Journal : Acta Geophysica
Article : Study of Shallow Low-Enthalpy Geothermal Resources Using Integrated Geophysical Methods

Authors :
Karakostas, V.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece,,
Papadimitriou, E.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece,,
Mesimeri, M.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece,,
Paradisopoulou, P.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece,,
Gkarlaouni, Ch.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece,,
Trojanowski, J.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Plesiewicz, B.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Wiszniowski, J.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Danek, T.
Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, Canad,
Slawinski, M. A.
Department of Geoinformatics and Applied Computer Science, AGH – University of Science and Technology, Kraków, Poland,
Baddari, K.
Laboratory of Physics of the Earth UMBB, Boumerdes, Algeria / University of Bouira, Bouira, Algeria / Laboratory LIMOSE UMBB, Boumerdes, Algeria,
Frolov, A. D.
Geophysical Division NCG, Russian Academy of Sciences, Moscow, Russia,
Tourtchine, V.
Laboratory LIMOSE UMBB, Boumerdes, Algeria,
Rahmoune, F.
Laboratory LIMOSE UMBB, Boumerdes, Algeria,
Makdeche, S.
Laboratory LIMOSE UMBB, Boumerdes, Algeria,
Semenov, V. Yu.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Giorgi, L.
IBAM – National Council of Research, Lecce, Italy,
Leucci, G.
IBAM – National Council of Research, Lecce, Italy,
Abstract : The paper is focused on low enthalpy geothermal exploration performed in south Italy and provides an integrated presentation of geological, hydrogeological, and geophysical surveys carried out in the area of municipality of Lecce. Geological and hydrogeological models were performed using the stratigraphical data from 51 wells. A ground-water flow (direction and velocity) model was obtained. Using the same wells data, the ground-water annual temperature was modeled. Furthermore, the ground surface temperature records from ten meteorological stations were studied. This allowed us to obtain a model related to the variations of the temperature at different depths in the subsoil. Integrated geophysical surveys were carried out in order to explore the low-enthalpy geothermal fluids and to evaluate the results of the model. Electrical resistivity tomography (ERT) and self-potential (SP) methods were used. The results obtained upon integrating the geophysical data with the models show a low-enthalpy geothermal resource constituted by a shallow ground-water system.

Keywords : low enthalpy, 3D geological and hydrogeological models, 3D high resolution geophysics,
Publishing house : Instytut Geofizyki PAN
Publication date : 2015
Number : Vol. 63, no. 1
Page : 125 – 153

: 1 Anderson, M.P., and W.W. Woessner (1992), Applied Groundwater Modeling: Simulation of Flow and Advective Transport, Academic Press Inc., San Diego, 381 pp.
2 Andersson, O. (2007), Aquifer thermal energy storage (ATES). In: H.Ö Paksoy (ed.), Thermal Energy Storage for Sustainable Consumption, Springer, Berlin Heidelberg, 155‐176, DOI: 10.1007/978-1-4020-52903_8.
3 Aubanel, E.E., and K.B. Oldham (1985), Fourier smoothing without the fast Fourier transform, Byte 10, 2, 207-218.
4 Benderitter, Y., and G. Cormy (1990), Possible approach to geothermal research and relative cost estimante. In: M.H. Dickson, and M. Fanelli (eds.), Small Geothermal Resources, UNITAR/UNDP Centre for Small Energy Resources, Rome, Italy, 61‐71.
5 Bergkamp, G., and K. Cross (2006), Groundwater and Ecosystem Services: towards their sustainable use. In: Proc. Int. Symp. on Groundwater Sustainability (ISGWAS), Alicante, Spain, 177-193,
6 Binley, A., G. Cassiani, R. Middleton, and P. Winship (2002), Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging, J. Hydrol. 267, 3-4, 147-159, DOI: 10.1016/S0022-1694(02)00146-4.
7 Bosellini, A., F.R. Bosellini, M.L. Colalongo, M. Parente, A. Russo, and A. Vescogni (1999), Stratigraphic architecture of the Salento coast from Capo d’Otranto to S. Maria di Leuca (Apulia, southern Italy), Riv. Ital. Paleontol. S. 105, 3, 397-416.
8 Bossio, A., F. Guelfi, R. Mazzei, B. Monteforti, and G. Salvatorini (1987), Studies on the Neogene and Quaternary of Salento peninsula. III – Stratigraphy of the well of Poggiardo, Quad. Ric. Centro Studi Geotecn. d’Ing. Lecce 11, 55-88 (in Italian).
9 Bossio, A., R. Mazzei, B. Monteforti, and G. Salvatorini (1992), Preliminary news about the Miocene of S. Maria al Bagno – S. Caterina, at Nardo (Lecce), Paleopelagos 2, 99-107 (in Italian).
10 Bossio, A., F. Guelfi, R. Mazzei, B. Monteforti, and G. Salvatorini (1994), The Miocene succession of the Calcareniti of Andrano (Puglia, southern Italy), Boll. Soc. Paleont. It. 33, 2, 249-255 (in Italian).
11 Bossio, A., D. Esu, L.M. Foresi, O. Girotti, A. Iannone, E. Luperto, S. Margiotta, R. Mazzei, B. Monteforti, G. Ricchetti, and G. Salvatorini (1998), Formation of Galatone, the new name for a lithostratigraphic unit of Salento (Puglia, southern Italy), Atti Soc. Tosc. Sc. Nat. Mem. A 105, 151-156 (in Italian).
12 Bossio, A., L. Foresi, S. Margiotta, R. Mazzei, B. Monteforti, and G. Salvatorini (1999), Geological map of the north east of the province of Lecce, scale of 1: 25000; sector 7, 8, 10 scale 1: 10000, Università degli Studi di Siena (in Italian).
13 Cifuentes, A.O., and A. Kalbag (1992), A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis, Finite Elem. Anal. Des. 12, 3-4, 313-318, DOI: 10.1016/0168-874X(92)90040J.
14 Clavier, C., G. Coates, and J. Dumanoir (1997), Theoretical and experimental bases for the dual-water model for interpretation of shaly sands. In: Proc. 52nd Annual Meeting, Society of Petroleum Engineering, Denver, USA, Rep. SPE-6859-PA, preprint 16 pp.
15 Colangelo, G., V. Lapenna, A. Perrone, S. Piscitelli, and L. Telesca (2006), 2D selfpotential tomographies for studying groundwater flows in the Varco d’Izzo landslide (Basilicata, southern Italy), Eng. Geol. 88, 3, 274-286, DOI:10.1016/j.enggeo.2006.09.014.
16 Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O’Neill, J. Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt (1997), The value of the world’s ecosystem services and natural capital, Nature 387, 253-260, DOI: 10.1038/387253a0.
17 D’Alessandro, A., G. Mastronuzzi, G. Palmentola, and P. Sansò (1994), Pleistocene deposits of Salento leccese (Southern Italy): problematic relationships, Boll. Soc. Paleont. It. 33, 2, 257-263.
18 D’Alessandro, A., F. Massari, E. Davaud, and G. Ghibaudo (2004), Pliocene–Pleistocene sequences bounded by subaerial unconformities within foramol ramp calcarenites and mixed deposits (Salento, SE Italy), Sediment. Geol. 166, 1-2, 89-144, DOI: 10.1016/j.sedgeo.2003.11.017.
19 D’Arpa, S., N. Zaccarelli, D.E. Bruno, G. Leucci, V.F. Uricchio, and G. Zurlini (2012), A geographically weighted regression model for geothermal potential assessment in mediterranean cultural landscape. In: Proc.
EGU General Assembly, 22-27 April 2012, Vienna, Austria, 12432.
20 de Groot-Hedlin, C., and S. Constable (1990), Occam’s inversion to generate smooth, two-dimensional models form magnetotelluric data, Geophysics 55, 12, 1613-1624, DOI: 10.1190/1.1442813.
21 de Jesus, A.C. (1997), Environmental sustainability of geothermal development, Energ. Source. 19, 1, 35-47, DOI: 10.1080/00908319708908830.
22 de Lima Gomes, A.J., and V.M. Hamza (2005), Geothermal gradient and heat flow in the state of Rio de Janeiro, Rev. Brasil. Geofıs. 23, 4, 325-347, DOI:10.1590/S0102-261X2005000400001.
23 Deiana, R., G. Cassiani, A. Kemna, A. Villa, V. Bruno, and A. Bagliani (2007), An experiment of non-invasive characterization of the vadose zone via water injection and cross-hole time-lapse geophysical monitoring, Near Surf. Geophys. 5, 3,183-194, DOI: 10.3997/1873-0604.2006030.
24 Dickson, M.H., and M. Fanelli (2004), What is Geothermal Energy? Instituo di Geoscienze e Georisorce, Pisa, Italy.
25 Edwards, L.S. (1977), A modified pseudosection for resistivity and IP, Geophysics 42, 5, 1020-1036, DOI: 10.1190/1.1440762.
26 Falkenmark, M., and J. Rockström (2004), Balancing Water for Humans and Nature: The New Approach in Ecohydrology, Earthscan, London, 247 pp.
27 FAO (2003), Groundwater Management – The Search for Practical Approaches, Water Reports 25, Food and Agriculture Organization of the United Nations, Rome, Italy.
28 Griffiths, D.H., and R.D. Barker (1993), Two-dimensional resistivity imaging and modelling in areas of complex geology, J. Appl. Geophys. 29, 3-4, 211-226, DOI: 10.1016/0926-9851(93)90005-J.
29 Haenel, R., L. Rybach, and L. Stegena (1988), Fundamentals of geothermics. In: R. Haenel, L. Rybach, and L. Stegena (eds.), Handbook of Terrestrial Heat‐Flow Density Determination, Kluwer Academic Publ., Dordrecht, 9‐57, DOI: 10.1007/978-94-009-2847-3_2.
30 Herman, J.S., D.C. Culver, and J. Salzman (2001), Groundwater ecosystems and the service of water purification, Stanford Environ. Law J. 20, 479-495.
31 Hill, H.J., O.J. Shirley, and G.E. Klein (1979), Bound water in shaley sands – its relation to Qv and other formation properties, The Log Analyst 20, 3, 3-19.
32 Hillel, D. (1982), Introduction to Soil Physics, Academic Press, NewYork.
33 Hochstein, M.P. (1990), Classification and assessment of geothermal resources. In: M.H. Dickson and M. Fanelli (eds.), Small Geothermal Resources – A Guide to Development and Utilization, UNITAR/UNDP Centre for Small Energy Resources, Rome, Italy, 31‐59.
34 Juhasz, I. (1986), Assessment of the distribution of shale, porosity and hydrocarbon saturation in shaly sands. In: Trans. Soc. Professional Well Log Analysts 10th European Formation Evaluation Symposium, Aberdeen, Scotland, Ch. 15, paper AA.
35 Lee, K.C. (2001), Classification of geothermal resources by exergy, Geothermics 30, 4, 431-442, DOI: 10.1016/S0375-6505(00)00056-0.
36 Leucci, G., S. Margiotta, S. Negri, L. Nuzzo, P. Sansò, G. Selleri, and A. Varola (2003), Integrated geophysical, geological and geomorphological investigations for study the impact of agricultural activities on a complex karstic area. In: Proc. SAGEEP 2003, Environmental and Engineering Geophysical Society, 6-10 April 2003, Saint Antonio, USA, 1162-1179.
38 Loke, M.H. (2011), Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-D surveys: RES2DINV Manual, IRIS Instruments,
39 Loke, M.H., and R.D. Barker (1996), Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method, Geophys. Prospect. 44, 1, 131-152, DOI: 10.1111/j.1365-2478.1996.tb00142.x.
40 Lowrie, W. (2007), Fundamentals of Geophysics, Cambridge University Press, Cambridge.
41 Lund, J.W. (2007), Characteristics, development, and utilization of geothermal resources, Geo‐Heat Cent. Bull. 28, 2, 1‐9.
42 Malanson, G.P. (1993), Riparian Landscapes, Cambridge Studies in Ecology, Cambridge University Press, Cambridge.
43 Malmström, V.H. (1969), A new approach to the classification of climate, J. Geogr. 68, 6, 351-357, DOI: 10.1080/00221346908981131.
44 Margiotta, S. (1999), The contact between the formation of Galatone and formation of Lecce: stratigraphic and sedimentological evidence, Atti Soc. Tosc. Sc. Nat. Mem. A 106, 73-77 (in Italian).
45 Margiotta, S., and S. Negri (2004), In search of water lost. New knowledge subsoil in Salento Lecce, Univ. degli Studi di Lecce (in Italian).
46 Margiotta, S., and G. Ricchetti (2002), Stratigraphy of oligomiocenici deposits of Salento (Puglia), Boll. Soc. Geol. It. 121, 2, 243-252 (in Italian).
47 Marshall, T.J., and J.W. Holmes (1988), Soil Physics, 2nd ed., Cambridge University Press, New York, 374 pp. MEA (2005), Ecosystems and Human Well-Being: Wetlands and Water. Synthesis, Millennium Ecosystem Assessment, World Resources Institute, Washington, D.C.
48 Meiser, P. (1962), A method of quantitative interpretation of selfpotential measurements, Geophys. Prospect. 10, 2, 203-218, DOI: 10.1111/j.1365-2478.1962.tb02009.x.
49 Meyers, R.A. (ed.) (1992), Encyclopedia of Physical Science and Technology, Academic Press, San Diego.
50 Morris, B.L., A.R.L. Lawrence, P.J.C. Chilton, B. Adams, R.C. Calow, and B.A. Klinck (2003), Groundwater and its susceptibility to degradation: A global assessment of the problem and options for management, Early Warning and Assessment Report series, RS 03-3, United Nations Environment Programme, Nairobi, Kenya.
51 Muffler, P., and R. Cataldi (1978), Methods for regional assessment of geothermal resources, Geothermics 7, 2-4, 53‐89, DOI: 10.1016/0375-6505(78)90002-0.
52 Paul, M.K. (1965), Direct interpretation of self-potential anomalies caused by inclined sheets of infinite horizontal extensions, Geophysics 30, 3, 418-423, DOI: 10.1190/1.1439596.
53 Perrier, F.E., G. Petiau, G. Clerc, V. Bogorodsky, E. Erkul, L. Jouniaux, D. Lesmes, J. Macnae, J.M. Meunier, D. Morgan, D. Nascimento, G. Oettinger, G. Schwarz, H. Toh, M.J. Valiant, K. Vozoff, and O. Yazici-Cakin (1997), A one-year systematic study of electrodes for long period measurements of
the electric field in geophysical environments, J. Geomagn. Geoelectr. 49, 11-12, 1677-1696, DOI: 10.5636/jgg.49.1677.
54 Pike, J.G. (1964), The estimation of annual run-off from meteorological data in a tropical climate, J. Hydrol. 2, 2, 116-123, DOI: 10.1016/0022-1694(64)90022-8.
55 Reynolds, J.M. (1998), An Introduction to Applied and Environmental Geophysics, John Wiley & Sons Ltd., Chichester.
56 Shaw, E.M. (1994), Hydrology in Practice, 3rd ed., Chapman and Hall, London.
57 Sileo, M. (2011), Individuazione e caratterizzazione geologica, chimico-mineralogica e petrofisica di calcareniti tenere della Puglia e della Basilicata in relazione alle problematiche di provenienza e conservazione dei Beni Culturali, Ph.D. Thesis, University of Basilicata, Potenza, Italy (in Italian).
58 Telford, W.M., L.P. Geldart, and R.E. Sheriff (1990), Applied Geophysics, Cambridge University Press, Cambridge.
59 Vichabian, Y., and F.D. Morgan (2002), Self potentials in cave detection, The Leading Edge 21, 9, 866-871, DOI: 10.1190/1.1508953.
60 Ward, R.C., and M. Robinson (1990), Principles of Hydrology, 3rd ed., McGraw–Hill Book Co., London.
61 Williamson, L., and N. McCormick (2008), Energy, ecosystems and livelihoods: understanding linkages in the face of climate change impacts, International Union for Conservation of Nature (IUCN), work/Initiatives/energy_welcome/index.cfm?uNewsID=1646.
62 Wu, J., and D.L. Nofziger (1999), Incorporating temperature effects on pesticide degradation into a management model, J. Environ. Qual. 28, 1, 92-100, DOI: 10.2134/jeq1999.00472425002800010010x.
63 Zienkiewicz, O.C., and R.L. Taylor (1989), The Finite Element Method: Basic Formulation and Linear Problems, McGraw–Hill Book Co., London, 648 pp.
Qute : Karakostas, V. ,Papadimitriou, E. ,Mesimeri, M. ,Paradisopoulou, P. ,Gkarlaouni, Ch. ,Trojanowski, J. ,Plesiewicz, B. ,Wiszniowski, J. ,Danek, T. ,Slawinski, M. A. ,Baddari, K. ,Frolov, A. D. ,Tourtchine, V. ,Rahmoune, F. ,Makdeche, S. ,Semenov, V. Yu. ,Giorgi, L. ,Leucci, G. ,Leucci, G. , Study of Shallow Low-Enthalpy Geothermal Resources Using Integrated Geophysical Methods. Acta Geophysica Vol. 63, no. 1/2015