Roughness of three types of gravity disturbances and their correlation with topography in rugged mountains and flat regions

Czasopismo : Acta Geophysica
Tytuł artykułu : Roughness of three types of gravity disturbances and their correlation with topography in rugged mountains and flat regions

Autorzy :
Yamasaki, K.
Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Nada, Kobe, Japan, yk2000@kobe-u.ac.jp,
Teisseyre, R.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, rt@igf.edu.pl,
Herak, M.
University of Zagreb, Faculty of Science and Mathematics, Department of Geophysics, Zagreb, Croatia, herak@irb.hr,
Rosyidi, S. A. P.
Department of Civil Engineering, Muhammadiyah University of Yogyakarta, Yogyakarta, Indonesia, atmaja_sri@umy.ac.id,
Moustafa, S. S. R.
Department of Seismology, National Research Institute of Astronomy and Geophysics, Helwan, Cairo, Egypt, sri@umy.ac.id,
Tenzer, R.
School of Surveying, Faculty of Sciences, University of Otago, Dunedin, New Zealand, robert.tenzer@surveying.otago.ac.nz,
Abstrakty : We investigate the roughness of and the correlation with topography of the observed, topographically corrected (T), and bathymetrically and topographically corrected (BT) gravity disturbances. The numerical investigation is carried out for the gravity disturbances at the Earth's surface and for the upward continued gravity disturbances at different altitudes. The area of study comprises a rough part of the Canadian Rockies surrounded by flat regions. The smoothest at the Earth's surface are the BT gravity disturbances. The evolution of roughness with altitude shows an interesting phenomenon, diverse for the three types of gravity disturbances. The correlation with topography over the study area of the observed gravity disturbances is bellow 0.6, and of the BT gravity disturbances approximately -0.6. The largest absolute value, of about -0.75, is found between the topography and the T gravity disturbances. This large negative correlation indicates a presence of the isostatic compensation in mountainous regions of the Canadian west coast.

Słowa kluczowe : gravity disturbances, roughness, topography of mountains,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2009
Numer : Vol. 57, no. 3
Strony : 657 – 679
Bibliografia : Blakely, R.J. (1996), Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, Cambridge
Caratori Tontini, F., F. Graziano, L. Cocchi, C. Carmisciano, and P. Stefanelli (2007), Determining the optimal Bouguer density for a gravity data set: implications for the isostatic setting of the Mediterranean Sea, Geophys. J. Int. 169, 380-388.
Chapin, D.A. (1996), A deterministic approach toward isostatic gravity residuals – a case study from South America, Geophysics 4, 1022-1033.
Götze, H.-J., B. Meurers, S. Schmidt, and P. Steinhauser (1991), On the isostatic state of the eastern Alps and the central Andes; A statistical comparison. In: R.S. Harmon and C.W. Rapela (eds.), Andean Magmatism and its Tectonic Setting, Geol. Soc. Am. Spec. Paper 265, 279-290.
Hackney, R.I., and W.E. Featherstone (2003), Geodetic versus geophysical perspectives of the ‘gravity anomaly’. Geophys. J. Int. 154, 1, 35-43. Corrigendum (2006) Geophys. J. Int. 167, 2, 585-585.
Heiskanen, W.A., and H. Moritz (1967), Physical Geodesy, Freeman, San Francisco.
Hinze, W.J. (2003), Bouguer reduction density, why 2.67? Geophysics 68, 5, 1559- 1560.
Hinze, W.J., C. Aiken, J. Brozena, B. Coakley, D. Dater, G. Flanagan, R. Forsberg, Th. Hildenbrand, G.R. Keller, J. Kellogg, R. Kucks, X. Li, A. Mainville, R. Morin, M. Pilkington, D. Plouff, D. Ravat, D. Roman, J. Urrutia- Fucugauchi, M. Véronneau, M. Webring, and D. Winester (2005), New standards for reducing gravity data: The North American gravity database, Geophysics 70, J25-J32.
Ivan, M. (1986), On the upward continuation of potential field data between irregular surfaces, Geophys. Prosp. 34, 735-742.
Kaban, M.K., P. Schwintzer, and S.A. Tikhotsky (1999), Global isostatic gravity model of the Earth, Geophys. J. Int. 136, 519-536.
Kaban, M.K., P. Schwintzer, and Ch. Reigber (2004), A new isostatic model of the lithosphere and gravity field, J. Geodesy 78, 368-385.
Lemoine, F.G., S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, R.H. Rapp, and T.R. Olson (1998), The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM’96, NASA Technical Publ. TP-1998-206861.
Mikuška, J., R. Pašteka, and I. Marušiak (2006), Estimation of distant relief effect in gravimetry, Geophysics 71, J59-J69.
Nettleton, L.L. (1939), Determination of density reduction for gravimeter observations, Geophysics 4, 176-183.
Nettleton, L.L. (1942), Gravity and magnetic calculations, Geophysics 7, 293-310.
Parasnis, D.S. (1973), Gravity methods. In: D.S. Parasnis (ed.), Mining Geophysics, 250 p., Elsevier, Amsterdam.
Pearson, K. (1896), Mathematical contributions to the theory of evolution. III – Regression, heredity and panmixia, Phil. Trans. Roy. Soc. Lond. A 187, 253- 318.
Simpson, R.W., R.C. Jachens, R.J. Blakely, and R.W. Saltus (1986), A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies, J. Geophys. Res. 91, 8348-8372.
Thorarinsson, F., and S.G. Magnusson (1990), Bouguer density determination by fractal analysis, Geophysics 55, 7, 932-935.
Vajda P., P. Vaníček, and B. Meurers (2006), A new physical foundation for anomalous gravity, Studia Geophys. Geod. 50, 2, 189-216.
Vajda, P., P. Vaníček, P. Novák, R. Tenzer, and A. Ellmann (2007), Secondary indirect effects in gravity anomaly data inversion or interpretation, J. Geophys. Res. 112, B06411.
Vajda, P., A. Ellmann, B. Meurers, P. Vaníček, P. Novák, and R. Tenzer (2008), Global ellipsoid-referenced topographic, bathymetric and stripping corrections to gravity disturbance, Studia Geophys. Geod. 52. 1, 19-34.
Vaníček, P., and E.J. Krakiwsky (1986), Geodesy: The Concepts, 2nd rev. ed., Elsevier Science Publishers, Amsterdam.
Woollard, G.P. (1959), Crustal structure from gravity and seismic measurements, J. Geophys. Res. 64, 1521-1544.
Woollard, G.P. (1969), Regional variations in gravity. In: P.J. Hart (ed.), The Earth’s Crust and Upper Mantle, Geophys. Monography 13, 320-341.
DOI :
Cytuj : Yamasaki, K. ,Teisseyre, R. ,Herak, M. ,Rosyidi, S. A. P. ,Moustafa, S. S. R. ,Tenzer, R. , Roughness of three types of gravity disturbances and their correlation with topography in rugged mountains and flat regions. Acta Geophysica Vol. 57, no. 3/2009
facebook