Stress-strain state of elastic plate with an arbitrary smooth notch

Czasopismo : Acta Mechanica et Automatica
Tytuł artykułu : Stress-strain state of elastic plate with an arbitrary smooth notch

Autorzy :
Bąk, Ł.
Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Al. Powstańców Warszawy12, 35-959 Rzeszów, Poland, lbak@prz.edu.pl,
Noga, S.
Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Al. Powstańców Warszawy12, 35-959 Rzeszów, Poland, noga@prz.edu.pl,
Stachowicz, F.
Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Al. Powstańców Warszawy12, 35-959 Rzeszów, Poland, stafel@prz.edu.pl,
Tesař, V.
Institute of Thermomechanics v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 1402/5, 182 00 Praha 8, Czech Republic, tesar@it.cas.cz,
Czerwiński, E.
Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland, ernest.czerwinski@dokt.p.lodz.pl,
Olejnik, P.
Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland, pawel.olejnik@p.lodz.pl,
Awrejcewicz, J.
Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland, jan.awrejcewicz@p.lodz.pl,
Wudarczyk, S.
Faculty of Mechanical Engineering, Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, slawomir.wudarczyk@pwr.edu.pl,
Muraszkowski, A.
Faculty of Mechanical Engineering, Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, artur.muraszkowski@pwr.edu.pl,
Lupenko, S.
Ternopil Ivan Pul’uj National Technical University,46001, Ruska str. 56, Ternopil, Ukraine, lupenko@ua.fm,
Lutsyk, N.
Ternopil Ivan Pul’uj National Technical University,46001, Ruska str. 56, Ternopil, Ukraine, lutsyk.nadiia@gmail.com,
Lapusta, Y.
French Institute of Advanced Mechanics, Institut Pascal / UBP / IFMA / CNRS / Clermont Université, BP 265, 63175 Aubière CEDEX, France, yuri.lapusta@ifma.fr,
Kaczorek, T.
Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Bialystok, Poland , kaczorek@isep.pw.edu.pl,
Manjaree, S.
Department of Mechanical Engineering, The Northcap University (Formerly ITM University), Sector 23 A, Gurgaon, India, shivmanjree@gmail.com,
Nakra, B. C.
Department of Mechanical Engineering, IIT Delhi, Hauz Khas, New Delhi, India, bcnakra@hotmail.com,
Agarwal, V.
Department of MPAE, NSIT, Sector 3, Dwarka, New Delhi, India, vijayant@nsit.ac.in,
Kuz, I.
Department of Mechanics and Mathematics, Ivan Franko National University of Lviv, 1 Universitetska Str., 79000 Lviv, Ukraine, ihorkuz24@gmail.com,
Kuz, O.
Vyacheslav Chornovil Institute of Ecology, Nature Protection and Tourism, National University “Lviv Polytechnic”, 12 Bandery Str.,79013 Lviv,Ukraine, olyakuzon@gmail.com,
Sulym, H.
Faculty of Mechanical Engineering, Bialystok University of Technology, 45C Wiejska Str., 15-351 Bialystok, Poland, sulym@pb.edu.pl,
Abstrakty : The paper contains comparing calculations of the stress fields in an elastic plate with notch along the arc of a circle, ellipse or parabola obtained by analytic method based on complex Kolosov-Muskhelishvili potentials and by numerical variation-difference method. These fields differ by no more than 2%, which, in particular, indicates the reliability of such numerical implementation. This discrepancy can be explained by the fact that in the analytical solution domain is unbounded, while the numerical calculation was carried out, obviously, for a finite field. The given stresses at the top of the notch along the arc of an ellipse or a parabola significantly increase with increasing of the relative depth of the notch (while increasing its depth or decreasing width).

Słowa kluczowe : pole naprężeń, płyta elastyczna, płyta konstrukcyjna, samolot, semi-plane, plate, notch, variation-difference method, stress field,
Wydawnictwo : Oficyna Wydawnicza Politechniki Białostockiej
Rocznik : 2015
Numer : Vol. 9, no. 4
Strony : 241 – 244
Bibliografia : 1. Bozydarnik V. V., Sulym H. T. (2012), Theory of Elasticity, V. 1, Publishing House of Lutsk National Technical University, Lutsk (in Ukrainian).
2. Kuz I. (2008), Numerical solution of plane plasticity problem about metal elbow strain, Visnyk of Lviv University, Ser. Mech. et Math., 69, 203–209 (in Ukrainian).
3. Kuz I., Kuz O., Pyz N. (2014), Influence of stress concentrators onto stress-strain state of elasto-plastic plates, Visnyk of the Ternopil National Technical University, 4(76), 79-88 (in Ukrainian).
4. Kuz O. (2005), Stress state of semi-plane with notch under uniform extension, Abstract of the Sixth Polish-Ukrainian Conference “Current problems of mechanics of nonhomogeneous media”, Warsaw, 76–77 (in Ukrainian).
5. Lazzarin P., Tovo R. (1996), A unified approach to the evaluation of linear elastic stress fields in the neibourhood of cracks or notches, International Journal of Fracture, 78, 3-19.
6. Muskhelishvili N.I. (2003), Some Basic Problems of the Mathematical Theory of Elasticity, Springer.
7. Panasiuk V. V., Savruk M. P., Datsyshyn O. P. (1976), Distribution of Stresses near Cracks in Plates and Shells, Naukova Dumka, Kyiv (in Russian).
8. Pobedria B. E. (1981), Numerical Methods in Theory of Elasticity and Plasticity, Publishing House of Moscow University, Moscow (in Russian).
9. Savruk M.P., Kazberuk A. (2006), Relationship between the stress intensity and stress concentration factor for sharp and rounded notches, Material Science (Springer), 42(6), 725-738.
10. Savruk M.P., Kazberuk A. (2007), A unified approach to problems of stress concentration near V-shaped notches with sharp and rounded tip, International Applied Mechanics, 43(2), 182-187.
11. Savruk M.P., Kazberuk A. (2007), Stress concentration near a rounded v-notch with arbitrary vertex curvature, Acta mechanica et Automatica, 1(1), 99–102 (in Polish).
12. Savruk M.P., Kazberuk A. (2010), Two-dimensional fracture mechanics problems for solids with sharp and rounded V-notches, International Journal of Fracture, 161, 79-95.
13. Savruk M.P., Kazberuk A. (2011), Antisymmetric stress distribution in an elastic body with a sharp or a rounded v-shaped notch, Material Science (Springer), 46(6), 711-722.
14. Savruk M.P., Kazberuk A. (2012), Distribution of stresses near Vshaped notches in the complex stressed state, Material Science (Springer), 47(4), 476-487.
15. Savruk M.P., Kazberuk A. (2014), Curvilinear cracks in the anisotropic plane and the limit transition to the degenerate material, Material Science (Springer), 50(2), 189-200.
16. Savruk M.P., Kazberuk A. (2014), Plane elgenvalue problems of the elasticity theory for orthotropic and quasi-orthotropic wedges, Material Science (Springer), 50(6), 707-714.
17. Savruk M. P., Kazberuk A., Tarasiuk G. (2012), Distribution of stresses over the contour of rounded V-shaped notch under antiplane deformation, Material Science (Springer), 47(6), 717-725.
DOI :
Cytuj : Bąk, Ł. ,Noga, S. ,Stachowicz, F. ,Tesař, V. ,Czerwiński, E. ,Olejnik, P. ,Awrejcewicz, J. ,Wudarczyk, S. ,Muraszkowski, A. ,Lupenko, S. ,Lutsyk, N. ,Lapusta, Y. ,Kaczorek, T. ,Manjaree, S. ,Nakra, B. C. ,Agarwal, V. ,Kuz, I. ,Kuz, O. ,Sulym, H. , Stress-strain state of elastic plate with an arbitrary smooth notch. Acta Mechanica et Automatica Vol. 9, no. 4/2015
facebook