alvaro, M., Aretz, F. Boulvain, A. Munnecke, D. Vachard and E. Vennin (Eds), Palaeozoic reefs and bioaccumulations: climatic and evolutionary controls. Geological Society of London Special Publications, 275, 87–94.
38. Kiipli, E. and Kiipli, T. 2006. Carbonate distribution in the East Baltic deep shelf in the late Ordovician-early Silurian. GFF, 128, 147–152.
39. Koren’, T.N., Abushik, A.F., Modzalevskaya, T.L. and Predtechensky, N.N. 1989. Podolia. In: C.H. Holland and M.G.A. Bassett (Eds), Global standard for the Silurian System. Natural Museum Wales Geological Service, 9, 141–149.
40. Laufeld, S. and Bassett, M.G. 1981. Gotland: the anatomy of a Silurian carbonate platform. Episodes, 2, 23–27.
41. Łuczyński, P., Skompski, S. and Kozłowski, W. 2009. Sedimentary history of Upper Silurian biostromes of Podolia (Ukraine) based on stromatoporoid morphometry. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 225–239.
42. Łuczyński, P., Skompski, S. and Kozłowski, W. 2014. Stromatoporoid beds and flat-pebble conglomerates interpreted as tsunami deposits in the Upper Silurian of Podolia, Ukraine. Acta Geologica Polonica, 64, 261–280.
43. Lüning, S. and Kolonic, S. 2003. Uranium spectral gamma-ray response as a proxy for organic richness in black shales: applicability and limitations. Journal of Petroleum Geology , 26, 153–174.
44. Manten, A.A. 1971. Silurian reefs of Gotland. Developments in Sedimentology, 13, 271 pp. Elsevier; Amsterdam.
45. McLennan, S.M., Hemming, S., McDaniel, D.K. and Hanson, G.N. 1993. Geochemical approaches to sedimentation, provenance and tectonics. In: M.J. Johnsson and A. Basu (Eds), Processes Controlling the Composition of Clastic Sediments, Special Papers of the Geological Society of America, 284, 21–40.
46. Meyers, W.J., Lu, F.H. and Zachariah, J.K. 1997. Dolomitization of mixed evaporative brines and freshwater, Upper Miocene carbonates, Nijar, Spain. Journal of Sedimentary Research, 67, 898–912.
47. Munnecke, A. 2007. Silurian. In: E. Vennin, M., Aretz, F., Boulvain and A. Munnecke (Eds), Facies from Palaeozoic reefs and bioaccumulations, Mémoires du Muséum National d’Histoire Naturelle, 195, 113–170.
48. Narkiewicz, M. 1988. Turning points in sedimentary development in the Late Devonian in southern Poland. In: N.J. McMillan, A.F. Embry and D.J. Glass (Eds), Devonian of the World, Canadian Society of Petroleum Geologists Memoir, 14, 619–635.
49. Narkiewicz, M. 1990. Mesogenetic dolomitization in the Givetian to Frasnian of the Holy Cross Mountains, Poland. Bulletin of the Polish Academy of Sciences, Earth Sciences, 38, 101–110
50. Nestor, H. and Einasto, R. 1977. Facies sedimentary model of the Silurian Paleobaltic pericontinental basin. In: D. Kaljo (Ed.), Facies and fauna of the Baltic Silurian. Institute of Geology, Academy of Sciences of the Estonian SSR, Tallin, 17–23.
51. Nestor, H. and Einasto, R. 1997. Ordovician and Silurian sedimentary basin. In: A. Raukas and A. Teedumäe (Eds), Geology and mineral resources of Estonia. Estonian Academy Publishers, Tallin, 192–195.
52. Neumann, A.C. and Macintyre, I.G. 1985. Reef response of sea level rise: keep-up, catch-up or give-up. In: J.L. Gabrie, B. Toffart, and C. Salvat (Eds), Proceedings of the Fifth International Coral Reef Congress, Tahiti, 27 May – 1 June 1985, Volume 3. pp 105–110.
53. Nikiforova, O.I. and Predtechensky, N.N. 1968. A guide to the geological excursion on Silurian and Lower Devonian deposits of Podolia (Middle Dniestr River). In: Proceedings of the 3rd international symposium on Silurian-Devonian boundary and Lower and Middle Devonian stratigraphy, Leningrad, pp. 1–58.
54. Nikiforova, O.I., Predtechensky, N.N., Abushik, A.F., Ignatovitch, M.M., Modzalevskaya, T.L., Berger, A.Y., Novoselova, L.S. and Burkov, Y.K. 1972. Opornyj razrez silura i nizhnego devona Podolii, pp. 1–262. Nauka; Kiev
55. Peryt, T.M. 1984. Sedimentation and early diagenesis of the Zechstein Limestone in western Poland. Prace Instytutu Geologicznego, 109, 1–80.
56. Predtechensky, N.N., Koren’, T.N., Modzalevskaya, T.L., Nikiforova, O.I., Berger, A.Y. and Abushik, A.F. 1983. Cyclicity of deposition and changes of ecological assemblages of fauna in the Silurian of Podolia. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 194, 61–74. In Russian
57. Racki, G. 1993. Evolution of the bank to reef complex in the Devonian of the Holy Cross Mountains. Acta Palaeontologica Polonica, 37, 87–182.
58. Racki, G., Baliński, A., Wrona, R., Małkowski, K., Drygant, D. and Szaniawski, H. 2012. Faunal dynamics across the Silurian-Devonian positive isotope excursions (δ13C, δ18O) in Podolia, Ukraine: Comparative analysis of the Ireviken and Klonk events. Acta Palaeontologica Polonica, 57, 795–832.
59. Racki, G., Racka, M., Matyja, H. and Devleeschouwer, X. 2002. The Frasnian/Famennian boundary interval in the South Polish-Moravian shelf basins: Integrated eventstratigraphical approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 181, 251–297.
60. Ragland, P.C., Billings, G.K. and Adams, J.A.S. 1967. Chemical fractionation and its relationship to the distribution of thorium and uranium in a zoned granite batholith. Geochimica et Cosmochimica Acta, 31, 17–32.
61. Ruppel, S.C. and Cander, H.S. 1988. Dolomitization of shallow-water platform carbonates by seawater and seawaterderived brines: San Andres Formation (Guadalupian), west Texas. SEPM Special Publications: Sedimentology and geochemistry of dolostones, pp. 245–262.
62. Samtleben, C., Munnecke, A. and Bickert, T. 2000. Development of facies and C/O-isotopes in transects through the Ludlow of Gotland: evidence for global and local influences on a shallow-marine environment. Facies, 43, 1–38.
63. Schlager, W. 2003. Benthic carbonate factories of the Phanerozoic . International Journal Earth Sciences (Geologische Rundschau), 92, 445–464.
64. Schlager, W. 2005. Carbonate sedimentology and sequence stratigraphy. Concepts in Sedimentology and Paleontology, 8, 1–200.
65. Schlager, W., Reimer, J. and Droxler, A. 1994. Highstand shedding of carbonate platforms. Journal of Sedimentary Research, B64, 270–281.
66. Skompski, S., Łuczynśki, P., Drygant, D. and Kozłowski, W. 2006. Silurian of Podolia; Kamieniec Podolski–Kubachivka Quarry; Skala Podolska –Bridok Quarry. In: A. Wysocka and M. Jasionowski (Eds), II Polish Sedimentological Conference Guide. Instytut Geologii Podstawowej UW, Warszawa, 93–108. In Polish
67. Skompski, S., Łuczynśki, P., Drygant, D. and Kozłowski, W. 2008. High-energy sedimentary events in lagoonal successions of the Upper Silurian of Podolia, Ukraine. Facies, 54, 277–296.
68. Spirakis, C.S. 1996. The roles of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geology Reviews, 11, 53–69.
69. Środoń, J., Paszkowski, M., Drygant, D., Anczkiewicz, A. and Banaś, M. 2013. Thermal history of lower Paleozoic rocks on the Peri-Tornquist margin of the East European Craton (Podolia, Ukraine) inferred from combined XRD, K-Ar, and aft data. Clays and Clay Minerals, 61, 107–132.
70. Szulczewski, M. 1968. Slump structures and turbidites in Upper Devonian limestones of the Holy Cross Mts. Acta Geologica Polonica, 18, 303–330.
71. Taboada, T., Martinez-Cortizas, A., Garcia, C. and Garcia-Rodeja, E. 2006. Uranium and thorium in weathering and pedogenetic profiles developed on granitic rocks from NW Spain. Science of the Total Environment, 356, 192–206.
72. Tsegelnjuk, P.D. 1974. Dnistrovskij opornyj razriz siluru. In: D.E. Aizenverg (Ed), Stratigrafija URSR – Silur, 6, 63–110. Naukova Dumka; Kiev.
73. Tsegelnjuk, P.D., Gritsenko, V.P., Konstantinenko, L., Ishchenko, A.A., Abushik, A.F., Bogoyavlenskaya, O.V., Drygant, D.M., Zaika-Novatsky, V.S., Kadlets, N.M., Kiselev, G.N. and Sytova, V.A. 1983. The Silurian of Podolia. The guide to excursion, 224 pp. Naukova Dumka; Kiev. In Russian
74. Tucker, M. and Wright, V.P. 1990. Carbonate Sedimentology, 482 pp. Blackwell Scientific Publications; Oxford.
75. Tuuling, I. and Floden, T. 2011. Seismic stratigraphy, architecture and outcrop pattern of the Wenlock-Pridoli sequence offshore Saaremaa, Baltic Sea. Marine Geology, 281, 14–26.
76. Vannier, J, Wang, S.Q and Coen, M. 2001. Leperditicopid arthropods (Ordovician-Late Devonian): functional morphology and ecological range. Journal of Palaeontology, 75, 75–95.
77. Wagner, R. and Peryt, T.M. 1997. Possibility of sequence stratigraphic subdivision of the Zechstein in the Polish Basin. Kwartalnik Geologiczny, 41, 457–474.
78. Ward, W.C. and Halley, R.B. 1985. Dolomitization in a mixing zone of near-seawater compensation, Late Pleistocene, North-eastern Yucatan. Journal of Sedimentary Petrology, 55, 407-420.
79. Watkins, R. 1992. Paleoecology of a low-diversity Silurian community from the Tofta Beds of Gotland. Paläontologische Zeitschrift, 66, 405–413.
80. Whalen, M.T., Eberli, G.P., Van Buchem, F.S.P., Mountjoy, E.W. and Homewood, P.W. 2000. Bypass margins, basin-restricted wedges, and platform-to-basin correlation, Upper Devonian, Canadian Rocky Mountains: Implications for sequence stratigraphy of carbonate platform systems. Journal of Sedimentary Research, 70, 913–936.
81. Wilson, R.C. 1967. Particle nomenclature in carbonate sediments. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 498–510.
Cytuj : Gaetani, M. ,Meço, S. ,Rettori, R. ,Henderson, C. M. ,Tulone, A. ,Łuczyński, P. ,Kozłowski, W. ,Skompski, S. , Regressive-transgressive cyclothem with facies record of the re-flooding window in the Late Silurian carbonate succession (Podolia, Ukraine). Acta Geologica Polonica Vol. 65, no. 3/2015