Solving nonlinear thermal problems of friction by using method of lines

Czasopismo : Acta Mechanica et Automatica
Tytuł artykułu : Solving nonlinear thermal problems of friction by using method of lines

Autorzy :
Azimi, A.
Department of Chemical Engineering, College of Chemical Engineering, Islamic Azad University, Mahshahr Branch, Mahshahr, Farhangsara Street, Iran,
Azimi, M.
Faculty of New Sciences and Technologies, Department of Aerospace, University of Tehran, Tehran, North Kargar, Amirabad, Iran,
Javanfar, A.
Faculty of Mechanical Engineering, Babol University of Technology, Shariati Street, Babol, Iran,
Trąbka, A.
*Faculty of Mechanical Engineering and Computer Science, Department of Engineering Fundamentals, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biała, Poland, atrabka@ath.bielsko.pl,
Szpica, D.
Faculty of Mechanical Engineering, Department of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland, d.szpica@pb.edu.pl,
Czaban, J.
Faculty of Mechanical Engineering, Department of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland, j.czaban@pb.edu.pl,
Banaszuk, P.
Faculty of Civil and Environmental Engineering, Department of Environmental Protection and Management, Bialystok University of Technology, ul. Wiejska 45E, 15-351 Bialystok, Poland, p.banaszuk@pb.edu.pl,
Weresa, E.
Faculty of Mechanical Engineering, Department of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland, e.weresa@pb.edu.pl,
Tomaszewski, J.
Faculty of Mechanical Engineering and Computer Science, Department Of Mechanical Engineering Fundamentals, University of Bielsko-Biala, ul. Willowa 2, 43-300 Bielsko-Biala, Poland, jtomaszewski@ath.bielsko.pl,
Rysiński, J.
Faculty of Mechanical Engineering and Computer Science, Department Of Mechanical Engineering Fundamentals, University of Bielsko-Biala, ul. Willowa 2, 43-300 Bielsko-Biala, Poland, jrysinski@ath.bielsko.pl,
Fedorynenko, D.
Mechanical Engineering Department, Chernihiv National University of Technology, 95 Shevchenka Str., 14027 Chernihiv, Ukraine, fdy@mail.ru,
Boyko, S.
Mechanical Engineering Department, Chernihiv National University of Technology, 95 Shevchenka Str., 14027 Chernihiv, Ukraine, svboyko.cstu@gmail.com,
Sapon, S.
Mechanical Engineering Department, Chernihiv National University of Technology, 95 Shevchenka Str., 14027 Chernihiv, Ukraine, s.sapon@gmail.com,
Styahar, A.
Faculty of Applied Mathematics and Informatics, Department of Applied Mathematics, Ivan Franko Lviv National University, Universytetska,1, 79000, Lviv, Ukraine, astyahar@gmail.com,
Savula, Y.
Faculty of Applied Mathematics and Informatics, Department of Applied Mathematics, Ivan Franko Lviv National University, Universytetska,1, 79000, Lviv, Ukraine, savula@franko.lviv.ua,
Och, E.
Faculty of Mechanical Engineering, Bialystok University of Technology, 45C Wiejska Street, Bialystok, 15-351, Poland, e.och@doktoranci.pb.edu.pl,
Abstrakty : One-dimensional heat conduction problem of friction for two bodies (half spaces) made of thermosensitive materials was considered. Solution to the nonlinear boundary-value heat conduction problem was obtained in three stages. At the first stage a partial linearization of the problem was performed by using Kirchhoff transform. Next, the obtained boundary-values problem by using the method of lines was brought to a system of nonlinear ordinary differential equations, relatively to Kirchhoff’s function values in the nodes of the grid on the spatial variable, where time is an independent variable. At the third stage, by using the Adams's method from DIFSUB package, a numerical solution was found to the above-mentioned differential equations. A comparative analysis was conducted (Och, 2014) using the results obtained with the proposed method and the method of successive approximations.

Słowa kluczowe : problemy termiczne tarcia, materiały termoczułe, method of lines, thermal problems of friction, thermosensitive materials,
Wydawnictwo : Oficyna Wydawnicza Politechniki Białostockiej
Rocznik : 2015
Numer : Vol. 9, no. 1
Strony : 33 – 37
Bibliografia : 1. Awrejcewicz J., Pyr’yev Yu. (2009), Nonsmooth dynamics of contacting thermoelastic bodies, Springer-Verlag, New York.
2. Barber J. R. (1970), The conduction of heat from sliding solids, Int. J. Heat. Mass Tran., Vol. 13, 857–869.
3. Belyakov N. S., Nosko A. P. (2010), Nonperfect thermal contact of friction bodies, KD LIBROCOM, Moscow, (in Russian).
4. Chichinadze A. V., Braun E. D., Ginsburg A. G., Ignat’eva Z. V. (1979), Calculation, Test and Selection of Frictional Couples, Nauka, Moscow (in Russian).
5. Evtushenko O, Kuciej M., Och E. (2014 a), Influence of the thermal sensivity of materials on the temperature at friction, Mat. Sci., Vol. 50, No 1, 117–122.
6. Evtushenko O., Kuciej M., Och E. (2014 b), Modeling of temperature conditions for a braking system with regard for the heat sensitivity of materials, Mat. Sci., Vol. 50, No 3, 397–405.
7. Evtushenko O.O., Pir’ev Yu.O. (1999), Computation of the contact temperature and wear during braking, J. Math. Sci., Vol. 96, 2892– 2896.
8. Gear C. W. (1971), Numerical initial value problems in ordinary differential equations, Prentice-Hall, Englewood Cliffs.
9. Hall G., Watt J. M. (1973), Modern numerical methods for ordinary differential equations, Clarendon Press, Oxford.
10. Kalin M. (2004), Influence of flash temperatures on the tribological behaviour in low-speed sliding: a review, Materials Science and Engineering A, Vol. 374, 390–397.
11. Kirchhoff G. R. (1894), Heat theory lectures, B.G. Teubner, Leipzig (in Germany).
12. Krupowicz A. (1986), Numerical Methods of Initial Value Problems of Ordinary Differential Equations (in Polish), PWN, Warsaw.
13. Kuciej M. (2011), Accounting changes of pressure in time in onedimensional modeling the process of friction heating of disc brake, Int. J. Heat Mass Trans., Vol. 54, 468-474.
14. Kuciej M. (2012), Analytical models sof transient frictional heating, Publisher of Technical University of Bialystok, Bialystok.
15. Kushnir R. M., Popovych V. S. (2011), Heat conduction problems of thermosensitive solids under complex heat exchange. In: Heat conduction – Basic Research, V. Vikhrenko Ed., In Tech, Croatia, 131–154.
16. Nosko A.L., Belyakov N.S., Nosko A.P. (2009), Application of the generalized boundary condition to solving thermal friction problems, J. Frict. Wear, Vol. 30, 615–625.
17. Och E. (2013), Frictional Heating During Sliding of Two Semi-Spaces with Simple Thermal Nonlinearities, Acta Mech. et Autom., Vol. 7, No 4, 236–240.
18. Och E. (2014), Frictional Heating during Sliding of Two Semi-Spaces with Arbitrary Thermal Nonlinearity, Acta Mech. et Autom., Vol. 8, No 4, 204–208.
19. Olesiak Z., Pyryev Yu., Yevtushenko A. (1997), Determination of temperature and wear during braking, Wear, Vol. 210, 120–126.
20. Ozisik M. N. (2000), Finite difference methods in heat transfer, Second Ed., CRC Press, Florida, USA.
21. Podstrigach Ya. S. (1963), The temperature field in a system of rigid bodies coupled by thin interface, Inzh.-Fiz. Zh., Vol. 6, No 10, 129–136, (in Russian).
22. Pyr’yev Yu. (2004), Dynamics of contact systems with respect to heat, friction and wear, Publisher of Technical University of Lodz, Lodz.
23. Rhee S. K., Jacko M. G., Tsang P. H. S. (1991), The role of friction film in friction, wear and noise of automotive brakes, Wear, Vol. 146, No 1, 89–97.
24. Sazonov V. S. (2008), Nonideal contact problem of nonstationary heat conduction for two half-spaces, J. Eng. Phys. Thermophys., Vol. 81, 397–408.
25. Yevtushenko A., Kuciej M., Och E. (2014a), Effect of Thermal Sensitivity of Materials of Tribojoint on Friction Temperature, J. Frict. Wear, Vol. 35, 77–83.
26. Yevtushenko A., Kuciej M., Och E. (2014b), Influence of thermal sensitivity of the pad and disk materials on the temperature during braking, Int. Comm. Heat Mass Transf., Vol. 55, 84–92.
27. Yevtushenko A., Kuciej M., Och E. (2014 c), Temperature in thermally nonlinear pad-disk brake system, Int. Comm. Heat Mass Transf., Vol. 57, 274–281.
28. Yevtushenko A., Kuciej M., Och E. (2015), Some methods for calculating temperature during the friction of thermosensitive materials, Numer. Heat Transf. P. A., V. 67, N 6 (2015), 696–718.
29. Yevtushenko A.A., Kuciej M. (2012), One-dimensional thermal problem of friction during braking: The history of development and actual state, Int. J. Heat Mass Tran., Vol. 55, 4118–4153.
30. Yevtushenko A.A., Kuciej M., Yevtushenko O. (2013), The boundary conditions on the sliding surface in one-dimensional transient heat problem of friction, Int. J. Heat Mass Trans., Vol. 59, No 1, 1-8.
31. Yune Y.G., Bryant M.D. (1989), Thermal evolution of hot spots in thermally nonlinear carbon graphite sliders, Trans. ASME. J. Tribology, Vol. 111, 591–596.
DOI :
Cytuj : Azimi, A. ,Azimi, M. ,Javanfar, A. ,Trąbka, A. ,Szpica, D. ,Czaban, J. ,Banaszuk, P. ,Weresa, E. ,Tomaszewski, J. ,Rysiński, J. ,Fedorynenko, D. ,Boyko, S. ,Sapon, S. ,Styahar, A. ,Savula, Y. ,Och, E. , Solving nonlinear thermal problems of friction by using method of lines. Acta Mechanica et Automatica Vol. 9, no. 1/2015
facebook