Journal : Acta Geologica Polonica
Article : Stability relationships of REE-bearing phosphates in an alkali-rich system (nepheline syenite from the Mariupol Massif, SE Ukraine)

Authors :
Hu, X.
Department of Ocean Science and Engineering, Zhejiang University, Hangzhou 310058, China,
Jeans, C.
Department of Geography, University of Cambridge, Downing Street, Cambridge CB2 3EN, UK,
Zapalski, M.
Faculty of Geology, Warsaw University, ul. Żwirki i Wigury 93, PL-02-089 Warsaw, Poland, m.zapalski@uw.edu.pl,
Demircan, H.
Department of Geological Research, General Directorate of Mineral Research and Exploration (MTA), 06520, Ankara, Turkey, alfred.uchman@uj.edu.pl,
Radwański, A.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93; PL-02-089 Warszawa, Poland, anna.wysocka@uw.edu.pl,
Meres, S.
Department of Geochemistry, Faculty of Natural Sciences, Comenius University, Mlynska dolina – G, 842 15 Bratislava, Slovakia, meres@fns.uniba.sk,
Dumańska-Słowik, M.
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection Department of Mineralogy, Petrography and Geochemistry, al. A. Mickiewicza 30, PL-30-059 Kraków, Poland, dumanska@uci.agh.edu.pl,
Abstract : Primary REE-enriched fluorapatite and fluorbritholite-(Ce) in nepheline syenite from the Mariupol Massif (SE Ukraine), contain textural and chemical evidence of late- to post-magmatic metasomatic alteration. REE mobilization and replacement of the primary phases by fluid-mediated coupled dissolution-reprecipitation strongly depended on the distance between the altered minerals in the host rock. Fluorapatite and fluorbritholite-(Ce) forming individual pristine grains were partially replaced by the same phase with a new composition, resulting in the presence of patchy zoning in altered grains. the increased REE contents in altered fluorapatite rim domains are related to REE mobilization from the altered REE-depleted rim domains of the fluorbritholite-(Ce). The REEs were transported by a fluid with high F activity. The alteration of fluorapatite and fluorbritholite-(Ce) grains in contact resulted in the partial replacement of the primary phases by the same phase with a new composition, but also in the partial replacement of the fluorapatite by secondary monazite and fluorite. The REE mobilized from the fluorbritholite-(Ce) in the presence of a F-rich fluid in an alkali-rich system promoted formation of monazite as the new phosphate REE-host. The presence of secondary parisite in the altered domains of the fluorapatite and fluorbritholite-(Ce) indicates a CO2 component in the fluid during metasomatic alteration.

Keywords : fluorowy apaty, mariupolit, monacyt, pierwiastki ziem rzadkich, ponowne wytrącanie, rozpuszczanie, Ukraina, dissolution-reprecipitation, fluorapatite, fluorbritholite, Mariupolite, Monazite, Rare earth elements, Ukraine,
Publishing house : Faculty of Geology of the University of Warsaw
Publication date : 2012
Number : Vol. 62, no. 2
Page : 247 – 265

Bibliography
: 1. Bea, F. 1996. Residence of REE, Y, Th and U in granites and crustal protoliths; Implications for the chemistry of crustal melts. Journal of Petrology, 37 (3), 521–552.
2. Berger, A., Gnos, E., Janots, E., Fernandez, A. and giese, J. 2008. Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes. Chemical Geology, 254, 238–248.
3. Bingen, B., Demaiffe, D. and Hertogen, J. 1996. Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: The role of apatite and monazite in orthogneisses from southwestern Norway. Geochimica et Cosmochimica Acta, 60 (8), 1341–1354
4. Broska, I. and Siman, P. 1998. The breakdown of monazite in the West-Carpathian Veporic orthogneisses and Tatric granites. Geologica Carpathica, 49, 161–167.
5. Broska, I., Petrík, I. and Williams, C.T. 2000. Coexisting monazite and allanite in peraluminous granitoids of the Tribec Mountains, Western Carpathians. American Mineralogist, 85, 22–32
6. Broska, I., Williams, C.T., Janák, M. and Nagy, G. 2005. Alteration and breakdown of xenotime-(Y) and monazite- (Ce) in granitic rocks of the Western Carpathians, Slovakia. Lithos, 82, 71–83.
7. Budzyń, B., Hetherington, C.J., Williams, M.L., Jercinovic, M.J. and Michalik, M. 2010. Fluid-mineral interactions and constraints on monazite alterations during metamorphism. Mineralogical Magazine, 74 (4), 633–655
8. Budzyń B., Harlov D.E., Williams M.L. and Jercinovic M.J. 2011. Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. American Mineralogist, 96, 1547–1567.
9. Claeson, D.T. 2002. Stability of REE-bearing minerals in a metaluminous leucotonalite from the Eriksberg gabbro, Transscandinavian Igneous Belt, Sweden. Neues Jahrbuch für Mineralogie, Abhandlungen, 177 (3), 277–291.
10. Donskoy, A.N. 1982. The nepheline complex of alkaline Oktyabr’skii massif, pp. 1–150. The Ukrainian Academy of Science, Kiev. In Ukrainian
11. Dumańska-Słowik, M. Sikorska, M. and Heflik, W. 2011a. Dissolved-recrystallized zircon from mariupolite in the Mariupol Massif, Priazovje (SE Ukraine). Acta Geologica Polonica, 61 (3), 277–288.
12. Dumańska-Słowik, M., Baranov, P, Heflik, W., Natkaniec-Nowak, L., Shevchenko, S. and Tsotsko, L.I. 2011b. Mariupolites of the Oktyabrsky Massif (SE Ukraine) – a less known rocks in the gemstone trade. Zeitschrift der Deutschen Gemmologischen Gesellschaft, 60, 37–48.
13. Finger, F., Broska, I., Roberts, M.P. and Schermaier, A. 1998. Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. American Mineralogist, 83, 248–258.
14. Finger, F. and Krenn, E. 2007. Three metamorphic monazite generations in a high-pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. Lithos, 95, 103–115.
15. Fleet, M.E., Liu, X. and Pan, Y. 2000. Rare-earth elements in chlorapatite Ca10(PO4)6Cl2: Uptake, site preference, and degradation of monoclinic structure. American Mineralogist, 85, 1437–1446.
16. Harlov, D.E., Förster, H.J. and Schmidt, C. 2003. High P–T experimental metasomatism of a fluoroapatite with significant britholite and fluorellesadite components: implications for LREE mobility during granulite-facies metamorphism. Mineralogical Magazine, 67 (1), 61–72.
17. Harlov, D.E. and Förster, H.J. 2003. Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite. American Mineralogist, 88, 1209–1229.
18. Harlov, D.E., Wirth R. and Förster, H.J. 2005. An experimental study of dissolution-reprecipitation in fluoroapatite: fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology, 150, 268–286.
19. Harlov, D.E., Marschall, H.R. and Hanel, M. 2007. Fluorapatite-monazite relationships in granulite-facies metapelites, Schwarzwald, southwest Germany. Mineralogical Magazine, 71 (2), 223–234.
20. Harlov, D.E., Wirth, R. and Hetherington, C.J. 2011. Fluid-mediated partial alteration in monazite: the role of coupled dissolution-reprecipitation in element redistribution and mass transfer. Contributions to Mineralogy and Petrology, 162, 329–348.
21. Harlov, D.E. and Wirth, R. 2012. Experimental incorporation of Th into xenotime at middle to lower crustal P-T utilizing alkali-bearing fluids. American Mineralogist, 97, 641–652.
22. Hetherington, C.J. and Harlov, D.E. 2008. Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: Mechanics and fluid chemistry. American Mineralogist, 93, 806–820.
23. Hetherington, C.J., Harlov, D.E. and Budzyń, B. 2010. Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Mineralogy and Petrology, 99 (3–4), 165–184
24. Hughes, J.M. and Rakovan, J. 2002. The Crystal Structure of Apatite, Ca5(PO4)3(f,OH,CL). In: M.J. Kohn, J. Rakovan and J.M. Hughes (Eds), Phosphates – Geochemical, Geological and Materials Importance. Reviews in Mineralogy and Geochemistry, 48, 1–12.
25. Janots, E., Negro, F., Brunet, F., Goffé, B., Engi, M. and Bouybaouène, M.L. 2006. Evolution of the REE mineralogy in HP–LT metapelites of the Sebtide complex, Rif, Morocco: Monazite stability and geochronology. Lithos, 87, 214–234.
26. Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J.-O. and Spandler, C. 2008. Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite–monazite–xenotime phase relations from 250 to 610°c. Journal of Metamorphic Geology, 26 (5), 509–526.
27. Janots, E., Berger, A. and Engi, M., 2011. Physico-chemical control on the REE minerals in chloritoid-grade metasediments from a single outcrop (Central Alps, Switzerland). Lithos, 121, 1–11.
28. Kempe, U., Lehmann, B., Wolf, D., Rodionov, N., Bombach, K., Schwengfelder, U. and Dietrich, A. 2008. U-Pb SHRIMP geochronology of Th-poor, hydrothermal monazite: An example from the Llallagua tin-porphyry deposit, Bolivia. Geochimica et Cosmochimica Acta, 72, 4352–4366.
29. Krenn, E. and Finger, F. 2007. Formation of monazite and rhabdophane at the expense of allanite during Alpine low temperature retrogression of metapelitic basement rocks from Crete, Greece: Microprobe data and geochronological implications. Lithos, 95, 130–147
30. Krivdik, S.G., Nivin, V.A., Kul’chitskaya, A.A., Voznak, D.K., Kalinichenko, A.M., Zagnitko, V.N. and Dubyna, A.V. 2007. Hydrocarbons and other volatile components in alkaline rocks from the Ukrainian Shield and Kola Penisula. Geochemistry International, 45 (3), 270–294.
31. Lee, D.E. and Dodge, F.C.W. 1964. Accessory minerals in some granitic rocks in California and Nevada as a function of calcium content. American Mineralogist, 49, 1660–1669.
32. Lee, D.E. and Bastron, H. 1967. Fractionation of rare-earth elements in allanite and monazite as related to geology of the Mt. Wheeler mine area, Nevada. Geochimica et Cosmochimica Acta, 31, 339–356.
33. Morozewicz, J. 1902. Über Mariupolit, ein extremes Glied der Elaeolithsyenite. Tschermaks Mineralogische und Petrographische Mitteilungen 21, 238–246.
34. Morozewicz, J. 1929. Mariupolite and its relatives. Prace Polskiego Instytutu Geologicznego 2 (3), p. 130. In Polish
35. Ondrejka, M., Uher, P., Putiš, M., Broska, I., Bačík, P., Konečný, P. and Schmidt, I. 2012. Two-stage breakdown of monazite by post-magmatic and metamorphic fluids: An example from the Veporic orthogneiss, Western Carpathians, Slovakia. Lithos, doi: 10.1016/j.lithos.2012.03.012
36. Pan, Y. and Fleet, M.E. 1996. Rare element mobility during prograde granulite facies metamorphism: significance of fluorine. Contributions to Mineralogy and Petrology, 123, 251–262.
37. Pan, Yu. and Fleet, M. 2002. Compositions of apatite-group minerals: substitution mechanisms and controlling factors. In: M.J. Kohn, J. Rakovan, J.M. Hughes (Eds), Phosphates – Geochemical, Geological and Materials Importance. Reviews in Mineralogy and Geochemistry, 48, 13–49.
38. Piccoli, P.M. and Candela, P.A. 2002. Apatite in igneous systems. In: M.J. Kohn, J. Rakovan, J.M. Hughes (Eds), Phosphates – Geochemical, Geological and Materials Importance. Reviews in Mineralogy and Geochemistry, 48, 255–292.
39. Pouchou, I. L. and Pichoir, F. 1985. “PAP” (phi-rho-z) procedure for improved quantitative microanalysis. In: I.T. Armstrong (Ed.), Microbeam Analysis, pp. 104–106. San Francisco Press; San Francisco.
40. Putnis, A. 2002. Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66, 689–708.
41. Putnis, A. 2009. Mineral replacement reactions. In: E.H. Oelkers and J. Schott (Eds), Thermodynamics and Kinetics of Water-Rock Interaction. Reviews in Mineralogy and Geochemistry, 70, 87–124.
42. Rasmussen, B. and Muhling, J.R. 2009. Reactions destroying detrital monazite in greenschist-facies sandstones from the Witwatersrand basin, South Africa. Chemical Geology, 264, 311–327.
43. Read, D., Andreoli, M.A.G., Knoper, M., Williams, C.T. and Jarvis, N. 2002. The degradation of monazite: Implications for the mobility of rare-earth and actinide elements during low-temperature alteration. European Journal of Mineralogy, 14, 487–498.
44. Rønsbo, J.G. 1989. Coupled substitution involving REEs and Na and Si in apatites in alkaline rocks from the Llimaussag intrusion, South Greenland, and the petrological implications. American Mineralogist, 74, 896–901.
45. Rønsbo, J.G. 2008. Apatite in the Llimaussag alkaline complex: Occurrence, zonation and compositional variation. Lithos, 106, 71–82.
46. Seydoux-Guillaume, A.M., Paquette, J.L., Wiedenbeck, M., Montel, J.M., and Heinrich, W. (2002a) Experimental resetting of the U-Th-Pb systems in monazite. Chemical Geology, 191, 165–181.
47. Sharygin, V.V., Krivdik, S.G., Pospelova, l.N. and Dubina, A.V. 2009. Zn-kupletskite and hendricksite in the agpaitic phonolites of the Oktyabrskii Massif, Azov Region, Ukraine. Doklady Earth Sciences, 425A (3), 499–504.
48. Solodov, N.A. 1985. The mineralo-genesis of rare metal formations, pp. 1–225. Niedra. In Ukrainian
49. Spear, F.S. 2010. Monazite–allanite phase relations in metapelites. Chemical Geology, 279, 55–62.
50. Teufel, S. and Heinrich, W. 1997. Partial resetting of the U-Pb isotope system in monazite through hydrothermal experiments: an SEM and U-Pb isotope study. Chemical Geology, 137, 273–281.
51. Tichonienkova, R.J, Osokin, J.D. and Gonzjejev, A.A. 1967. Rare-metals metasomatites of alkaline massives, pp. 1–196. Nauka. In Ukrainian
52. Tropper, P. and Manning, C.E. 2007. The solubility of fluorite in H2O and H2O–NaCl at high pressure and temperature. Chemical Geology, 242, 199–306.
53. Tomkins, H.S. and Pattison, D.R.M. 2007. Accessory phase petrogenesis in relation to major phase assemblages in pelites from the Nelson contact aureole, southern British Columbia. Journal of Metamorphic Geology, 25, 401–421.
54. Upadhyay, D. and Pruseth, K.L. 2012. Fluid-induced dissolution breakdown of monazite from Tso Morari complex, NW Himalayas: evidence for immobility of trace elements. Contributions to Mineralogy and Petrology, doi: 10.1007/s00410-012-0739-3.
55. Williams, M.L., Jercinovic, M.J., Harlov, D.E., Budzyń, B. and Hetherington, C.J. 2011. Resetting monazite ages during fluid-related alteration. Chemical Geology, 283, 218–225.
56. Wing, B., Ferry, J.M. and Harrison, T.M. 2003. Prograde de struction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contributions to Mineralogy and Petrology, 145, 228–250
57. Volkova, T.P. 2000. The genesis and ore mineralization of alkaline rocks from the Oktyabr’skii Massif. Sbornik nauchnykh trudov, 4, 9–10. In Ukrainian
58. Volkova, T.P. 2001. The productivity criterion of REE and ore mineralization within rocks of the Oktyabr’skii Massif Naukovi praci DonDTU., 36, 63–69. In Ukrainian
DOI :
Qute : Hu, X. ,Jeans, C. ,Zapalski, M. ,Demircan, H. ,Radwański, A. ,Meres, S. ,Dumańska-Słowik, M. ,Dumańska-Słowik, M. , Stability relationships of REE-bearing phosphates in an alkali-rich system (nepheline syenite from the Mariupol Massif, SE Ukraine). Acta Geologica Polonica Vol. 62, no. 2/2012
facebook