Strength analysis of a three-unit dental bridge framework with the Finite Element Method

Czasopismo : Acta of Bioengineering and Biomechanics
Tytuł artykułu : Strength analysis of a three-unit dental bridge framework with the Finite Element Method

Autorzy :
Rumian, Ł.
Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland,
Reczyńska, K.
Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland,
Wrona, M.
Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Krakow, Poland,
Tiainen, H.
Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Oslo, Norway,
Haugen, H. J.
Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Oslo, Norway,
Pamuła, E.
Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland, epamula@agh.edu.pl,
Turek, A.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland, a.turek75@gmail.com,
Kasperczyk, J.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Jelonek, K.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Borecka, A.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Janeczek, H.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Libera, M.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Gruchlik, A.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Dobrzyński, P.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Wojda, S.
Faculty of Mechanical Engineering, Białystok University of Technology, Białystok, Poland,
Szoka, B.
Faculty of Mechanical Engineering, Białystok University of Technology, Białystok, Poland,
Sajewicz, E.
Faculty of Mechanical Engineering, Białystok University of Technology, Białystok, Poland, e.sajewicz@pb.edu.pl,
Kiel-Jamrozik, M.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland, marta.kiel-jamrozik@polsl.pl,
Szewczenko, J.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland,
Basiaga, M.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland,
Nowińska, K.
Silesian University of Technology, Faculty of Mining and Geology, Institute of Applied Geology, Gliwice, Poland,
Salasek, M.
Department of Orthopaedics and Traumatology, Faculty of Medicine of Charles University and Faculty Hospital in Plzeň, Czech Republic, martin.salasek@seznam.cz,
Jansova, M.
Department of Mechanics, Faculty of Applied Sciences and New Technologies for Information Society of West Bohemian University in Plzeň, Czech Republic.,
Křen, J.
Department of Mechanics, Faculty of Applied Sciences and New Technologies for Information Society of West Bohemian University in Plzeň, Czech Republic,
Pavelka, T.
Department of Orthopaedics and Traumatology, Faculty of Medicine of Charles University and Faculty Hospital in Plzeň, Czech Republic,
Weisova, D.
Department of Orthopaedics and Traumatology, Faculty of Medicine of Charles University and Faculty Hospital in Plzeň, Czech Republic,
Reimann, Ł.
Institute of Materials Engineering and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland, lukasz.reimann@polsl.pl,
Żmudzki, J.
Institute of Materials Engineering and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland,
Dobrzański, L.
Institute of Materials Engineering and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland,
Abstrakty : Purpose: The aim of the study was to analyse the strength of a prosthetic bridge with variable geometry in the connectors between the span and the retention elements on the pillar teeth crowns. Methods: Research was carried using the Finite Elements Method (FEM) on a model of the bridge in the anterior teeth arch in the field 21–22–23, obtained using a contact scanner and computer aided design (CAD) system, with four different cross-sectional areas of the connectors: 4.0, 5.0, 5.5, and 6.0 mm2. For that purpose, the impact of the properties of selected metal alloys on the deflection of the prosthesis was analysed. Results: On the basis of the analyses, it was found that when the loading force acted obliquely, the stress was 19% higher compared to the stress with a loading vertical force. In the case of connectors with the smallest cross-sectional area, the stress exceeded permissible value (with safety factor n = 2) for one of the alloys. Conclusions: Deflection of the bridges tested changed depending on the connector cross-section and the elastic modulus of the selected material.

Słowa kluczowe : materiały stomatologiczne, mostek, dobór materiałów, dental bridge, Hubert–Misses stress, connector, materials selection,
Wydawnictwo : Oficyna Wydawnicza Politechniki Wrocławskiej
Rocznik : 2015
Numer : Vol. 17, nr 1
Strony : 51 – 59
Bibliografia : 1 ADANIR N., BELLI S., Stress analysis of a maxillary central incisor restored with different posts, Eur. J. Dent., 2007, 1(2), 67–71.
2 ANUSAVICE K.J., Phillips’ Science of Dental Materials, Elsevier Health Sciences, 2003.
3 CHLADEK W., Biomechanika inżynierska narządu żucia. Zagadnienia wybrane, Wydawnictwo Politechniki Śląskiej, Gliwice 2008.
4 CHLADEK G., WRZUŚ-WIELIŃSKI M., The evaluation of selected attachment systems for implant-retained overdenture based on retention characteristics analysis, Acta Bioeng. Biomech., 2010, 12(3), 75–83.
5 CORREIA A.R.M., FERNANDES J.C.S., CAMPOS J.C.R., VAZ M.A.P., RAMOS N.V.M., Stress analysis of cantileverfixed partial denture connector design using the finite element method, Rev. Odonto Ciênc., 2009, 24(4), 420–425.
6 DĄBROWA T., DOBROWOLSKA A., WIELEBA W., The role of friction in the mechanism of retaining the partial removable dentures with double crown system, Acta Bioeng. Biomech., 2013, 15(4), 43–48.
7 DOBRZAŃSKI L.A., REIMANN Ł., Digitization procedure of creating 3D model of dental bridgework reconstruction, JAMME, 2012, 55(2), 469–476.
8 DORNHOFER R., ARNETZL G.V., KOLLER M., ARNETZL G., Comparison of the static loading capacity of all-ceramic bridge frameworks in posterior teeth using three hard core materials, Int. J. Comput. Dent., 2007, 10(4), 315–328.
9 FAWZI S., The effect of dental implant design on bone induced stress distribution and implant displacement, Int. J. Comput. Appl., 2013, 74(17), 15–21.
10 FEDERICK DR., CAPUTO AA., Effects of overdenture retention designs and implant orientations on load transfer characteristics, J. Prosthet. Dent., 1996, 76(6), 624–632.
11 KERMANSHAH H., BITARAF T., GERAMY A., Finite Element Analysis of IPS Empress II Ceramic Bridge Reinforced by Zirconia Bar, J. Dent. (Tehran), 2012, 9(4), 196–203.
12 LIN J., SHINYA A., GOMI H., SHINYA A., Finite element analysis to compare stress distribution of connector of lithia disilicate-reinforced glass–ceramic and zirconiabased fixed partial denture, Odontology, 2012, 100, 96–99.
13 MILEWSKI G., HILLE A., Experimental strength analysis of orthodontic extrusion of human anterior teeth, Acta Bioeng. Biomech., 2012, 14(1), 15–21.
14 MOLLERS K., PATZOLD W., PARKOT D., KIRSTEN A., GUTH J.F., EDELHOFF D., FISCHER H., Influence of connector design and material composition andveneering on the stress distribution of all-ceramic fixed dental prostheses: A finite element study, Dent. Mater, 2011, 27, e171–e175.
15 OH W.S., ANUSAVICE K.J., Effect of connector design on the fracture resistance of all-ceramic fixed partial dentures, J. Prosthet. Dent., 2002, 87(5), 536–542.
16 ONODERA K., SATO T., NOMOTO S., MIHO O., YOTSUYA M., Effect of connector design on fracture resistance of zirconia all-ceramic fixed partian dentures, Bull. Tokyo Dent. Coll., 2011, 52(2), 61–67.
17 REZAEI A., HEIDARIFAR H., AREZODAR F., AZARY A., MOKHTARYKHOEE S., Influence of connector width on the stress distribution of posterior bridges under loading, J. Dent. (Tehran), 2011, 8(2), 68–74.
18 ROMEED S.A., FOK S.L., WILSON N.H.F., Finite element analysis of fixed partial denture replacement, J. Oral. Rehabil., 2004, 31, 1208–1217.
19 SAKAGUCHI R.L., POWERS J.M., Craigs Restorative Dental Materials, Elsevier, 2012.
20 SHINYA A., YOKOYAMA D., Finite Element Analysis for Dental Prosthetic Design, Finite Element Analysis, In. Tech., 2010.
21 SCHOENBAUM T.R., Dentistry in the Digital Age: An Update, Dent Today, 2012, 31(2), 112–113.
22 SHUKRI B.M.S., AL-HASHIMI W.N., Finite element stress analysis of endodontically treated teeth restored by prefabricated posts, J. Bagh College Dentistry, 2005, 17(3), 27–32.
23 TAKUMA Y., NOMOTO S., SATO T., SUGIHARA N., Effect of framework design on fracture resistance in zirconia 4-unitall-ceramic fixed partial dentures, Bull. Tokyo Dent. Coll., 2013, 54(3), 149–156.
24 THOMPSON M.C., ZHANG Z., FIELD C.J., LI Q., SWAIN M.V., The all-ceramic, inlay supported fixed partial denture. Part 5. Extended finite element analysis validation, Aust. Dent. J., 2013, 58(4), 434–441.
25 ŻMUDZKI J, CHLADEK G, KASPERSKI J, DOBRZAŃSKI LA., One versus two implant-retained dentures: comparing biomechanics under oblique mastication forces, J. Biomech. Eng., 2013, 135(5), DOI, 10.1115/1.4023985.
DOI :
Cytuj : Rumian, Ł. ,Reczyńska, K. ,Wrona, M. ,Tiainen, H. ,Haugen, H. J. ,Pamuła, E. ,Turek, A. ,Kasperczyk, J. ,Jelonek, K. ,Borecka, A. ,Janeczek, H. ,Libera, M. ,Gruchlik, A. ,Dobrzyński, P. ,Wojda, S. ,Szoka, B. ,Sajewicz, E. ,Kiel-Jamrozik, M. ,Szewczenko, J. ,Basiaga, M. ,Nowińska, K. ,Salasek, M. ,Jansova, M. ,Křen, J. ,Pavelka, T. ,Weisova, D. ,Reimann, Ł. ,Żmudzki, J. ,Dobrzański, L. , Strength analysis of a three-unit dental bridge framework with the Finite Element Method. Acta of Bioengineering and Biomechanics Vol. 17, nr 1/2015
facebook