Structure of numerically simulated katabatic and anabatic flows along steep slopes

Czasopismo : Acta Geophysica
Tytuł artykułu : Structure of numerically simulated katabatic and anabatic flows along steep slopes

Autorzy :
Shapiro, A.
School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA, ashapiro@ou.edu,
Axelsen, S. L.
IMAU, Utrecht University, Utrecht, The Netherlands, s.l.axelsen@uu.nl,
Axelsen, S. L.
IMAU, Utrecht University, Utrecht, The Netherlands, s.l.axelsen@uu.nl,
Steeneveld, G. J.
Department of Meteorology and Air Quality,Wageningen University, Wageningen, The Netherlands, gert-jan.steeneveld@wur.nl,
Martínez, D.
Departament de Física, Universitat de les Illes Balears, Mallorca, Spain, dani.martinez@uib.cat,
De Wekker, S. F. J.
Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USAInstitute, Steamboat Springs, CO, USA, dewekker@virginia.edu,
Burkholder, B. A.
School of Meteorology, University of Oklahoma, Norman, OK, USA, Bryan.A.Burkholder-1@ou.edu,
Shapiro, A.
School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA, ashapiro@ou.edu,
Fedorovich, E.
School of Meteorology, University of Oklahoma, Norman, USA, fedorovich@ou.edu,
Abstrakty : Direct numerical simulation (DNS) is applied to investigate properties of katabatic and anabatic flows along thermally perturbed (in terms of surface buoyancy flux) sloping surfaces in the absence of rotation. Numerical experiments are conducted for homogeneous surface forcings over infinite planar slopes. The simulated flows are the turbulent analogs of the Prandtl (1942) one-dimensional laminar slope flow. The simulated flows achieve quasi-steady periodic regimes at large times, with turbulent fluctuations being modified by persistent low-frequency oscillatory motions with frequency equal to the product of the ambient buoyancy frequency and the sine of the slope angle. These oscillatory wave-type motions result from interactions between turbulence and ambient stable stratification despite the temporal constancy of the surface buoyant forcing. The structure of the mean-flow fields and turbulence statistics in simulated slope flows is analyzed. An integral dynamic similarity constraint for steady slope/wall flows forced by surface buoyancy flux is derived and quantitatively verified against the DNS data.

Słowa kluczowe : katabatic flow, anabatic flow, numerical simulation, boundary layer, turbulence,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2009
Numer : Vol. 57, no. 4
Strony : 981 – 1010
Bibliografia : Atkinson, B.W. (1981), Meso-Scale Atmospheric Circulations, Academic Press, London, 495 pp.
Ball, F.K. (1956), The theory of strong katabatic winds, Aust. J. Phys. 9, 373-386.
Batchelor, G.K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 615 pp.
Brazel, A.J., H.J.S. Fernando, J.C.R. Hunt, N. Selover, B.C. Hedquist, and E. Pardyjak (2005), Evening transition observations in Phoenix, Arizona, J. Appl. Meteorol. 44, 99-112.
Bromwich, D.H., J.J. Cassano, T. Klein, G. Heinemann, K.M. Hines, K. Steffen, and J.E. Box (2001), Mesoscale modeling of katabatic winds over Greenland with the Polar MM5, Monthly Weath. Rev. 129, 2290-2309.
Defant, F. (1949), Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde, Arch. Met. Geophys. Bioklim. A 1, 421-450 (in German).
Ekman, V.W. (1905), On the influence of the earth’s rotation on ocean currents, Ark. Mat. Astron. Fysik 2, 1-53.
Elder, J.W. (1965), Laminar free convection in a vertical slot, J. Fluid Mech. 23, 77-98.
Fedorovich, E., and A. Shapiro (2009), Turbulent natural convection along a vertical plate immersed in a stably stratified fluid, J. Fluid Mech. (in press).
Fernando, H.J.S., S.M. Lee, J. Anderson, M. Princevac, E. Pardyjak, and S. Grossman-Clarke (2001), Urban fluid mechanics: air circulation and contaminant dispersion in cities, Environ. Fluid Mech. 1.
Gallée, H., and G. Schayes (1994), Development of a 3-dimensional meso-γ primitive equation model: Katabatic winds simulation in the area of Terra Nova Bay, Antarctica, Monthly Weath. Rev. 122, 671-685.
Gill, A.E. (1966), The boundary-layer regime for convection in a rectangular cavity, J. Fluid Mech. 26, 515-536.
Heinemann, G., and T. Klein (2002), Modelling and observations of the katabatic flow dynamics over Greenland, Tellus A 54, 542-554.
Hunt, J.C.R., H.J.S. Fernando, and M. Princevac (2003), Unsteady thermally driver flows on gentle slopes, J. Atmos. Sci. 60, 2169-2182.
Klein, T., G. Heinemann, D.H. Bromwich, J.J. Cassano, and K.M. Hines (2001), Mesoscale modeling of katabatic winds over Greenland and comparisons with AWS and aircraft data, Meteor. Atmos. Phys. 78, 115-132.
Langhaar, H.L. (1951), Dimensional Analysis and Theory of Models, Robert E. Krieger Publishing Company, Malabar, FL, 166 pp.
Lee, S.M., H.J.S. Fernando, M. Princevac, D. Zajic, M. Sinesi, J.L. McCulley, and J. Anderson (2003), Transport and diffusion of ozone in the nocturnal and morning planetary boundary layer of the Phoenix valley, Environ. Fluid Mech. 3, 331-362.
Lu, R., and R.P. Turco (1994), Air pollutant transport in a coastal environment. Part I: Two-dimensional simulations of sea-breeze and mountain effects, J. Atmos. Sci. 51, 2285-2308.
Monti, P., H.J.S. Fernando, M. Princevac, W.C. Chan, T.A. Kowalewski, and E.R. Pardyjak (2002), Observations of flow and turbulence in the nocturnal boundary layer over a slope, J. Atmos. Sci. 59, 2513-2534.
Nappo, C.J., and K.S. Rao (1987), A model study of pure katabatic flows, Tellus A 39, 61-71.
Oerlemans, J. (1998), The atmospheric boundary layer over melting glaciers. In: A.A.M. Holtslag and P.G. Duynkerke (eds.), Clear and Cloudy Boundary Layers, Royal Netherlands Academy of Arts and Sciences, Amsterdam, 129-153.
Papadopoulos, K.H., C.G. Helmis, A.T. Soilemes, J. Kalogiros, P.G. Papageorgas, and D.N. Asimakopoulos (1997), The structure of katabatic flows down a simple slope, Quart. J. Roy. Met. Soc. 123, 1581-1601.
Parish, T.R. (1984), A numerical study of strong katabatic winds over Antarctica, Monthly Weath. Rev. 112, 545-554.
Parish, T.R., and K.T. Waight (1987), The forcing of antarctic katabatic winds, Monthly Weath. Rev. 115, 2214-2226.
Peacock, T., R. Stocker, and M. Aristoff (2004), An experimental investigation of the angular dependence of diffusion-driven flow, Phys. Fluids 16, 3503-3505.
Phillips, O.M. (1970), On flows induced by diffusion in a stably stratified fluid, Deep-Sea Res., 17, 435-443.
Pope, S.B. (2000), Turbulent Flows, Cambridge University Press, Cambridge, 771 pp.
Prandtl, L. (1942), Führer durch die Strömungslehre, Vieweg und Sohn, Braunschweig, 382 pp. (in German).
Rampanelli, G., D. Zardi, and R. Rotunno (2004), Mechanisms of up-valley winds, J. Atmos. Sci. 61, 3097-3111.
Princevac, M., J.C.R. Hunt, and H.J.S. Fernando (2008), Quasi-steady katabatic winds on slopes in wide valleys: Hydraulic theory and observations, J. Atmos. Sci. 65, 627-643.
Renfrew, I.A. (2004), The dynamics of idealized katabatic flow over a moderate slope and ice shelf, Quart. J. Roy. Met. Soc. 130, 1023-1045.
Schumann, U. (1990), Large-eddy simulation of the up-slope boundary layer, Quart. J. Roy. Met. Soc. 116, 637-670.
Shapiro, A., and E. Fedorovich (2004a), Unsteady convectively driven flow along a vertical plate immersed in a stably stratified fluid, J. Fluid Mech. 498, 333-352.
Shapiro, A., and E. Fedorovich (2004b), Prandtl-number dependence of unsteady natural convection along a vertical plate in a stably stratified fluid, Int. J. Heat Mass Transfer 47, 4911-4927.
Shapiro, A., and E. Fedorovich (2005), Analytical and numerical study of natural convection in a stably stratified fluid along vertical plates and cylinder with temporally-periodic surface temperature variations. In: R. Bennacer, A.A. Mohamad, M. El Ganaoui, and J. Sicard (eds.), Progress in Computational Heat and Mass Transfers, vol. 1, Lavoisier, Paris, 77-82.
Shapiro, A., and E. Fedorovich (2006), Natural convection in a stably stratified fluid along vertical plates and cylinders with temporally-periodic surface temperature variations, J. Fluid Mech. 546, 295-311.
Shapiro, A., and E. Fedorovich (2007), Katabatic flow along a differentially cooled sloping surface, J. Fluid Mech. 571, 149-175.
Shapiro, A., and E. Fedorovich (2008), Coriolis effects in homogeneous and inhomogeneous katabatic flows, Quart. J. Roy. Met. Soc. 134, 353-370.
Shchepetkin, A.F., and J.C. McWilliams (1998), Quasi-monotone advection schemes based on explicit locally adaptive dissipation, Monthly Weath. Rev. 126, 1541-1580.
Skyllingstad, E.D. (2003), Large-eddy simulation of katabatic flows, Bound.-Layer Meteor. 106, 217-243.
Tennekes, H., and J.L. Lumley (1972), A First Course in Turbulence, The MIT Press, Cambridge, MA, 300 pp.
Tyson, P.D. (1968), Velocity fluctuations in the mountain wind, J. Atmos. Sci. 25, 381-384.
Veronis, G. (1970), The analogy between rotating and stratified fluids, Ann. Rev. Fluid Mech. 2, 37-66.
Wunsch, C. (1970), On oceanic boundary mixing, Deep-Sea Res. 17, 293-301.
DOI :
Cytuj : Shapiro, A. ,Axelsen, S. L. ,Axelsen, S. L. ,Steeneveld, G. J. ,Martínez, D. ,De Wekker, S. F. J. ,Burkholder, B. A. ,Shapiro, A. ,Fedorovich, E. , Structure of numerically simulated katabatic and anabatic flows along steep slopes. Acta Geophysica Vol. 57, no. 4/2009
facebook