Journal : Advances in Materials Science
Article : Selective laser sintering – binding mechanism and assistance in medical applications

Authors :
Mierzejewska, Ż. A.
Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Biomedical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland,,
Markowicz, W.
Vilnius Gediminas Technical University, Faculty of Mechanical Engineering, Department of Materials Science and Welding, ul. Basanaviciaus 28, 03224 Vilnius, Lithuania,,
Abstract : Rapid prototyping technology (RP), based on designing and computer aided manufacturing, is widely used in traditional branches of industry. Due to its ability to accurately and precisely manufacture designed elements of various dimensions and complicated geometry, this technology is more and more frequently applied in the field of biomedical engineering. Selective laser sintering (SLS) is a universal RP technique, utilizing a laser beam to sinter powdered materials and create three-dimensional objects. Data for producing parts for tissue replacement come from medical imaging capabilities and digital presentation of test results. This paper presents the following: general classification of RP methods, the concept and methodology of performing laser sintering, sintering mechanisms, and the application of elements manufactured using this technology in biomedical engineering, particularly for the production of scaffolds used in tissue cultures, skeletal and dental prostheses in dental implantation, manufacturing of custom-made implants that are individually adjusted to the patient, and for production of training models on which a team of surgeons can train a surgical technique.

Keywords : laser sintering, sintering process, powder metallurgy, applications in biomedical engineering,
Publishing house : Politechnika Gdańska
Publication date : 2015
Number : Vol.15, nr 3(45)
Page : 5 – 16

: 1. Levy G.N., Schindel R., Kruth J.P.: Rapid manufacturing and rapid tooling with layer manufacturing technologies: state of the art and future perspectives, CIRP Annals (2003), 52(2): 589-609. CrossRef
2. Miecielica M.: Analysis of selected methods for rapid prototyping, (in Polish), PW IIPiB (2007), Warsaw.
3. Ruszaj A.: Unconventional methods of fabrication machines and tools, (in Polish), IOS (1999), Krakow.
4. Kruth J.P., Leu M. C., Nakagawa T.:Progress in additive manufacturing and rapid prototyping, CIRP Annals(1998), 47(2): 525-540. CrossRef
5. Gibson I., Rosen D. W., Stucker B.: Additive Manufacturing Technologies. Rapid Prototyping to Direct Digital Manufacturing, Springer (2010), New York.
6. Cooper K.: Rapid prototyping technology – selection and application, Marcel Dekker (2001), New York.
7. Bourell D.L., Beaman J.J.: Materials issues in rapid prototyping, Proc. VRAP, Leiria (2005): 305-310.
8. Hudak R., Šarik M., Dadej R., Živčák J., Harachová D.: Material And Thermal Analysis Of Laser Sinterted Products, Acta Mechanica Et Automatica(2013), 7(1):115-19. CrossRef
9. Kumar S.: Selective Laser Sintering: A Qualitative and Objective Approach, JOM, Springer-Verlag (2003), 55(10): 43-47. CrossRef
10. Bourell D.L., Marcus H.L., Barlow J.W., Beaman J.J. (1992), Selective laser sintering of metals and ceramics, Int. J. Powder Metallurgy, 28 (4): 369-381.
11. Simchi A., Pohl H.:Effects of laser sintering processing parameters on the microstructure and densification of iron powder, Materials Science & Engineering: A, Elsevier (2003), 359:119-128.
12. Fischer P., Romano V., Weber H.P., Karapatis N. P., Boillat E., Glardon R.: Sintering of commercially pure titanium powder with a Nd:YAG laser source, Acta Materialia (2003), 51:1651-1662. CrossRef
13. Ghanekar A., Crawford R.: Optimization of SLS Process Parameters using D-Optimality, Douglas Watson National Instruments Inc, Austin, TX (1992): 348-362.
14. Kruth J.P., Wang X., Laoui T., Froyen L.: Lasers and materials in selective laser sintering, Assembly Automation (2003), 23(4): 357-371. CrossRef
15. Laoui T., Wang X., Childs T.H.C., Kruth J.P., Froyen L.: Laser penetration in a powder bed during selective laser sintering of metal powders: simulations versus experiments, Proc. SFF Symp., Austin (2000): 7-9.
16. Bagaria V., Rasalkar D., Bagaria S. J., Ilyas J.: Medical Applications of Rapid Prototyping – A New Horizon, Advanced Applications of Rapid Prototyping Technology in Modern Engineering, 1st ed., In Tech 2011:1-21.
17. Kruth J.P., Levy G., Klocke F., Childs T.H.C.: Consolidation phenomena in laser and powder-bed based layered manufacturing, Annals of the CIRP (2010), 56(2): 730-759
18. Das S.: Physical aspects of process control in selective laser sintering of metals, Advanced Engineering Materials (2003), 5: 701-711. CrossRef
19. Childs T.H.C., Hauser C., Badrossamay M.: Selective laser sintering (melting) of stainless and tool steel powders: experiments and modeling, Proc. IMechE part B, J. Engineering Manufacture (2005), 219: 339-357.
20. Dimov S., Pham D.T., et al.: Rapid tooling applications of the selective laser sintering process, Assembly Automation (2001), 21(4): 296-302. CrossRef
21. Senthilkumaran K., Pandey P. M., Rao P. V. M.: Influence of building strategies on the accuracy of parts in selective laser sintering, Materials and Design (2009), 30: 2946-2954.
22. Lu L., Fuh J. Y. H., Wong Y. S.: Laser-induced materials and processes for rapid prototyping, Springer Science & Business Media (2010): 89-142.
23. Wang X. C., Laoui T., Bonse J., Kruth J. P., Lauwers B., Froyen L.: Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation, The Internation Journal of Advanced Manufacturing Technology (2002), 19: 351-357.
24. Kruth J.P., Mercelis P., Van Vaerenbergh J., Froyen L., Rombouts M.: Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping J. (2005), 55(1): 26-36. Web of Science CrossRef
25. Kruth J. P., Mercelis P., Froyen L., Rombouts M.: Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting, Rapid prototyping journal (2005),11 (1): 26-36. Web of Science CrossRef
26. Dobrzański L. A.: Introduction to Materials Science, (in Polish), Silesian University of Technology (2007), Gliwice.
27. Bednarczyk I., Lesz S., Puchała M., Szczucka – Lasota B., Warchoł A.: Nauka o materiałach i mechanika, Wyższa Szkoła Zarządzania Ochroną Pracy (2010), Katowice.
28. Szucki T.: Inżynieria Materiałowa: materiałoznawstwo, Oficyna Wydawnicza Politechniki Warszawskiej(1999), Warszawa.
29. Storch S., Nellessen D., Schaefer G., Reiter R.:Selective laser sintering: qualifying analysis of metal based powder systems for automotive applications, Rapid Prototyping Journal (2003), 9: 240-252. CrossRef
30. Kruth J.P., Froyen L., Van Vaerenbergh J., Mercelis P., Rombouts M., Lauwers B.: Selective laser melting of iron based powder, J. Materials Processing Technology(2004), 149(1-3): 616 – 622.
31. German R.M.:Sintering Theory and Practice, John Wiley and Sons (1996), New York.
32. Gibson I., Cheung L.K.., Chow S.P., Cheung W.L., Beh S.L., Savalani M., Lee S.H.: The use of rapid prototyping to assist medical applications, Rapid Prototyping Journal (2006), 12(1): 53 – 58. CrossRef
33. Kruth J.P., Van der Scheuren B., Bonse J.E., Morren B.:Basic powder metallurgical aspects in selective metal powder sintering, CIRP Annals (1996), 45(1): 183-186. CrossRef
34. Gusarov A.V.: Mechanisms of selective laser sintering and heat transfert in Ti powder, Rapid Prototyping J. (2003), 9(5): 314-326. CrossRef Web of Science
35. Gibson I., Shi D.: Material properties and fabrication parameters in selective laser sintering process, Rapid Prototyping Journal (1997), 3(4):129-136. CrossRef
36. Kruth J.P., Vandenbroucke B., Van Vaerenbergh J., Naert I.: Digital manufacturing of biocompatible metal frameworks for complex dental prostheses by means of SLS/SLM, Proc. VRAP, Leiria(2005): 139-146.
37. Vail N.K., Swain D., Fox W.C., Aufdemorte T.B., Lee G., Barlow J.W.: Materials for biomedical applications, Proc. SFF Symp., Austin (1998): 621-628.
38. Williams J. D., Deckard C. R. (1998), Advances in modelling the effects of selected parameters on the SLS process, Rapid Prototyping Journal, 4(2): 90-100. CrossRef
39. Smith M.: A Preliminary experience with medical applications of rapid prototyping by selective laser sintering, Med. End. Phys. (1996), 19: 90-96.
40. Dalgarno K.W., Wood D.J., et al.: Mechanical properties and biological responses of bioactive glass ceramic processed using indirect SLS, Proc. SFF Symp., Austin (2005):132-140.
41. Miecielica M.: Rapid prototyping – methods and applicability in biomedical engineering, (in Polish) AGH (2009), Krakow.
42. Mazzoli A.: Selective laser sintering in biomedical engineering, Med. Biol. Eng. Comput (2013): 245-256. CrossRef Web of Science
43. Tan K. H., Chua C. K., Leong K. F., Cheah C. M., Cheang P., Abu Bakar M. S., Cha S. W.: Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomoposite blends, Biomaterials (2013), 24: 3115-3123. CrossRef
44. Antonov E.N., Bagratashvili V.N., et al.: Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering, Advanced Materials (2005), 17(3): 327-333. CrossRef
45. Chua C.K., Leong K.F., Tan K.H., Wiria F.E., Cheah C. M.: Development of tissue scaffolds using selective laser sintering of polyvinylalcohol/hydroxyapatite biocomposite for craniofacial and joint defects, J. Materials Science: Materials in Medicine (2004), 15(10): 1113-1121. Web of Science
46. Cruz F., Simoes J., Coole T., Bocking C.: Direct manufacture of hydroxyapatite based bone implants by selective laser sintering, Proc. VRAP, Leiria(2005), 119-126.
47. Abe F., Osakada K., Kitamura Y., Matsumoto M., Shiomi M.: Manufacturing of titanium parts for medical purposes by selective laser melting, Proc. Rapid Prototyping (2000): 288-293. Web of Science
48. Torres K., Staśkiewicz G., Śnieżyński M., Drop A., Maciejewski R.: Application of rapid prototyping techniques for modelling of anatomical structures in medical training and education, Folia Morphol, Via Medica (2010), 70: 1-4.
49. Wu W.Z., Yan M.G.: Development of polymer coated metallic powder for selective laser sintering (SLS) process, J. Adv. Materials (2002), 34(2): 25-28.
50. Cruz F., Coole T., Bocking C., Simoes J.: Selective laser sintering of customized medical implants using biocomposite materials, Tech. Vjesn. (2003), 10(2): 23-27.
Qute : Mierzejewska, Ż. A. ,Markowicz, W. ,Markowicz, W. , Selective laser sintering – binding mechanism and assistance in medical applications. Advances in Materials Science Vol.15, nr 3(45)/2015