Statistical analysis on yearly seismic moment release data to demarcate the source zone for an impending earthquake in the Himalaya

Czasopismo : Acta Geophysica
Tytuł artykułu : Statistical analysis on yearly seismic moment release data to demarcate the source zone for an impending earthquake in the Himalaya

Autorzy :
Sobotka, J.
University of Wrocław, Institute of Geological Sciences, Department of Structural Geology, Wrocław, Poland,,
Sedighi, M.
K.N. Toosi University of Technology, Faculty of Geodesy and Geomatics Engineering, Tehran, Iran,,
Rezaei, K.
LMU University, Munich, Germany,,
Narayan, J.
Dept. of Earthquake Engineering, Indian Institute of Technology, Roorkee, India,,
Rozmarynowska, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Gnyp, A.
Carpathian Branch, Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Lviv, Ukraine,,
Wiejacz, P.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Karakostas, V.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece,,
Mukhopadhyay, B.
Central Headquarters, Geological Survey of India, Kolkata, India,,
Abstrakty : Tectonism in the Himalayan fold-thrust belt had generated great earthquakes in the past and will spawn more in the future. Sequential cumulative moment release data of macroearthquakes (Mb ≥ 4.5) over the years 1964–2006 in four zones of the Himalaya was analysed by nonparametric RUD method. The Z values of RUD analysis had neither rejected nor supported the null hypothesis of randomness. However, the Hurst analysis and plot, a statistical procedure to identify clustering of low and high values in a time series, brought out a pattern for earthquake prognostication. The pattern was a negative sloping segment representing a sluggish moment release over years, followed by a positive sloping segment indicating a sudden high moment release with occurrence of medium/large size earthquake(s). In recent past, such a negative sloping has been found in Zones B (1992–2006) and D (1998–2006), indicating an impending moderate/mega earthquake event in near future.

Słowa kluczowe : Himalaya, seismic moment, time series, Hurst plot,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2009
Numer : Vol. 57, no. 2
Strony : 387 – 399
Bibliografia : 1. Andrew, D.J. (1989), Mechanics of fault junction, J. Geophys. Res. 94, B7, 9389-9397, DOI: 10.1029/JB094iB07p09389.
2. Banerjee, P., and R. Burgmann (2002), Convergence across the northwest Himalaya from GPS measurements, Geophys. Res. Lett. 29, 13, 31-34, DOI: 10.1029/2002GL015184.
3. Bettinelli, P., J.P. Avouac, M. Flouzat, F. Jouanne, L. Bollinger, P. Willis, and G.R. Chitrakar (2006), Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements, J. Geod. 80, 8-11, 567-589, DOI: 10.1007/s00190-006-0030-3.
4. Bilham, R., and N.N. Ambraseys (2005), Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500-2000, Current Science 88, 1658-1663.
5. Bilham, R., and K. Wallace (2005), Future Mw > 8 earthquakes in the Himalaya: Implication from the 26 Dec 2004 Mw = 9.0 Plate Margin, Geol. Surv. India Spl. Pub. 85, 1-14.
6. Bollinger, L., J.P. Avouac, R. Cattin, and M.R. Pandey (2004), Stress buildup in the Himalaya, J. Geophys. Res. 109, B11405, DOI: 10.1029/2003JB002911.
7. Chakraborty, P.P., B. Mukhopadhyay, T. Pal, and T. Dutta Gupta (2002), Statistical appraisal of bed thickness patterns in turbidite successions, Andaman Flysch Group, Andaman Islands, India, J. Asian Earth Sci. 21, 2, 189-196, DOI: 10.1016/S1367-9120(02)00038-X.
8. Chen, C., and Hiscott (1999), Statistical analysis of turbidite cycles in submarine fan successions: Tests for short term persistence, J. Sed. Res. 69, 486-504.
9. Chen, Q.Z., J.T. Freymueller, Q. Wang, Z.Q. Yang, C.J. Xu, and J.N. Liu (2004), A deforming block model for the present-day tectonics of Tibet, J. Geophys. Res. 109, B1, B01403, DOI: 10.1029/2002JB002151.
10. Davis, J.C. (2002), Statistics and Data Analysis in Geology, 3rd ed., John Wiley and Sons, New York, 638 pp.
11. Evans, T.E. (1996), The effects of changes in the world hydrological cycle on availability of water resources. In: F. Bazzaz and W. Sombrock (eds.), Global Climate Change and Agricultural Production: Direct and Indirect Effects of Changing Hydrological, Pedological and Plant Physiological Processes, Chapter 2, FAO and John Wiley, Whichester.
12. Feder, J. (1988), Fractals, Plenum, New York, 283 pp.
13. Feldl, N., and R. Bilham (2006), Great Himalayan earthquakes and the Tibetan plateau, Nature 444, 7116, 165-170, DOI: 10.1038/nature05199.
14. Hanks, H.C., and H. Kanamori (1979), A moment magnitude scale, J. Geophys. Res. 84, B5, 2348-2350, DOI: 10.1029/JB084iB05p02348.
15. Haslett, J., and A.E. Raftery (1989), Space-time modelling with long-memory dependence: assessing Ireland's wind power resource, Appl. Stat. 38, 1, 1-50, DOI: 10.2307/2347679.
16. Hauck, M.L., D. Nelson, L.D. Brown, W. Zhao, and A.R. Ross (1998), Crustal structure of the Himalayan orogen at 90° east longitude from Project INDEPTH deep reflection profiles, Tectonics 17, 4, 481-500, DOI: 10.1029/ 98TC01314.
17. Hurst, H.E. (1951), Long term storage capacity of reservoirs, T. Am. Soc. Civil Eng. 116, 770-808.
18. Hurst, H.E. (1956), Methods of using long-term storage in reservoirs, Proc. Inst. Civil Eng., Part 1, 5, 519-590.
19. Jade, S., M. Mukul, A.K. Bhattacharyya, M.S.M. Vijayan, S. Jaganathan, A. Kumar, R.P. Tiwari, A. Kumar, S. Kalita, S.C. Sahu, A.P. Krishna, S.S. Gupta, M.V.R.L. Murthy, and V.K. Gaur (2007), Estimates of interseismic deformation in Northeast India from GPS measurements, Earth Planet. Sc. Lett. 263, 3-4, 221-234, DOI: 10.1016/j.epsl.2007.08.031.
20. Koutsoyiannis, D. (2003), Climate change, the Hurst phenomenon, and hydrological statistics, Hydrol. Sci. J. 48, 1, 3-24, DOI: 10.1623/hysj.
21. Lavé, J., and J.P. Avouac (2000), Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal, J. Geophys. Res. 105, B3, 5735-5770, DOI: 10.1029/1999JB900292.
22. McGuire, R.K. (2004), Seismic Hazard and Risk Analysis, EERI Monograph 10, Earthquake Engineering Research Institute, Oakland, California, 221 pp.
23. Mukhopadhyay, B., P.P. Chakraborty, and S. Paul (2003), Facies clustering in turbidite successions: Case study from Andaman Flysch Group, Andaman Islands, India, Gondwana Res. 6, 4, 918-925, DOI: 10.1016/S1342-937X(05) 71036-4.
24. Nelson, K.D., W.J. Zhao, L.D. Brown, J. Kuo, J.K. Che, X.W. Liu, S.L. Klemperer, Y. Makovsky, R. Meissner, J. Mechie, R. Kind, F. Wenzel, J. Ni, J. Nabelek, L.S. Chen, H.D. Tan, W.B. Wei, A.G. Jones, J. Booker, M. Unsworth, W.S.F. Kidd, M. Hauck, D. Alsdorf, A. Ross, M. Cogan, C.D. Wu, E. Sandvol, and M. Edwards (1996), Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results, Science 274, 5293, 1684-1688, DOI: 10.1126/science.274.5293.1684.
25. Scholz, C.H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., Cambridge University Press, 471 pp.
26. Wallis, J.R., and N.C. Matalas (1970), Small sample properties of H and K estimators of Hurst coefficient h, Water Resour. Res. 6, 6, 1583-1594, DOI: 10.1029/WR006i006p01583.
27. Wallis, J.R., and N.C. Matalas (1971), Correlogram analysis revisited, Water Resour. Res. 7, 6, 1448-1459, DOI: 10.1029/WR007i006p01448.
28. Zhao, W., K.D. Nelson, and Project INDEPTH Team (1993), Deep seismic reflection evidence for continental underthrusting beneath southern Tibet, Nature 366, 6455, 557-559, DOI: 10.1038/366557a0.
Cytuj : Sobotka, J. ,Sedighi, M. ,Rezaei, K. ,Narayan, J. ,Rozmarynowska, A. ,Gnyp, A. ,Wiejacz, P. ,Karakostas, V. ,Mukhopadhyay, B. , Statistical analysis on yearly seismic moment release data to demarcate the source zone for an impending earthquake in the Himalaya. Acta Geophysica Vol. 57, no. 2/2009