Journal : Acta Mechanica et Automatica
Article : Robust output regulation of uncertain chaotic systems with input magnitude and rate constraints

Authors :
Bąk, Ł.
Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Al. Powstańców Warszawy12, 35-959 Rzeszów, Poland, lbak@prz.edu.pl,
Noga, S.
Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Al. Powstańców Warszawy12, 35-959 Rzeszów, Poland, noga@prz.edu.pl,
Stachowicz, F.
Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Al. Powstańców Warszawy12, 35-959 Rzeszów, Poland, stafel@prz.edu.pl,
Tesař, V.
Institute of Thermomechanics v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 1402/5, 182 00 Praha 8, Czech Republic, tesar@it.cas.cz,
Czerwiński, E.
Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland, ernest.czerwinski@dokt.p.lodz.pl,
Olejnik, P.
Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland, pawel.olejnik@p.lodz.pl,
Awrejcewicz, J.
Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland, jan.awrejcewicz@p.lodz.pl,
Wudarczyk, S.
Faculty of Mechanical Engineering, Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, slawomir.wudarczyk@pwr.edu.pl,
Muraszkowski, A.
Faculty of Mechanical Engineering, Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, artur.muraszkowski@pwr.edu.pl,
Lupenko, S.
Ternopil Ivan Pul’uj National Technical University,46001, Ruska str. 56, Ternopil, Ukraine, lupenko@ua.fm,
Lutsyk, N.
Ternopil Ivan Pul’uj National Technical University,46001, Ruska str. 56, Ternopil, Ukraine, lutsyk.nadiia@gmail.com,
Lapusta, Y.
French Institute of Advanced Mechanics, Institut Pascal / UBP / IFMA / CNRS / Clermont Université, BP 265, 63175 Aubière CEDEX, France, yuri.lapusta@ifma.fr,
Kaczorek, T.
Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Bialystok, Poland , kaczorek@isep.pw.edu.pl,
Manjaree, S.
Department of Mechanical Engineering, The Northcap University (Formerly ITM University), Sector 23 A, Gurgaon, India, shivmanjree@gmail.com,
Nakra, B. C.
Department of Mechanical Engineering, IIT Delhi, Hauz Khas, New Delhi, India, bcnakra@hotmail.com,
Agarwal, V.
Department of MPAE, NSIT, Sector 3, Dwarka, New Delhi, India, vijayant@nsit.ac.in,
Kuz, I.
Department of Mechanics and Mathematics, Ivan Franko National University of Lviv, 1 Universitetska Str., 79000 Lviv, Ukraine, ihorkuz24@gmail.com,
Kuz, O.
Vyacheslav Chornovil Institute of Ecology, Nature Protection and Tourism, National University “Lviv Polytechnic”, 12 Bandery Str.,79013 Lviv,Ukraine, olyakuzon@gmail.com,
Sulym, H.
Faculty of Mechanical Engineering, Bialystok University of Technology, 45C Wiejska Str., 15-351 Bialystok, Poland, sulym@pb.edu.pl,
Ungureanu, V.
Faculty of Civil Engineering, Department of Steel Structures and Structural Mechanics, Politehnica University of Timisoara, Timisoara, Romania, viorel.ungureanu@upt.ro,
Dubina, D.
Faculty of Civil Engineering, Department of Steel Structures and Structural Mechanics, Politehnica University of Timisoara, Timisoara, Romania, dan.dubina@upt.ro,
Crisan, A.
Faculty of Civil Engineering, Department of Steel Structures and Structural Mechanics, Politehnica University of Timisoara, Timisoara, Romania, andrei crisan@upt.ro,
Madeo, A.
MODELING Department, University of Calabria, Cosenza, Italy, antonio.madeo81@unical.it,
Zagari, G.
MODELING Department, University of Calabria, Cosenza, Italy, giuseppe.zagari@unical.it,
Zucco, G.
MODELING Department, University of Calabria, Cosenza, Italy, giovannizucco@gmail.com,
Zinno, R.
MODELING Department, University of Calabria, Cosenza, Italy, raffaele.zinno@unical.it,
Velosa, C. M. N.
LAETA-UBI/AeroG & Avionics and Control Laboratory, Department of Aerospace Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal, carlosvelosaeng@hotmail.com,
Bousson, K.
LAETA-UBI/AeroG & Avionics and Control Laboratory, Department of Aerospace Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal, k1bousson@yahoo.com,
Abstract : The problem of output regulation deserves a special attention particularly when it comes to the regulation of nonlinear systems. It is well-known that the problem is not always solvable even for linear systems and the fact that some demanding applications require not only magnitude but also rate actuator constraints makes the problem even more challenging. In addition, real physical systems might have parameters whose values can be known only with a specified accuracy and these uncertainties must also be considered to ensure robustness and on the other hand because they can be crucial for the type of behaviour exhibited by the system as it happens with the celebrated chaotic systems. The present paper proposes a robust control method for output regulation of chaotic systems with parameter uncertainties and subjected to magnitude and rate actuator constraints. The method is an extension of a work recently addressed by the same authors and consists in decomposing the nonlinear system into a stabilizable linear part plus a nonlinear part and in finding a control law based on the small-gain principle. Numerical simulations are performed to validate the effectiveness and robustness of the method using an aeronautical application. The output regulation is successfully achieved without exceeding the input constraints and stability is assured when the parameters are within the specified intervals. Furthermore, the proposed method does not require much computational effort because all the control parameters are computed offline.

Keywords : regulacja mocy, chaos, niepewność parametryczna, układ aeroelastyczny, output regulation, actuator constraints, parametric uncertainties, robust control, chaos, aeroelastic system,
Publishing house : Oficyna Wydawnicza Politechniki Białostockiej
Publication date : 2015
Number : Vol. 9, no. 4
Page : 252 – 258

Bibliography
: 1. Alstrom, B., Marzocca, P., Bollt, E., Ahmadi, G. (2010), Controlling Chaotic Motions of a Nonlinear Aeroelastic System Using Adaptive Control Augmented with Time Delay, AIAA Guidance, Navigation, and Control Conference, 1–14, Toronto, Ontario Canada.
2. Bernhard, P. (2002), Survey of Linear Quadratic Robust Control, Macroeconomic Dynamics, 6, 19–39.
3. Bousson, K., Velosa, C.M.N. (2014), Robust Control and Synchronization of Chaotic Systems with Actuator Constraints, P. Vasant (Ed.), Handbook of Research on Artificial Intelligence Techniques and Algorithms, 1–43, IGI Global.
4. Chen, C.L., Peng, C.C., Yau, H.T. (2012), High-order Sliding Mode Controller with Backstepping Design for Aeroelastic Systems, Communications in Nonlinear Science and Numerical Simulation, 17(4), 1813–1823.
5. Demenkov, M. (2008), Structural Instability Induced by Actuator Constraints in Controlled Aeroelastic System. In Proceedings of the 6th EUROMECH Nonlinear Dynamics Conference (ENOC 2008). Saint Petersburg, Russia.
6. Deng, L., Xu, J. (2010), Control and Synchronization for Uncertain Chaotic Systems with LMI Approach, Chinese Control and Decision Conference (CCDC), 1695–1700.
7. Galeani, S., Teel, A.R., Zaccarian, L. (2007), Constructive Nonlinear Anti-windup Design for Exponentially Unstable Linear Plants, Systems & Control Letters, 56(5), 357–365.
8. Hippe, P. (2006), Windup In Control: Its Effects and Their Prevention, Springer.
9. Horowitz, I. (2001), Survey of Quantitative Feedback Theory (QFT), International Journal of Robust and Nonlinear Control, 11(10), 887– 921.
10. Huang, J. (2004), Nonlinear Output Regulation: Theory and Applications, Philadelphia: Siam.
11. Ott, E., Grebogi, C., Yorke, J.A. (1990), Controlling Chaos, Physical Review Letters, 64(11), 1196–1199.
12. Pecora, L.M., Carroll, T.L. (1990), Synchronization in Chaotic Systems, Physical Review Letters, 64(8), 821–824. 13. Saberi, A., Stoorvogel, A.A., Sannuti, P. (2011), Control of Linear Systems with Regulation and Input Constraints, Springer; Reprint of the original 1st ed.
14. Tanaka, K., Wang, H. O. (2001), Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach (1st ed.), WileyInterscience.
15. Velosa, C.M.N., Bousson, K. (2014), Suppression of Chaotic Modes in Spacecraft with Asymmetric Actuator Constraints, Submitted to the Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering.
16. Velosa, C. M. N., Bousson, K. (2015), Synchronization of Chaotic Systems with Bounded Controls, International Review of Automatic Control (IREACO), (To appear).
17. Vikhorev, K. S., Goman, M. G., Demenkov, M. N. (2008), Effect of Control Constraints on Active Stabilization of Flutter Instability, Proceedings of The Seventh International Conference on Mathematical Problems in Engineering Aerospace and Sciences (ICNPAA 2008), 1–8, Genoa, Italy.
18. Wang, C.-C., Chen, C.-L., Yau, H.-T. (2013), Bifurcation and Chaotic Analysis of Aeroelastic Systems, Journal of Computational and Nonlinear Dynamics, 9(2), 021004 (13 pages).
19. Zames, G. (1981), Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses, IEEE Transactions on Automatic Control, 26(2), 301–320.
DOI :
Qute : Bąk, Ł. ,Noga, S. ,Stachowicz, F. ,Tesař, V. ,Czerwiński, E. ,Olejnik, P. ,Awrejcewicz, J. ,Wudarczyk, S. ,Muraszkowski, A. ,Lupenko, S. ,Lutsyk, N. ,Lapusta, Y. ,Kaczorek, T. ,Manjaree, S. ,Nakra, B. C. ,Agarwal, V. ,Kuz, I. ,Kuz, O. ,Sulym, H. ,Ungureanu, V. ,Dubina, D. ,Crisan, A. ,Madeo, A. ,Zagari, G. ,Zucco, G. ,Zinno, R. ,Velosa, C. M. N. ,Bousson, K. ,Bousson, K. , Robust output regulation of uncertain chaotic systems with input magnitude and rate constraints. Acta Mechanica et Automatica Vol. 9, no. 4/2015
facebook