Journal : Acta Geophysica
Article : Stability of iron oxides and their role in the formation of rock magnetism

Authors :
Teisseyre, R.
Institute of Geophysics, Polish Academy of Sciences ul. Księcia Janusza 64, 01-452 Warszawa, Poland,,
Pilchin, A.N.
Universal Geoscience and Environmental Consulting Company, 205 Hilda Ave., Willowdale, Ontario, M2M 4B1, Canada,,
Abstract : Thermodynamic conditions (first of all, temperature) are the main dynamic factors in the transformation process of ferrous to ferric iron (TFFI). TFFI usually takes place within a temperature range of 473-843 K (most active at temperatures above 673 K) and does not require presence of the oxidizing agents above 673 K. Analysis of the chemical composition of different rocks and minerals indicates that only for some sedimentary rocks is the relative content of ferrous iron oxide less than its value in magnetite, and this value is minimal for oceanic sediments. The relative content of ferrous iron oxide in oceanic magmatic rocks exceeds this value in continental magmatic rocks and depends on the rate of rock cooling. An investigation of the role of the titanium oxide content of different rocks on stability of ferrous iron oxide against its transformation to ferric iron oxide shows that a significant correlation (r = 0.79) does exist between the relative content of ferrous iron oxide and ratio of TiO2/Fe2O3. Temperature within the solar nebula at location of the Earth was within the temperature range of the TFFI. During the Earth accretion and its early evolution, ferric iron oxide was unstable and most likely did not exist. The first magnetic minerals containing ferric iron could have appeared only after the Earth’s surface had cooled below ~843 K. The formation of the first Algoma-type banded iron formations could be used as a marker of the Earth’s surface cooling below ~843 K.

Keywords : ferric, ferrous, remagnetization, rock magnetism, temperature range,
Publishing house : Instytut Geofizyki PAN
Publication date : 2007
Number : Vol. 55, no. 2
Page : 133 – 153

: Akhmetov, N.S., 1992, Inorganic chemistry, 3rd ed., Prosvesch. Publ., Moscow (in Russian).
Allen, D.E., J. Horita and W.E. Seyfried (Jr.), 2001, Experimental synthesis of some reduced carbon compounds: Implications for mid-ocean ridge hydrothermal systems, 11th Ann. V.M. Goldschmidt Conference, Abstracts 3656.
Andersen, D.J., and D.H. Lindsley, 1988, Internally consistent solution models for Fe-Mg-Mn-Ti oxides: Fe- Ti oxides, Amer. Mineralogist 73, 714-726.
Anderson, D.L., 1989, Theory of the Earth, Blackwell Science Publications, Boston, pp. 366. Bennett, J., M. Donahue, N. Schneider and M. Voit, 2004, The Cosmic Perspective, 3rd ed., Pearson Education Inc. & Addison Wesley, San Francisco.
Birch, F., 1965, Energetics of core formation, J. Geophys. Res. 70, 6217-6221. Butler, R.F., 1998, Paleomagnetism: Magnetic domains to geologic terranes, Electronic Ed., Dept. Geosc., Univ. Arizona, Tucson.
Clark, K.F., 1982, Mineral composition of rocks. In: R.S. Carmichael (ed.), “Handbook of Physical Properties of Rocks”, I, CRC Press, Florida, 1-216.
Dunlop, D.J., and Ö. Özdemir, 1997, Rock Magnetism: Fundamentals and Frontiers, Cambridge Univ. Press, Cambridge.
Eppelbaum, L.V., and A.N. Pilchin, 2006, Methodology of Curie discontinuity map development for regions with low thermal characteristics: an example from Israel, Earth Planet Sci. Letters 243, 536-551.
Feinberg, H., H. Horen, A. Michard and O. Saddiqi, 1999, Obduction-related remagnetization at the base of an ophiolite: Paleomagnetism of the Samail nappe lower sequence and of its continental substratum, southeast Oman Mountains, J. Geophys. Res. 104, B8, 17703-17714.
Geissman, J.W., and S.S. Harlan, 2002, Late Paleozoic remagnetization of Precambrian crystalline rocks along the Precambrian/Carboniferous nonconformity, Rocky Mountains: a relationship among deformation, remagnetization, and fluid migration, Earth Planet Sci. Letters 203, 3-4, 905-924.
Goguitchaichvili, A., L.M. Alva Valdivia, J.R. Elguera, J.U. Fucugauchi, M.A. Cervantes and J. Morales, 2002, Paleosecular variation record of geomagnetic full vector during late Miocene, from the Nayarit area, Mexico, Physics of the Earth and Planetary Interior 134, 1-2, 71-88.
Gronvold, F., S. Stolen, P. Tolmach and E.F. Westrum (Jr.), 1993, Heat capacities of the wüstite Fe0.9379O and Fe0.9254O) at temperatures T from 5K to 350K. Thermodynamics of the reaction: xFe(s) + (1/4)Fe3O4(s) = Fe0.7500+xO(s) = Fe1-yO(s) at ? 850 K, and properties of Fe1-yO(s) to T = 1000 K. Thermodynamics of formation of wüstite, J. Chem. Thermodynamics 25, 1089-1117.
Hall, A., 1995, Igneous Petrology, Longman Sc. & Techn., Singapore.
Harrison, R.J., and A. Putnis, 1999, The magnetic properties and crystal chemistry of oxide spinel solid solutions, Surveys in Geophysics 19, 461-520.
Holland, H.D., 1984, The Chemical Evolution of the Atmosphere and Oceans, Princeton Univ. Press, Princeton.
Huston, D.L., and G.A. Logan, 2004, Barite, BIFs and bugs: evidence for the evolution of the Earth's early hydrosphere, Earth Planet. Sci. Letters 220, 41-55.
Kaler, J.B., 1994, Astronomy!, HarperCollins College Publishers, New York.
Kasting, J.F., and T.M. Donahue, 1981, Evolution of oxygen and ozone in the earth's atmosphere. In: J. Billingham (ed.), “Life in the Universe”, MIT Press, Cambridge, MA, 149-162.
Kaufmann, W.J. III, and R.A. Freedman, 1999, Universe, 5th ed., W.H. Freeman and Co., New York.
Khesin, B.E., V.V. Alexeyev and L.V. Eppelbaum, 1996, Interpretation of Geophysical Fields in Complicated Environments. In: Ser. “Modern Approaches in Geophysics”, Kluwer Academic Publishers, Dordrecht.
Klein, C., 2005, Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin, American Mineralogist 90, 1473-1499.
Lauretta, D.S., and H.Y. McSween, Jr., (eds.), 2006, Meteorites and the Early Solar System II (Space Science), Univ. Arizona Press, Tucson.
Lawson, Ch.A., G.L. Nord, Jr., and D.E. Champion, 1987, Fe-Ti oxide mineralogy and the origin of normal and reverse remanent magnetization in dacitic pumice blocks from Mt. Shasta, California, Physics of the Earth and Planetary Interior 46, 1-3, 270-288.
Lefort, J.-P., T. Aifa, M. Jeleńska, M. Kądziałko-Hofmokl and M.D. Max, 2001, Paleomagnetic and AMS evidence for a Variscan ductile clockwise rotation of the île de Groix blueschists (South Brittany, France): consequence on the Late Hercynian structural pattern of westernmost Europe, Tectonophysics 337, 3-4, 223-235.
Lide, D.R. (ed.), 2004, Handbook of Chemistry and Physics, 85th ed., CRC Press. Mazo-Zuluaga, J., C.A. Barrero, J. Díaz-Terán and A. Jerez, 2003, Thermally induced magnetite-haematite transformation, Hyperfine Interactions 148-149, 1-4, 153-161.
McCall, G.J., 1973, Meteorites and their Origins, John Wiley & Sons, New York. Mertanen, S., H.C. Halls, J.I. Vuollo, L.J. Pesonen and V.S. Stepanov, 1999, Paleomagnetism of 2.44 Ga mafic dykes in Russian Karelia, eastern Fennoscandian Shield – implications for continental reconstructions, Precambrian Research 98 (3-4), 197-221.
Myers, J., and H.P. Eugster, 1983, The system Fe-Si-O: Oxygen buffer calibrations to 1,500K, Contrib. Mineral. Petrol. 82, 75-90.
Nagatha, T., 1961, Rock Magnetism, Maruzen Co., Tokyo. Nishitani, T., and M. Kono, 1983, Curie temperature and lattice constant of oxidized titanomagnetite, Geophys. J. Roy. Astron. Soc. 74, 585-600.
Otofuji, Y., K. Uno, T. Higashi, T. Ichikawa, T. Ueno, T. Mishima and T. Matsuda, 2000, Secondary remanent magnetization carried by magnetite inclusions in silicates: a comparative study of unremagnetized and remagnetized granites, Earth Planet Sci. Letters 180, 3-4, 271-285.
Pechersky, D.M., V.I. Bagin, S.Yu. Brodskaya and Z.V. Sharonov, 1975, Magnetism and Conditions of Generation for Igneous Mountainous Rocks, Nauka, Moscow (in Russian).
Pilchin, A.N., and L.V. Eppelbaum, 1997, Determination of the lower edges of magnetized bodies by using geothermal data, Geophys. J. Intern. 128, 167-174.
Pilchin, A.N., and L.V. Eppelbaum, 2004, On the stability of ferrous and ferric iron oxides and its role in rocks and rock-forming minerals stability, Scientific Israel 6, 3-4, 119-135.
Pilchin, A.N., and L.V. Eppelbaum, 2006, Iron and its unique role in Earth evolution, Monograph Mexican Geophys. Soc. 9, National Univ. of Mexico, pp. 68.
Pilchin, A.N., and B.E. Khesin, 1981, On the possible nature of the magnitoactive bodies of bottom edges, Razved. Geofizika 92, 123-127 (in Russian).
Pollack, H.N., 1997, Thermal characteristics of the Archaean. In: M.J. de Wit and M.D. Ashwal (eds.), “Greenstone Belts”, Clarendon Press, Oxford, UK, 223-232.
Redl, F.X., C.T. Black, G.C. Papaefthymiou, R.L. Sandstrom, M. Yin, H. Zeng, Ch.B. Murray and S.P. O'Brien, 2004, Magnetic, electronic, and structural characterization of nonstoichiometric Iron Oxides at the Nanoscale, J. Amer. Chem. Soc. 126, 14583-14599.
Scott, H.P., R.J. Hemley, H. Mao, D.R. Herschbach, L.E. Fried, W.M. Howard and S. Bastea, 2004, Generation of methane in the Earth's mantle: In situ high pressure-temperature measurements of carbonate reduction, Proc. Natl. Acad. Sci. USA 101, 39, 14023-14026.
Shau, Y.-H., M. Torii, C.-S. Horng and W.-T. Liang, 2004, Magnetic properties of mid-oceanridge basalts from Ocean Drilling Program Leg 187. In: R.B. Pedersen, D.M. Christie and D.J. Miller (eds.), “Proc. ODP, Sci. Results”, 187.
Shull, R.D., J.P. Cline, I. Baker and F. Liu, 1996, Identification of a high temperature magnetic phase transition in ball-milled nanocrystalline Fe-Cu Alloys, J. Appl. Phys. 79, 8, 6028-6030.
Spohn, T., and G. Schubert, 1991, Thermal equilibration of the Earth following a giant impact, Geophys. J. Intern. 107, 163-170, 1991.
Sumita, I., T. Hatakeyama, A. Yoshihara and Y. Hamano, 2001, Paleomagnetism of late Archean rocks of Hamersley basin, Western Australia and the paleointensity at early Proterozoic, Physics of the Earth and Planetary Interior 128, 1-4, 223-241.
Tanaka, H., and M. Kono, 2002, Paleointensities from a Cretaceous basalt platform in Inner Mongolia, northeastern China, Physics of the Earth and Planetary Interior 133, 1-4, 147-157.
Tokumitsu, K., and T. Nasu, 2001, Preparation of lamellar structured ?-Fe/Fe3O4 complex particle by thermal decomposition of wüstite, Scripta Materialia 44, 1421-1424.
Udagawa, S., H. Kitagawa, A. Gudmundsson, O. Hiroi, T. Koyaguchi, H. Tanaka, L. Kristjansson and M. Kono, 1999, Age and magnetism of lavas in Jokuldalur area, Eastern Iceland: Gilsa event revisited, Physics of the Earth and Planetary Interior 115, 147-171.
Walter, M.J., and R.G. Tronnes, 2004, Early Earth differentiation, Earth Planet Sci. Letters 225, 3-4, 253-269.
Watkins, N.D., T. Paster and J. Ade-Hall, 1970, Variation of magnetic properties in a single deep-sea pillow basalt, Earth Planet Sci. Letters 8, 4, 322-328.
Zhou, W., R. Van der Voo, D.R. Peacor and Y. Zhang, 2000, Variable Ti-content and grain size of titanomagnetite as a function of cooling rate in very young MORB, Earth Planet Sci. Letters 179, 1, 9-20.
Qute : Teisseyre, R. ,Pilchin, A.N. ,Pilchin, A.N. , Stability of iron oxides and their role in the formation of rock magnetism. Acta Geophysica Vol. 55, no. 2/2007