Journal : Acta Geologica Polonica
Article : Stromatoporoid beds and flat-pebble conglomerates interpreted as tsunami deposits in the Upper Silurian of Podolia, Ukraine

Authors :
Łuczyński, P.
Faculty of Geology, Warsaw University, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland, piotr.luczynski@uw.edu.pl,
Skompski, S.
Faculty of Geology, Warsaw University, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland, Skompski@uw.edu.pl,
Kozłowski, W.
Faculty of Geology, Warsaw University, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland, Wojciech.Kozlowski@uw.edu.pl,
Abstract : Tsunami deposits are currently a subject of intensive studies. Tsunamis must have occurred in the geological past in the same frequency as nowadays, yet their identified depositional record is surprisingly scarce. Here we describe a hitherto unrecognized example of probable palaeotsunamites. The Upper Silurian (Pridoli) carbonate succession of Podolia (southwestern Ukraine) contains variously developed event beds forming intercalations within peritidal deposits (shallow water limestones, nodular marls and dolomites). The event beds are represented by stromatoporoid and fine-grained bioclastic limestones, in some places accompanied by flat-pebble conglomerates. The interval with event beds can be traced along the Zbruch River in separate outcrops over a distance of more than 20 km along a transect oblique to the palaeoshoreline. The stromatoporoid beds have erosional bottom surfaces and are composed of overturned and often fragmented massive skeletons. The material has been transported landward from their offshore habitats and deposited in lagoonal settings. The flat-pebble conglomerates are composed of sub-angular micritic clasts that are lithologically identical to the sediments forming the underlying beds. Large-scale landward transport of the biogenic material has to be attributed to phenomena with very high energy levels, such as tropical hurricanes or tsunamis. This paper presents a tsunamigenic interpretation. Morphometric features of redeposited stromatoporoids point to a calm original growth environment at depths well below storm wave base. Tsunami waves are the most probable factor that could cause their redeposition from such a setting. The vastness of the area covered by parabiostromal stromatoporoid beds resembles the distribution of modern tsunami deposits in offshore settings. The stromatoporoid beds with unsorted stromatoporoids of various dimensions evenly distributed throughout the thickness of the beds and with clast-supported textures most probably represent deposition by traction. In some sections, the stromatoporoids are restricted to the lowermost parts of the beds, which pass upwards into bioclastic limestones. In this case, the finer material was deposited from suspension. The coexistence of stromatoporoid beds and flat-pebble conglomerates also allows presenting a tsunami interpretation of the latter. The propagating tsunami waves, led to erosion of partly lithified thin-layered mudstones, their fragmentation into flat clasts and redeposition as flat-pebble conglomerates.

Keywords : sylur, Podole, warstwy stromatoporoidowe, prefabrykaty płaskie, Palaeotsunami, Silurian, Podolia, Stromatoporoid beds, Flat-pebble conglomerates,
Publishing house : Faculty of Geology of the University of Warsaw
Publication date : 2014
Number : Vol. 64, no. 3
Page : 261 – 280

Bibliography
: 1. Abushik, A., Berger, A., Koren’, T., Modzalevskaya, T., Nikiforova, O. and Predtechensky, N. 1985. The fourth series of the Silurian System in Podolia. Lethaia, 18, 125–146.
2. Albertão, G.A. and Martins, P.P. 1996. A possible tsunami deposit at the Cretaceous-Tertiary boundary in Pernambuco, north-eastern Brazil. Sedimentary Geology 104, 189–201.
3. Bjerkéus, M. and Eriksson, M. 2001. Late Silurian reef development in the Baltic Sea. GFF, 123, 169–179.
4. Bourgeois, J. 2009. Geologic effects and records of tsunamis. In: Robinson, A.R. and Bernard E.N. (Eds), In the Sea, Volume 15: Tsunamis, 53–91.
5. Bourrouilh-Le Jan, F.G., Beck, C. and Gorsline, D.S. 2007. Catastrophic events (hurricanes, tsunami and others and their sedimentary records: Introductory notes and new concepts for shallow water deposits. Sedimentary Geology , 199, 1–11.
6. Bussert, R. and Aberham, M. 2004. Storms and tsunami: evidence of event sedimentation in the Late Jurassic Tendaguru Beds of southeastern Tanzania. Journal of African Earth Sciences, 39, 549–555.
7. Calner, M. 2005. Silurian carbonate platforms and extinction events – ecosystem changes exemplified from Gotland, Sweden. Facies, 51, 584–591.
8. Cantalamessa, G. and Di Celma, C. 2005. Sedimentary features of tsunami backwash deposits in a shallow marine Miocene setting, Mejillones peninsula, northern Chile. Sedimentary Geology, 178, 259–273.
9. Chagué-Goff, C., Schneider, J-L., Goff, J.R., Dominey-Howes, D. and Strotz, L. 2011. Expanding the proxy toolkit to help identify past events – Lessons from the 2004 Indian Ocean Tsunami and the 2009 South Pacific Tsunami. Earth Science Reviews, 107, 107–122.
10. Dawson, A.G. and Shi, S. 2000. Tsunami deposits. Pure and Applied Geophysics, 157, 875–897.
11. Dawson, A.G. and Stewart, I. 2007. Tsunami deposits in the geological record. Sedimentary Geology, 200, 166–183.
12. Drygant, D. 1984. Correlation and conodonts of the Silurian Lower Devonian deposits of Volyn and Podolia. Naukova Dumka, Kiev, pp. 1–192. In Russian
13. Einasto, R.E., Abushik, A.F., Kaljo, D.P., Koren’, T.N., Modzalevskaya, T.L. and Nestor, H.E. 1986. Silurian sedimentation and fauna of the eastern Baltic and Podolian marginal basins: a comparison. In: Kaljo, D. and Klaamann, E. (Eds), Theory and practice of ecostratigraphy, Valgus, Tallin, pp. 37–54.
14. Einasto, R.E. and Radionova, E.P. 1988. Stromatolites and oncolites in the Ordovician and Silurian facies of Pribaltica. In: Dubatolov, V.N. and Moskalenko, T.A. (Eds), Calcareous algae and stromatolites. Nauka, Sibirskoje Otdetelenije, Novosibirsk, pp. 145–158. In Russian
15. Flügel, E. and Flügel-Kahler, E. 1992. Phanerozoic reef evolution: basic questions and data base. Facies, 26, 167–278.
16. Flügel, E. and Kiessling, W. 2002. A new look at ancient reefs. In: Kiessling, W., Flügel, E. and Golonka, J. (Eds), Phanerozoic reef patterns. SEPM Special Publications, 72, 3–20.
17. Fujiwara, O. and Kamataki, T. 2007. Identification of tsunami deposits considering the tsunami waveform: an example of subaqueous tsunami deposits in Holocene shallow bay on southern Boso Peninsula, Central Japan. Sedimentary Geology, 200, 295–313.
18. Goff, J., Chagué-Goff, C., Nichol, S., Jaffe., B.E. and Dominey-Howes, D. 2012. Progress in palaeotsunami research. Sedimentary Geology, 243-244, 70–88.
19. Goff, J., Terry, J.P., Chagué-Goff, C. and Goto, K. 2014. What is a mega-tsunami? Marine Geology, in press.
20. Goto, K., Chavanich, S.A., Imamura, F., Kunthasap, P., Matusi, T., Minoura, K., Sugawara, D. and Yanagisawa, H. 2007. Distribution, origin and transport process of boulders deposited by the 2004 Indian Ocean tsunami in Pakarang Cape, Thailand. Sedimentary Geology, 202, 821–837.
21. Goto, K., Chagué-Goff, C., Fujino, S., Goff, J., Jaffe, B., Nishimura, Y., Richmond, B., Sugawara, D., Szczuciński, W., Tappin, D.R., Witter, R.C. and Yulianto, E. 2011. New insights of tsunami hazard from the 2011 Tohoku-oki event. Marine Geology, 290, 46–50.
22. Goto, K., Miyagi K. and Imamura F. 2013. Localized tsunamigenic earthquakes inferred from preferential distribution of coastal boulders on the Ryukyu Islands, Japan. Geology , 41, 1139–1142.
23. Goto, K., Miyagi, K., Kawamata, H. and Imamura, F. 2010a. Discrimination of boulders deposited by tsunami and storm waves at Ishigaki Island, Japan. Marine Geology, 269, 34–45.
24. Goto, K., Okada, K. and Imamura, F. 2009. Importance of the initial waveform and coastal profile for tsunami transport of boulders. Polish Journal of Environmental Studies, 18, 53–61.
25. Goto, K., Toshio, K. and Fumihiko, I. 2010b. Historical and geological evidence of boulders deposited by tsunami, southern Ryukyu Islands, Japan. Earth Science Reviews, 102, 77–99.
26. Ikehara, K., Irino, T., Usami, K., Jenkins, R., Amura, O., and Ashi, J. 2014. Possible submarine tsunami deposits on the outer shelf of Sendai Bay, Japan, resulting from the 2011 earthquake and tsunami off the Pacific coast of Tohoku. Marine Geology, 349, 91–98.
27. Jaffe, B.E., Goto, K., Sugawara, D., Richmond, B.M., Fujino, S., and Nishimura, Y. 2012. Flow speed estimated by inverse modeling of sandy tsunami deposits: results from the 11 March 2011 tsunami on the coastal plain near the Sendai Airport, Honshu, Japan. Sedimentary Geology, 282, 90–109.
28. Kaljo, D.L., Viira, V., Klaamann, E.R., Mjannil, R.P., Märs, T.I., Nestor, V.V., Nestor, H.E., Rubel, M.P., Sarv, L.I. and Einasto, R.E. 1983. Ecological model for the Silurian basin of Eastern Baltic Basin. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR 194, 45–61. In Russian
29. Kaźmierczak, J. 1971. Morphogenesis and systematics of the Devonian Stromatoporoidea from the Holy Cross Mountains, Poland. Palaeontologia Polonica, 26, 1–146.
30. Kaźmierczak, J. and Goldring, R. 1978. Subtidal flat-pebble conglomerate from the Upper Devonian of Poland: a multiprovenant high-energy product. Geological Magazine, 115, 359–366.
31. Kershaw, S. 1984. Patterns of stromatoporoid growth in level – bottom environments. Palaeontology, 27, 113–130.
32. Kershaw, S. 1990. Stromatoporoid palaeobiology and taphonomy in a Silurian biostrome on Gotland, Sweden. Palaeontology, 33, 681–705.
33. Kershaw, S. 1994. Classification and geological significance of biostromes. Facies 31, 81–91.
34. Kershaw, S. 1998. The application of stromatoporoid palaeobiology in palaeoenvironmental analysis. Palaeontology, 41, 509–544.
35. Kershaw, S and Brunton, F.R. 1999. Palaeozoic stromatoporoid taphonomy: ecologic and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 149, 313–328.
36. Kershaw, S and Riding, R. 1978. Parameterization of stromatoporoid shape. Lethaia, 11, 233–242.
37. Königshof, P. and Kershaw, S. 2006. Growth forms and palaeoenvironmental interpretation of stromatoporoids in a Middle Devonian reef, southern Morocco (west Sahara). Facies, 52, 299–306.
38. Koren’, T.N., Abushik, A.F., Modzalevskaya, T.L. and Predtechensky, N.N., 1989. Podolia. In: Holland, C.H. and Bassett, M.G.A. (Eds), Global standard for the Silurian System. Natural Museum of Wales, Geological Series 9, pp. 141–149.
39. Kortekaas, S. and Dawson, A.G. 2007. Distinguishing tsunami and storm deposits: An example from Martinhal, SW Portugal. Sedimentary Geology, 200, 208–221.
40. Kozłowski, W. 2008. Lithostratigraphy and regional significance of the Nova Słupia Group (Upper Silurian) of the Łysogóry Region (Holy Cross Mountains, Central Poland. Acta Geologica Polonica, 58, 43–74.
41. Kozłowski, W., Domańska, J., Nawrocki, J. and Pecskay, Z. 2004. The provenance of the Upper Silurian greywackes from the Holy Cross Mountains (Central Poland). In: Karwowski, L. and Ciesielczuk, J. (Eds), 11 th Meeting of the Petrology Group of the Mineralogical Society of Poland. Mineralogical Society of Poland – Special Papers, 24, pp. 251–254.
42. Kullberg, J.C., Olóriz, F., Marques, B., Caetono, P.S. and Rocha, R.B. 2001. Flat pebble conglomerates: a local marker for Early Jurassic seismicity related to syn-rift tectonics in the Sesimbra area (Lusitanian Basin, Portugal). Sedimentary Geology, 139, 49–70.
43. Łuczyński, P. 2003. Stromatoporoid morphology in the Devonian of the Holy Cross Mountains, Poland, and its palaeoenvironmental significance. Acta Geologica Polonica, 53, 19–27.
44. Łuczyński, P. 2005. Improving the parameterization of stromatoporoid shapes – a detailed approach to stromatoporoid morphometry. Lethaia 38, 143–154.
45. Łuczyński, P. 2006. Stromatoporoid shape and burial ratio changes during growth history and their methodological consequences for morphometrical analyses. Lethaia, 39, 339–358.
46. Łuczyński, P. 2008. Growth forms and distribution patterns of stromatoporoids exposed on Devonian palaeobottom surfaces; Holy Cross Mountains, central Poland. Acta Geologica Polonica, 58, 303–320.
47. Łuczyński, P. 2009. Stromatoporoid growth orientation as a tool in palaeotopography: a case study from the Kadzielnia Quarry, Holy Cross Mountains, central Poland. Acta Geologica Polonica, 59, 319–340.
48. Łuczyński, P. 2011. Stromatoporoid biostromal accumulations in the Upper Silurian of Podolia (Ukraine) as possible palaeotsunamite deposits. 8th Baltic Stratigraphical Conference, Riga, Latvia 2011, Abstract Volume, 40.
49. Łuczyński, P. 2012. The tsunamites problem. Why are fossil tsunamites so rare? Przegląd Geologiczny 60, 598–604. In Polish with English summary
50. Łuczyński, P., Skompski, S. and Kozłowski, W. 2009. Sedimentary history of Upper Silurian biostromes of Podolia (Ukraine) based on stromatoporoid morphometry. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 225–239.
51. Malec, J. 2001. Sedimentology of deposits around the Late Caledonian unconformity in the western Holy Cross Mountains. Geological Quarterly, 45, 397–415.
52. Mamet, B. and Roux, A. 1975. Algues dévoniennes et carboniferes de la Téthys Occidentale. Troisieme partie, Revue de Micropaléontologie, 18, 134–187.
53. Matsumoto, D., Shimamoto, T., Hirose, T., Gunatilake, J., Wickramasooriya, A., DeLile, J., Young, S., Rathnayake, C., Ranasooriya, J. and Murayama, M. 2010. Thickness and grain-size distribution of the 2004 Indian Ocean tsunami deposits in Periya Kalapuwa Lagoon, eastern Sri Lanka. Sedimentary Geology, 230, 95–104.
54. Michalik, J. 1997. Tsunamites in a storm-dominated Anisian carbonate ramp (Vysoka Formation, Male Karpaty Mts., Western Carpathians). Geologica Carpathica, 48, 221–229.
55. Moore, A., Goff, J., McAdoo, B.G., Fritz, H.M., Gusman. A., Kalligeris, N., Kalsum, K., Susanto. D. and Synolakis, C.E., 2011. Sedimentary deposits from the 17 July 2006 Western Java Tsunami, Indonesia: Use of grain size analyses to assess tsunami flow depth, speed, and traction carpet characteristics. Pure and Applied Geophysics, 168, 1951–1961.
56. Morton, R.A., Gelfenbaum, G. and Jaffe B.E. 2007. Physical criteria for distinguishing tsunami and modern deposits using modern examples. Sedimentary Geology, 200, 184–207.
57. Myrow, P.M., Tice, L., Archuleta, B., Clark, B, Taylors, J.F. and Ripendan, R.T. 2004. Flat-pebble conglomerate: its multiple origins and relationship to meter-scale depositional cycles. Sedimentology, 51, 973–996.
58. Narkiewicz, M. 2002. Ordovician through earliest Devonian development of the Holy Cross Mts. (Poland): Constraints from subsidence analysis and thermal maturity data. Geological Quarterly, 46, 255–266.
59. Nikiforova, O.I., Predtechensky, N.N., Abushik, A.F., Ignatovitch, M.M., Modzalevskaya, T.L., Berger, A.Y., Novoselova, L.S. and Burkov, Y.K. 1972. Opornyj razrez silura i nizhnego devona Podolii. Nauka, Leningrad, pp. 1–262.
60. Paris, R., Fournier, J., Poizot, E., Etienne, S., Morin, J., Lavigne, F. and Wassmer, P. 2009. Boulder and fine sediment transport and deposition by the 2004 tsunami in Lhok Nga (western Banda Aceh, Sumatra, Indonesia): a coupled offshore-onshore model. Marine Geology, 268, 43–54.
61. Phantuwongraj, S. and Choowong, M. 2012. Tsunamis versus storm deposits from Thailand. Natural Hazards, 63, 31–50.
62. Poprawa, P., Šliaupa, S., Stephenson, R. and Lazauskiene, J. 1999. Late Vendian-Early Palaeozoic tectonic evolution of the Baltic Basin: Regional tectonic implications from subsidence analysis. Tectonophysics, 314, 219–239.
63. Purnell, J. 2009. Global mass wasting at continental margins during Ordovician high meteorite influx. Nature Geosciesce , 2, 57–61.
64. Pratt, B.R. 2002. Storms versus tsunamis: Dynamic interplay of sedimentary, diagenetic, and tectonic processes in the Cambrian of Montana. Geology, 30, 423–426.
65. Predtechensky, N.N, Koren′, T.N., Modzalevskaya, T.L., Nikiforova, O.I., Berger, A.J. and Abushik, A.F. 1983. Tsiklitchnost osadkonakoplenija i smena ekologitcheskich kompleksov fauny w silurie Podoli. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 194, 61–74.
66. Racki, G. 1999. The Frasnian-Famennian biotic crisis: How many (if any) bolide impacts? Geologische Rundschau, 87, 617–632.
67. Racki, G., Baliński, A., Wrona, R., Małkowski, K., Drygant, D. and Szaniawski, H. 2012. Faunal dynamics across the Silurian-Devonian positive isotope excursions (δ13C, δ18O) in Podolia, Ukraine: comparative analysis of the Ireviken and Klonk events. Acta Palaeontologica Polonica, 57, 795–832.
68. Rankey, E., Enos, P., Steffen, K. and Druke, D. 2004. Lack of impact of Hurricane Michelle on tidal flats, Andros Island, Bahamas: Integrated remote sensing and field observations. Journal of Sedimentary Research, 74, 654–661.
69. Riding, R. 1977. Problems of affinity in Palaeozoic calcareous algae. In: Flügel, E. (Ed.), Fossil Algae, Recent results and developments, Springer Verlag, Berlin, Heidelberg, New York, pp. 201–211.
70. Riding, R. and Soja, C.M. 1993. Silurian calcareous algae, cyanobacterial, and microproblematica from the Alexander Terrane, Alaska. Journal of Paleontology, 67, 710–728.
71. Sakuna, D., Szczuciński, W., Feldens, P., Schwarzer, K. and Khokiattiwong, S. 2012. Tsunami deposits left by the 2004 Indian Ocean tsunami on the inner continental shelf offshore of Khao Lak, Andaman Sea (Thailand). Earth Planets Space, 64, 931–943.
72. Sandström, O. and Kershaw, S. 2002. Ludlow (Silurian) stromatoporoid biostromes from Gotland, Sweden: Facies, depositional models and modern analogues. Sedimentology, 49, 379–395.
73. Shanmugam, G. 2006. The tsunamite problem. Journal of Sedimentary Research, 76, 718−730.
74. Shiki, T. 1996. Reading of the trigger records of sedimentary events – a problem for future studies. Sedimentary Geology , 104, 249–255.
75. Shiki, T. and Yamazaki, T. 1996. Tsunami-induced conglomerates in Miocene upper bathyal deposits, Chita Peninsula, central Japan. Sedimentary Geology, 104, 175–188.
76. Shiki, T., Cita, M.B. and Gorsline, D.S. 2000. Sedimentary features of seismites, seismo-turbidites and tsunamites – an introduction. Sedimentary Geology, 135, vii–ix.
77. Simms, M.J. 2007. Uniquely extensive soft-sediment deformation in the Rhaetian of the UK: evidence for earthquake or impact. Palaeogeography, Palaeoclimatology, Palaeoecology , 244, 407–423.
78. Skompski, S. 1984. The functional morphology of the Carboniferous dasycladacean genus Kulikia. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 7, 427–436.
79. Skompski, S. 2010. Paleobiogeographical significance of the late Silurian microproblematicum Tuxecanella Riding and Soja. Journal of Paleontology, 84, 346–351.
80. Skompski, S., Łuczyński, P., Drygant, D. and Kozłowski, W. 2008. High-energy sedimentary events in lagoonal successions of the Upper Silurian of Podolia, Ukraine. Facies, 54, 277–296.
81. Spaletta, C. and Vai, G-B. 1984. Upper Devonian intraclast parabreccias interpreted as seismites. Marine Geology, 55, 133–144.
82. Stearn, C.W. and Pickett, J.W. 1994. The stromatoporoid animal revisited: Building the skeleton. Lethaia, 27, 1–10.
83. Szczuciński, W., Chaimanee, N., Niedzielski, P., Rachlewicz, G., Saisuttichai, D., Tepsuwan, T., Lorenc, S. and Siepak, J. 2006. Environmental and Geological impacts of the 26 December 2004 tsunami in coastal zone of Thailand – overview of short and long-term effects. Polish Journal of Environmental Studies, 15, 793–810.
84. Szczuciński, W., Kokociński M., Rzeszewski, M., Chagué-Goff, C, Cachão M., Goto, K. and Sugawara, D. 2012a. Sedyment sources and sedimentation processes of 2011 Tohoku-oki tsunami deposits on the Sendai Plan, Japan – Insights from diatoms, nannoliths and grain size distribution. Sedimentary Geology, 282, 40–56.
85. Szczuciński, W., Rachlewicz, G., Chaimanee, N., Saisuttichai, D., Tepsuwan, T. and Lorenc, S. 2012b. 26 December 2004 tsunami deposits left in areas of various tsunami runup in coastal zone of Thailand. Earth Planets Space, 64, 843–858.
86. Szulczewski, M. 1968. Slump structures and turbidites in Lower Devonian limestones of the Holy Cross Mts. Acta Geologica Polonica, 18, 303–324.
87. Szulczewski, M. 1971. Upper Devonian conodonts, stratigraphy and facial development in the Holy Cross Mts. Acta Geologica Polonica, 21, 1–129.
88. Takashimizu, Y. and Masuda, F. 2000. Depositional facies and sedimentary successions of earthquake-induced tsunami deposits in Upper Pleistocene incised Halley fills, central Japan. Sedimentary Geology, 135, 231–239.
89. Tsegelnjuk, P.D., Gritsenko, V.P., Konstantinenko, L.I., Ishchenko, A.A., Abushik, A.F., Bogoyavlenskaya, O.V., Drygant, D.M., Zaika-Novatsky, V.S., Kadlets, N.M., Kiselev, G.N. and Sytova, V.A., 1983. The Silurian of Podolia. The guide to excursion. Kiev, Naukova Dumka, pp. 1–224
90. Ward, S.N. 2001. Landslide tsunami. Journal of Geophysical Research B: Solid Earth, 106, 11201–11215.
91. Ward, S.N. and Asphaug, E. 2002. Impact tsunami – Eltanin. Deep Sea Research II, 49, 1073–1079.
92. Weiss, R. 2008. Sediment grains moved by passing tsunami waves: Tsunami deposits in deep water. Marine Geology, 250, 251–257.
93. Wihnall, P.B. and Twitchett, R.J. 1999. Unusual intraclastic limestones in Lower Triassic carbonates and their bearing on the aftermath of the end-Permian mass extinction. Sedimentology, 46, 303–316.
94. Wood, R. 1995. The changing biology of reef-building. Palaios, 10, 517–529.
95. Yawsangratt, S., Szczuciński, W., Chaimanee, N., Jagodziński, R., Lorenc, S., Chatprasert, S., Saisuttichai, D. and Tepsuwan, T. 2009. Depositional effects of 2004 tsunami and hypothetical Paleotsunami Near Thap Lamu Navy Base in Phang Nga Province, Thailand. Polish Journal of Environmental Studies, 18, 17–23.
96. Yabushita, S. and Hatta, N. 1994. On the possible hazard on the major cities caused by asteroid impact in the Pacific Ocean. Earth, Moon and Planets, 65, 7–13.
97. Yawsangratt, S., Szczuciński, W., Chaimanee, N., Chatprasert, S., Majewski, W. and Lorenc, S. 2012. Evidence of probable paleotsunami deposits on Kho Khao Island, Phang Nga Province, Thailand. Natural Hazards, 63, 151–163.
98. Young, G.A and Kershaw, S. 2005. Classification and controls of internal banding in Palaeozoic stromatoporoids and colonial corals. Palaeontology, 48, 623–651
DOI :
Qute : Łuczyński, P. ,Skompski, S. ,Kozłowski, W. ,Kozłowski, W. , Stromatoporoid beds and flat-pebble conglomerates interpreted as tsunami deposits in the Upper Silurian of Podolia, Ukraine. Acta Geologica Polonica Vol. 64, no. 3/2014
facebook