Results of Crust and Mantle Soundings in Central and Northern Europe in the 21st Century (Review)

Czasopismo : Acta Geophysica
Tytuł artykułu : Results of Crust and Mantle Soundings in Central and Northern Europe in the 21st Century (Review)

Autorzy :
Karakostas, V.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, vkarak@geo.auth.gr,
Papadimitriou, E.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, ritsa@geo.auth.gr,
Mesimeri, M.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, mmesimer@geo.auth.gr,
Paradisopoulou, P.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, ppara@geo.auth.gr,
Gkarlaouni, Ch.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, hagarl@geo.auth.gr,
Trojanowski, J.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, jtroj@igf.edu.pl,
Plesiewicz, B.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Wiszniowski, J.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Danek, T.
Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, Canad,
Slawinski, M. A.
Department of Geoinformatics and Applied Computer Science, AGH – University of Science and Technology, Kraków, Poland,
Baddari, K.
Laboratory of Physics of the Earth UMBB, Boumerdes, Algeria / University of Bouira, Bouira, Algeria / Laboratory LIMOSE UMBB, Boumerdes, Algeria,
Frolov, A. D.
Geophysical Division NCG, Russian Academy of Sciences, Moscow, Russia,
Tourtchine, V.
Laboratory LIMOSE UMBB, Boumerdes, Algeria,
Rahmoune, F.
Laboratory LIMOSE UMBB, Boumerdes, Algeria,
Makdeche, S.
Laboratory LIMOSE UMBB, Boumerdes, Algeria,
Semenov, V. Yu.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, sem@igf.edu.pl,
Abstrakty : The first decade of 21st century is characterized by the appearance of new approaches to deep induction soundings. The theory of magnetovariation and magnetotelluric soundings was generalised or corrected. Spatial derivatives of response functions (induction arrows) were obtained for the ultra-long periods. New phenomena have been detected by this method: secular variations of the Earth’s apparent resistivity and the rapid changes of induction arrows over the last 50 years. The first one can be correlated with the number of earthquakes, and the second one – with geomagnetic jerks in Central Europe. The extensive studies of geoelectrical structure of the crust and mantle were realized in the frame of a series of international projects. New information about geoelectrical structures of the crust in Northern Europe and Ukraine was obtained by deep electromagnetic soundings involving controlled powerful sources. An influence of the crust magnetic permeability on the deep sounding results was confirmed.

Słowa kluczowe : induction soundings, conductivity, crust, mantle, Europe,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2015
Numer : Vol. 63, no. 1
Strony : 103 – 124
Bibliografia : 1 Aboul-Atta, O.A., and W.M. Boerner (1975), Vectoral impedance identity for the natural dependence of harmonic fields on closed boundaries, Canadian J. Phys. 53, 15, 1404-1407, DOI: 10.1139/p75-179.
2 Abramovitz, T., H. Thybo, and E. Perchuć (2002), Tomographic inversion of seismic P- and S-wave velocities from the Baltic Shield based on FENNOLORA data, Tectonophysics 358, 1-4, 151-174, DOI: 10.1016/S0040-1951(02)00422-5.
3 Banks, R.J. (1969), Geomagnetic variations and the electrical conductivity of the upper mantle, Geophys. J. Roy. Astr. Soc. 17, 5, 457-487, DOI: 10.1111/j.1365-246X.1969.tb00252.x.
4 Bates, R.H.T., W.M. Boerner, and G.R. Dunlop (1976), An extended Rytov approximation and its significance for remote sensing and inverse scattering, Opt. Commun. 18, 4, 421-423, DOI: 10.1016/0030-4018(76)90285-6.
5 Becken, M., and L.B. Pedersen (2003), Transformation of VLF anomaly maps intoapparent resistivity and phase, Geophysics 68, 2, 497-505, DOI: 10.1190/1.1567217.
6 Becken, M., O. Ritter, and H. Burkhardt (2008), Mode separation of magnetotelluric responses in three-dimensional environments, Geophys. J. Int. 172, 1, 67-86, DOI:10.1111/j.1365-246X.2007.03612.x.
7 Berdichevsky, M.N., and M.S. Zhdanov (1981), Interpretation of Anomalies Alternating Electromagnetic Field of the Earth, Nedra, Moscow (in Russian).
8 Berdichevsky, M.N., L.L. Vanyan, and E.B. Fainberg (1969), The frequency sounding of the Earth using spherical analysis results of geomagnetic variations, Geomagn. Aeron. 9, 372-374 (in Russian).
9 Cagniard, L. (1953), Basic theory of the magneto-telluric method of geophysical prospecting, Geophysics 18, 3, 605-635, DOI: 10.1190/1.1437915.
10 Dmitriev, V.I., and M.N. Berdichevsky (2002), A generalized model of impedance, Izv. Phys. Solid Earth 38, 10, 897-903.
11 Egbert, G.D., and J.R. Booker (1992), Very long period magnetotellurics at Tucson observatory: Implications for mantle conductivity, J. Geophys. Res. 97, B11, 15099-15112, DOI: 10.1029/92JB01251.
12 Ernst, T., H. Brasse, V. Cherv, N. Hoffmann, J. Jankowski, W. Jóźwiak, A. Kreutzmann, A. Neska, N. Palshin, L.B. Pedersen, M. Smirnov, E. Sokolova, and I.M. Varentsov (2008), Electromagnetic images of the deep structure of the Trans-European Suture Zone beneath Polish Pomerania, Geophys. Res. Lett. 35, 15, L15307, DOI: 10.1029/2008GL034610.
13 Fujii, I., and A. Schultz (2002), The 3D electromagnetic response of the Earth to ring current and auroral oval excitation, Geophys. J. Int. 151, 3, 689-709, DOI: 10.1046/j.1365-246X.2002.01775.x.
14 Grad, M., T. Tiira, and ESC Working Group (2007), The Moho depth of the European plate, European Seismological Commission, Warsaw–Helsinki, http://www.seismo.helsinki.fi/mohomap/; http://www.igf.fuw.edu.pl/mohomap/.
15 Guglielmi, A.V., and M.B. Gokhberg (1987), On the magnetotelluric sounding in the seismically active areas, Izv. Phys. Solid Earth 33, 11, 122-123 (in Russian).
16 Guterch, A., M. Grad, T. Janik, R. Materzok, U. Luosto, J. Yliniemi, E. Lück, A. Schulze, and K. Förste (1994), Crustal structure of the transition zone between Precambrian and Variscan Europe from new seismic data along LT-7 profile (NW Poland and eastern Germany), C. R. Acad. Sci. II Paris 319, 12, 1489-1496.
17 Harrington, R.F. (1961), Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 480 pp.
18 Ingerov, A.I., I.I. Rokityansky, and V.I. Tregubenko (1999), Forty years of MTS studies in the Ukraine, Earth Planets Space 51, 10, 1127-1133.
19 Janik, T., J. Yliniemi, M. Grad, H. Thybo, T. Tiira, and POLONAISE P2 Working Group 1 (2002), Crustal structure across the TESZ along POLONAISE’97 seismic profile P2 in NW Poland, Tectonophysics 360, 1-4, 129-152, DOI:10.1016/S0040-1951(02)00353-0.
20 Jóźwiak, W. (2012), Large-scale crustal conductivity pattern in Central Europe and its correlation to deep tectonic structures, Pure Appl. Geophys. 169, 10, 1737-1747, DOI: 10.1007/s00024-011-0435-7.
21 Jóźwiak, W. (2013), Electromagnetic study of lithospheric structure in the marginal zone of East European Craton in NW Poland, Acta Geophys. 61, 5, 1101-1129, DOI:10.2478/s11600-013-0127-z.
22 Kiss, J., L. Szarka, and E. Prácser (2005), Second-order magnetic phase transition in the Earth, Geophys. Res. Lett. 32, 24, L24310, DOI: 10.1029/2005GL024199.
23 Korja, T. (2007), How is the European lithosphere imaged by magnetotellurics? Surv. Geophys. 28, 2-3, 239-272, DOI: 10.1007/s10712-007-9024-9.
24 Korja, T., M. Engels, A.A. Zhamaletdinov, A.A. Kovtun, N.A. Palshin, M.Yu. Smirnov, A.D. Tokarev, V.E. Asming, L.L. Vanyan, I.L. Vardaniants, and the BEAR Working Group (2002), Crustal conductivity in Fennoscandia − a compilation of a database on crustal conductance in the Fennoscandian Shield, Earth Planets Space 54, 5, 535-558.
25 Kuckes, A.F. (1973), Relations between electrical conductivity of a mantle and fluctuating magnetic fields, Geophys. J. Roy. Astr. Soc. 32, 1, 119-130, DOI:10.1111/j.1365-246X.1973.tb06523.x.
26 Kuckes, A.F., A.G. Nekut, and B.G. Thompson (1985), A geomagnetic scattering theory for evaluation of the Earth structure, Geophys. J. Roy. Astr. Soc. 83, 2, 319-330, DOI: 10.1111/j.1365-246X.1985.tb06489.x.
27 Kuvshinov, A.V. (2012), Deep electromagnetic studies from land, sea, and space: Progress status in the past 10 years, Surv Geophys. 33, 1, 169-209, DOI:10.1007/s10712-011-9118-2.
28 Kuvshinov, A., H. Utada, D. Avdeev, and T. Koyama (2005), 3-D modelling and analysis of Dst C-responses in the North Pacific Ocean region, revisited, Geophys. J. Int. 160, 2, 505-526, DOI: 10.1111/j.1365-246X.2005.02477.x.
29 Leontovich, М.А. (1948), On approximate boundary conditions for an electromagnetic field on the surface of highly conductive bodies. In: Issledovania po Rasprostraneniu Radiovoln, Acad. Sci. USSR, Moscow, 5-12 (in Russian).
30 Logvinov, I.M. (2002), Applying the horizontal spatial gradient method for the deep conductivity estimations in the Ukraine, Acta Geophys. Pol. 50, 4, 567-573.
31 Martinec, Z., and K. Pěč (1990), The influence of the core-mantle boundary irregularities on the mass density distribution inside the Earth. In: A. Vogel, C.O. Ofoegbu, R. Gorenflo, and B. Ursin (eds.), Geophysical Data Inversion. Methods and Applications, Proc. 7th Int. Math. Geophys. Seminar, 8-11 February 1989, Free University of Berlin, 233-256, DOI:10.1007/978-3-322-89416-8_15.
32 Nowożyński, K. (2004), Estimation of magnetotelluric transfer functions in the time domain over a wide frequency band, Geophys. J. Int. 158, 1, 32-41, DOI:10.1111/j.1365-246X.2004.02288.x.
33 Olsen, N. (1992), Day-to-day C-response estimation for Sq from 1 cpd to 6 cpd using the Z:Y-method, J. Geomag. Geoelectr. 44, 6, 433-447, DOI: 10.5636/jgg.44.433.
34 Olsen, N. (1998), The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 hr, Geophys. J. Int. 133, 2, 298-308, DOI:10.1046/j.1365-246X.1998.00503.x.
35 Olsen, N. (1999a), Long-period (30 days – 1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe, Geophys. J. Int. 138, 1, 179-187, DOI: 10.1046/j.1365-246x.1999.00854.x.
36 Olsen, N. (1999b), Induction studies with satellite data, Surv. Geophys. 20, 3-4, 309-340, DOI: 10.1023/A:1006611303582.
37 Oraevsky, V.N., N.M. Rotanova, T.N. Bondar, D.Yu. Abramova, and V.Yu. Semenov (1993), On the radial geoelectrical structure of the mid-mantle from magnetovariational sounding using MAGSAT data, J. Geomagn. Geoelectr. 45, 11-12, 1415-1423.
38 Pek, J. (2002), Spectral magnetotelluric impedances for an anisotropic layered conductor, Acta Geophys. Pol. 50, 4, 619-643.
39 Pek, J., and F.A.M. Santos (2002), Magnetotelluric impedances and parametric sensitivities for 1-D anisotropic layered media, Comput. Geosci. 28, 8, 939-950, DOI: 10.1016/S0098-3004(02)00014-6.
40 Petrishchev, M.S., and V.Yu. Semenov (2013), Secular variations of the Earth’s apparent
41 Piromallo, C., and A. Morelli (2003), P wave tomography of the mantle under the resistivity, Earth Planet Sci. Lett. 361, 1-6, DOI: 10.1016/j.epsl.2012.11.027.
42 Praus, O., J. Pěčova, V. Červ, S. Kováčiková, J. Pek, and J. Velímský (2011), Electrical conductivity at mid-mantle depths estimated from the data of Sq and long period geomagnetic variations, Stud. Geophys. Geod. 55, 2, 241-264, DOI: 10.1007/s11200-011-0014-5.
43 Roberts, R.G. (1984), The long-period electromagnetic response of the Earth, Geophys. J. Roy. Astr. Soc. 78, 2, 547-572, DOI: 10.1111/j.1365-246X.1984.tb01963.x.
44 Roberts, R.G. (1986), The deep electrical structure of the Earth, Geophys. J. Int. 85, 3, 583-600, DOI: 10.1111/j.1365-246X.1986.tb04534.x.
45 Rokitjansky, I.I. (1982), Geomagnetic Investigation of the Earth’s Crust and Mantle, Springer, Berlin, 381 pp.
46 Rytov, S.M. (1940), Skin-effect calculations by the disturbance method, J. Exp. Theor. Phys. 10, 2, 180-189 (in Russian).
47 Schmucker, U. (1970), Anomalies of Geomagnetic Variations in the Southwestern United States, University of California Press, Berkeley, 165 pp.
48 Schmucker, U. (1999a), A spherical harmonic analysis of solar daily variations in the years 1964-1965: response estimates and source fields for global induction – I. Methods, Geophys. J. Int. 136, 2, 439-454, DOI: 10.1046/j.1365-246X.1999.00742.x.
49 Schmucker, U. (1999b), A spherical harmonic analysis of solar daily variations in the years 1964-1965: response estimates and source fields for global induction – II. Results, Geophys. J. Int. 136, 2, 455-476, DOI: 10.1046/j.1365-246X.1999.00743.x.
50 Schmucker, U. (2003), Horizontal spatial gradient sounding and geomagnetic depth sounding in the period range of daily variations. In: A. Hördt and J.B. Stoll (eds.), Protokollüber das 20. Kolloquium elektromagnetische Tiefenforschung, 29.09-3.10.2003, Königstein, Deutschland, 228-237.
51 Schultz, A. (1990), On the vertical gradient and associated heterogeneity in mantle electrical conductivity, Phys. Earth Planet. In. 64, 1, 68-86, DOI: 10.1016/0031-9201(90)90006-J.
52 Schultz, A., and J.C. Larsen (1987), On the electrical conductivity of the mid-mantle – I. Calculation of equivalent scalar magnetotelluric response functions, Geophys. J. Int. 88, 3, 733-761, DOI: 10.1111/j.1365-246X.1987.tb01654.x.
53 Schultz, A., and J.C. Larsen (1990), On the electrical conductivity of the mid-mantle – II. Delineation of heterogeneity by application of extremal inverse solutions, Geophys. J. Int. 101, 3, 565-580, DOI: 10.1111/j.1365-246X.1990.tb05571.x.
54 Schultz, A., and T.S. Zhang (1994), Regularized spherical harmonic analysis and the 3-D electromagnetic response of the Earth, Geophys. J. Int. 116, 1, 141-156, DOI: 10.1111/j.1365-246X.1994.tb02133.x.
55 Schultz, A., R.D. Kurtz, A.D. Chave, and A.G. Jones (1993), Conductivity discontinuities in the upper mantle beneath a stable craton, Geophys. Res. Lett. 20, 24, 2941-2944, DOI:10.1029/93GL02833.
56 Semenov, V.Yu. (1988), Analysis of magnetotelluric data during the anisotropic media sounding, Russ. Geol. Geophys. 10, 121-125 (in Russian).
57 Semenov, V.Yu. (1989), Evaluation of mantle conductivity beneath northern hemisphere continents, Izv. – Phys. Solid Earth 25, 3, 221-226 (in Russian).
58 Semenov, V.Yu. (2000), On the apparent resistivity in magnetotelluric sounding, Izv. – Phys. Solid Earth 36, 1, 99-100.
59 Semenov, V.Yu., and W. Jóźwiak (1999), Model of the geoelectrical structure of the mid- and lower mantle in the Europe–Asia region, Geophys. J. Int. 138, 2, 549-552, DOI:10.1046/j.1365-246X.1999.00888.x.
60 Semenov, V.Yu., and W. Jóźwiak (2005), Estimation of the upper mantle electric conductance at the Polish margin of the East European platform, Izv. – Phys. Solid Earth 41, 4, 326-332.
61 Semenov, V.Yu., and W. Jóźwiak (2006), Lateral variations of the mid-mantle conductance beneath Europe, Tectonophysics 416, 1-4, 279-288, DOI:10.1016/j.tecto.2005.11.017.
62 Semenov, V.Yu., and M. Rodkin (1996), Conductivity structure of the upper mantle in an activ subduction zone, J. Geodynamics 21, 4, 355-364, DOI:10.1016/0264-3707(95)00038-0.
63 Semenov, V.Yu., and V.N. Shuman (2010), Impedances for induction soundings of the Earth’s mantle, Acta Geophys. 58, 4, 527-542, DOI: 10.2478/s11600-010-0003-z.
64 Semenov, V.Yu., T. Ernst, K. Nowożyński, J. Pek, and EMTESZ WG (2005), Estimation of the deep geoelectrical structure beneath TESZ in NW Poland, Publs. Inst. Geophys. Pol. Acad. Sci. C-95, 386, 63-65.
65 Semenov, V.Yu., J. Pek, A. Ádám, W. Jóźwiak, B. Ladanyvskyy, I.M. Logvinov, P. Pushkarev, J. Vozar, and Experimental Team of CEMES project (2008), Electrical structure of the upper mantle beneath Central Europe: Results of the CEMES project, Acta Geophys. 56, 4, 957-981, DOI: 10.2478/s11600-008-0058-2.
66 Semenov, V.Yu., B. Ladanivskyy, and K. Nowożyński (2011), New induction sounding tested in Central Europe, Acta Geophys. 59, 5, 815-832, DOI:10.2478/s11600-011-0030-4.
67 Semenov, V.Yu., M. Hvoždara, and J. Vozar (2013), Modeling of deep magnetovariation soundings on the rotating Earth, Acta Geophys. 61, 2, 264-280 DOI: 10.2478/s11600-012-0086-9.
68 Senior, T.B.A., and J.L. Volakis (1995), Approximate Boundary Conditions in Electromagnetics, IEE Press, London, 353 pp.
69 Shuman, V.N. (1999), Scalar local impedance conditions and the impedance tensor in processing and interpretation of a magnetotelluric experiment, Geophys. J. 19, 361-385.
70 Shuman, V. (2003), The general theory of geoelectromagnetic sounding systems accounting the electrodynamics of spherical sources. In: 3DEM III Workshop, February 2003, Adelaide, USA, ASEG Ext. Abstr., 1-7, DOI: 10.1071/ASEG2003_3DEMab015.
71 Shuman, V.N. (2007), Imaginary surface vectors in multidimensional inverse problems of geoelectrics, Izv. – Phys. Solid Earth 43, 3, 205-210, DOI:10.1134/S1069351307030044.
72 Shuman, V., and S. Kulik (2002), The fundamental relations of impedance type in general theories of the electromagnetic induction studies, Acta Geophys. Pol. 50, 4, 607-618.
73 Sokolova, E.Yu., I.M. Varentsov, and BEAR Working Group (2007), Deep array electromagnetic sounding on the Baltic Shield: External excitation model and implications for upper mantle conductivity studies, Tectonophysics 445, 1-2, 3-25, DOI:10.1016/j.tecto.2007.07.006.
74 Szarka, L., A. Franke, E. Prácser, and J. Kiss (2007), Hypothetical mid-crustal models of second-order magnetic phase transition. In: 4th Int. Symp. on Three-Dimensional Electromagnetics, 27-30 September 2007, Freiberg, Germany.
75 Tikhonov, A.N. (1950), On determining electrical characteristics of the deep layers of the Earth’s crust, Dokl. AN USSR 73, 2, 295-297 (in Russian).
76 Transactions… (1973), Transactions of the 2nd IAGA Scientific Assembly, Kyoto, Japan, 1973, IAGA Bull. 35, 189 pp.
77 Vanyan, L., B. Tezkan, and N. Palshin (2001), Low electrical resistivity and seismic velocity at the base of the upper crust as indicator of rheologically weak layer, Surv. Geophys. 22, 2, 131-154, DOI: 10.1023/A:1012937410685.
78 Vanyan, L.L., V.A. Kuznetsov, T.V. Lyubetskaya, N.A. Palshin, T. Korja, I. Lahti, and the BEAR Working Group (2002), Electrical conductivity of the crust beneath Central Lapland, Izv. – Phys. Solid Earth 38, 10, 798-815.
79 Vardanyants, I.L., and A.A. Kovtun (2009), The study of the possible existence of asthenosphere on the territory of Fennoscandian shield by the BEAR data. In: Complex Geological-Geophysical Models of Ancient Shields, Geological Inst. of the Kola Science Centre, Russ. Acad. Sc., Apatity, 15-18.
80 Varentsov, I.M., M. Engels, T. Korja, M.Yu. Smirnov, and the BEAR Working Group (2002), The generalized geoelectric model of Fennoscandia: A challenging database for long-period 3D modeling studies within the Balticelectromagnetic array research (BEAR) Project, Izv. – Phys. Solid Earth 38, 11, 855-896 (in Russian).
81 Vozar, J., and V.Yu. Semenov (2010), Compatibility of induction methods for mantle soundings, J. Geophys. Res. 115, B3, B03101, DOI: 10.1029/2009JB006390.
82 Wait, J.R. (1954), On the relation between telluric currents and the Earth’s magnetic field, Geophysics 19, 2, 281-289, DOI: 10.1190/1.1437994.
83 Weckmann, U., O. Ritter, and V. Haak (2003), Images of the magnetotelluric apparent resistivity tensor, Geophys. J. Int. 155, 2, 456-468, DOI: 10.1046/j.1365-246X.2003.02062.x.
84 Woods, D.V., and F.E.M. Lilley (1979), Geomagnetic induction in Central Australia, J. Geomag. Geoelectr. 31, 4, 449-458, DOI: 10.5636/jgg.31.449.
85 Zhamaletdinov, A.A. (1996), Graphite in the Earth’s crust and electrical conductivity anomalies, Izv. – Phys. Solid Earth 32, 4, 272-288.
86 Zhamaletdinov, A.A. (2005), Khibiny MHD experiment: The 30th anniversary, Izv. – Phys. Solid Earth 41, 9, 737-742.
87 Zhamaletdinov, A.A. (2011), The new data on the structure of the continental crust based on the results of electromagnetic sounding with the use of powerful controlled sources, Dokl. Earth Sci. 438, 2, 798-802, DOI: 10.1134/S1028334X11060146.
88 Zhamaletdinov, A.A., A.N. Shevtsov, T.G. Korotkova, Yu.A. Kopytenko, V.S. Ismagilov, M.S. Petrishev, B.V. Efimov, M.B. Barannik, V.V. Kolobov, P.I. Prokopchuk, M.Yu. Smirnov, S.A. Vagin, M.I. Pertel, E.D. Tereshchenko, A.N. Vasil’ev, V.F. Grigoryev, M.B. Gokhberg, V.I. Trofimchik, Yu.M. Yampolsky, A.V. Koloskov, A.V. Fedorov, and T. Korja (2011), Deep electromagnetic sounding of the lithosphere in the Eastern Baltic (Fennoscandian) shield with high-power controlled sources and industrial power transmission lines (FENICS experiment), Izv. – Phys. Solid Earth 47, 1, 2-22, DOI: 10.1134/S1069351311010149.
DOI :
Cytuj : Karakostas, V. ,Papadimitriou, E. ,Mesimeri, M. ,Paradisopoulou, P. ,Gkarlaouni, Ch. ,Trojanowski, J. ,Plesiewicz, B. ,Wiszniowski, J. ,Danek, T. ,Slawinski, M. A. ,Baddari, K. ,Frolov, A. D. ,Tourtchine, V. ,Rahmoune, F. ,Makdeche, S. ,Semenov, V. Yu. , Results of Crust and Mantle Soundings in Central and Northern Europe in the 21st Century (Review). Acta Geophysica Vol. 63, no. 1/2015
facebook