Sublimation-driven evolution of the local radius and the moment of inertia of a long-period comet

Czasopismo : Acta Geophysica
Tytuł artykułu : Sublimation-driven evolution of the local radius and the moment of inertia of a long-period comet

Autorzy :
Sobotka, J.
University of Wrocław, Institute of Geological Sciences, Department of Structural Geology, Wrocław, Poland,,
Sedighi, M.
K.N. Toosi University of Technology, Faculty of Geodesy and Geomatics Engineering, Tehran, Iran,,
Rezaei, K.
LMU University, Munich, Germany,,
Narayan, J.
Dept. of Earthquake Engineering, Indian Institute of Technology, Roorkee, India,,
Rozmarynowska, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Gnyp, A.
Carpathian Branch, Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Lviv, Ukraine,,
Wiejacz, P.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Karakostas, V.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece,,
Mukhopadhyay, B.
Central Headquarters, Geological Survey of India, Kolkata, India,,
Tezcan, S.
Bogazici University, Bebek, Istanbul, Turkey,,
Orlecka-Sikora, B.
Faculty of Geology Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Poland,,
Aniszewski, A.
Department of Sanitary Engineering, Szczecin University of Technology, Szczecin, Poland,,
Al Farajat, M.
Institute of Earth and Environmental Sciences, Al al-Bayt University, Mafraq, Jordan,,
Pietruczuk, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Posyniak, M.
Atmospheric Physics Division, Institute of Geophysics, University of Warsaw, Warszawa, Poland,,
Dziak-Jankowska, B.
Space Research Centre, Polish Academy of Sciences, Warszawa, Poland,,
Abstrakty : In this paper we intend to analyze how the sublimation of ice from cometary nuclei affects changes of the moments of inertia. Our aim is to show general trends for different orientations of cometary nucleus' rotation axis. Thus we apply numerical model of a hypothetical homogeneous and initially spherical nucleus composed of water ice and dust. As an example we present simulations for a model comet of the orbital elements and the nucleus size the same as determined for C/1995 O1 Hale-Bopp, a widely analyzed long-period comet. We calculated water production from the nucleus and changes of the shape (initially spherical) and of the moment of inertia versus time. Simulations are performed for the full range (0-90°) of inclinations I of the rotation axis. The second paramater related to the orientation of the rotation axis is the argument Φ (0-360°). The heat conductivity of the nucleus spans over the vast range, 0.04-4 W m⁻¹ K⁻¹.

Słowa kluczowe : comet C/1995 O1 Hale-Bopp, long period comet, sublimation,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2009
Numer : Vol. 57, no. 2
Strony : 509 – 535
Bibliografia : 1. Biver, N., D. Bockelée-Morvan, P. Colom, J. Crovisier, B. Germain, E. Lellouch, J.K. Davies, W.R.F. Dent, R. Moreno, G. Paubert, J. Wink, D. Despois, D.C. Lis, D. Mehringer, D. Benford, M. Gardner, T.G. Phillips, M. Gunnarsson, H. Rickman, A. Winnberg, P. Bergman, L.E.B. Johansson, and H. Rauer (1999), Long-term evolution of the outgassing of comet Hale-Bopp from radio observations, Earth, Moon and Planets 78, 1-3, 5-11, DOI: 10.1023/A:1006229818484.
2. Colom, P., E. Gérard, J. Crovisier, D. Bockelée-Morvan, N. Biver, and H. Rauer (1999), Observations of the OH radical in comet C/1995 O1 (Hale-Bopp) with the Nançay radio telescope, Earth, Moon and Planets 78, 1-3, 37-43, DOI: 10.1023/A:1006206924786.
3. Combi, M.R., A.A. Reinard, J.L. Bertaux, E. Quemerais, and T. Mäkinen (2000), SOHO/SWAN observations of the structure and evolution of the hydrogen Lyman-? coma of comet Hale-Bopp (1995 O1), Icarus 144, 1, 191-202, DOI: 10.1006/icar.1999.6335.
4. Crovisier, J., K. Leech, D. Bockelée-Morvan, E. Lellouch, T.Y. Brooke, M.S. Hanner, B. Altieri, H.U. Keller, and T. Lim (1999), The spectrum of comet Hale-Bopp as seen by ISO, ESA SP 427, 137-140.
5. Dello Ruso, N., M.J. Mumma, M.A. DiSanti, K. Magee-Sauer, R. Novak, and T.W. Rettig (2000), Water production and release in comet C/1995 O1 Hale Bopp, Icarus 143, 2, 324-337, DOI: 10.1006/icar.1999.6268 .
6. Delsemme, A.H., and D.C. Miller (1971), Physico-chemical phenomena in comets – III. The continuum of comet Burnham (1960 II), Planet. Space Sci. 19, 10, 1229-1257, DOI: 10.1016/0032-0633(71)90180-2.
7. Dziak-Jankowska, B., J. Leliwa-Kopystyński, and M. Królikowska (2002), Modelling of shape changes of the nuclei of comets C/1995 O1 Hale-Bopp and 46P/Wirtanen caused by water ice sublimation, Earth, Moon and Planets 90, 1-4, 35-44, DOI: 10.1023/A:1021504115927.
8. Efroimsky, M., A. Lazarian, and V. Sidorenko (2002), Complex rotation with internal dissipation. Applications to cosmic-dust alignment and to wobbling comets and asteroids. In: Recent Research Developments in Astrophysics, Research Signpost, India, 64 pp. (invited review).
9. Enzian, A., H. Cabot, and J. Klinger (1998), Simulation of the water and carbon monoxide production rates of comet Hale-Bopp using a quasi 3-D nucleus model, Planet. Space. Sci. 46, 8, 851-858, DOI: 10.1016/S0032-0633(98)00057-9.
10. Groussin, O., M.F. A'Hearn, J.-Y. Li, P.C. Thomas, J.M. Sunshine, C.M. Lisse, K.J. Meech, T.L. Farnham, L.M. Feaga, and W.A. Delamere (2007), Surface temperature of the nucleus of Comet 9P/Tempel 1, Icarus 187, 1, 16-25, DOI: 10.1016/j.icarus.2006.08.030.
11. Gutiérrez, P.J., R. Rodrigo, J.L. Ortiz, and B.J.R. Daviddson (2003), An investigation of errors in estimates of the cometary nuclei active area fractions, Astron. Astroph. 401, 2, 755-761, DOI: 10.1051/0004-6361:20030167.
12. Gutiérrez, P.J., L. Jorda, N.H. Samarasinha, and P. Lamy (2005), Outgassinginduced effects in the rotational state of comet 67P/Churyumov-Gerasimenko during the Rosetta mission, Planet. Space Sci. 53, 11, 1135-1145, DOI: 10.1016/j.pss.2004.12.012.
13. Hale, A., and T. Bopp (1995), International Astronomical Union Circular No. 6187.
14. Jorda, L., and P. Gutiérrez (2002), Rotational properties of cometary nuclei, Earth, Moon and Planets 89, 1-4, 135-160, DOI: 10.1023/A:1021598404115.
15. Jorda, L., K. Rembor, J. Lecacheux, P. Colom, F. Colas, E. Frappa, and L.M. Lara (1999), The rotational parameters of Hale-Bopp (C/1995 O1) from observations of the dust jets at Pic du Midi Observatory, Earth, Moon and Planets 77, 3, 167-180, DOI: 10.1023/A:1006234813574.
16. Kömle, N.I., G. Kargl, K. Thiel, and K. Seiferlin (1996), Thermal properties of cometary ices and sublimation residua including organics, Planet. Space Sci. 44, 7, 675-689, DOI: 10.1016/j.pss.2004.12.012.
17. Królikowska, M. (2004), Long-period comets with non-gravitational effects, Astron. Astrophys. 427, 3, 1117-1126, DOI: 10.1051/0004-6361:20041339.
18. Kührt, E. (1999), H2O-activity of comet Hale-Bopp, Space Sci. Rev. 90, 1-2, 75-82, DOI: 10.1023/A:1005229526966.
19. Kührt, E. (2002), From Hale-Bopp's activity to properties of its nucleus, Earth, Moon and Planets 90, 1-4, 61-65, DOI: 10.1023/A:1021560200906.
20. Kührt, E., and H.U. Keller (1994), The formation of cometary surface crusts, Icarus 109, 1, 121-132, DOI: 10.1006/icar.1994.1080.
21. Licandro, J., L.R. Bellot Rubio, R. Casas, A. Gómez, M.R. Kidger, N. Sabalisk, P. Santos-Sanz, M. Serra-Ricart, R. Torres-Chico, A. Oscoz, L. Jorda, and G. Denicolo (1999), The spin axis position of C/1995 O1 (Hale-Bopp), Earth, Moon and Planets 77, 3, 199-206, DOI: 10.1023/A:1006291015391.
22. Marsden, B.G., and G.V. Williams (1997), Catalog of Cometary Orbits, 12th ed., Minor Planet Center, Cambridge, MA.
23. Morgenthaler, J.P., W.M. Harris, F. Scherb, Ch.M. Anderson, R.J. Oliversen, N.E. Doane, M.R. Combi, M.L. Marconi, and W.H. Smyth (2001), Largeaperture O I 6300 A photometry of comet Hale-Bopp: implications for the photochemistry of OH, Astroph. J. 563, 451-461, DOI: 10.1086/323773
24. Nakamura, T., S. Nakano, and Y. Hyakutake (1996), International Astronomical Union Circular No. 6299.
25. Panale, F.P., and J.R. Salvail (1984), An idealized short-period comet model: surface insolation, H2O flux, dust flux, and mantle evolution, Icarus 60, 3, 476-511, DOI: 10.1016/0019-1035(84)90157-X.
26. Prialnik, D. (2002), Modeling the comet nucleus interior. Application to Comet C/1995 O1 Hale-Bopp, Earth, Moon and Planets 89, 1-4, 27-52, DOI: 10.1023/A:1021577915502.
27. Rodionov, A.V., J.-F. Crifo, K. Szegö, J. Lagerros, and M. Fulle (2002), An advanced physical model of cometary activity, Planet. Space Sci. 50, 10-11, 983-1024, DOI: 10.1016/S0032-0633(02)00047-8 .
28. Schleicher, D.G., S.M. Lederer, R.L. Millis, and T.L. Farnham (1997), Photometric behavior of Comet Hale-Bopp (C/1995 O1) before perihelion, Science 275, 5308, 1913-1915, DOI: 10.1126/science.275.5308.1913.
29. Samarasinha, N.H. (2000), The coma morphology due to an extended active region and the implications for the spin state of comet Hale-Bopp, Astrophys. J. Lett. 529, L107-L110, DOI: 10.1086/312469.
30. Samarasinha, N.H., B.E.A. Mueller, M.J.S. Belton, and L. Jorda (2004), Rotation of cometary nuclei. In: M.C. Festou, H.U. Keller, and H.A. Weaver (eds.), Comets II, University of Arizona Press, Tucson, 281-299.
31. Sekanina, Z. (1981), Rotation and precession of cometary nuclei, Ann. Rev. Earth Planet. Sci. 9, 113-145, DOI: 10.1146/annurev.ea.09.050181.000553).
32. Skorov, Yu.V., and H. Rickman (1999), Gas flow and dust acceleration in a cometary Knudsen layer, Planet. Space. Sci. 47, 8-9, 935-949, DOI: 10.1016/S0032-0633(99)00008-2.
33. Weaver, H.A., and P.L. Lamy (1999), Estimating the size of Hale-Bopp's nucleus, Earth, Moon and Planets 79, 1-3, 17-33, DOI: 10.1023/A:1006220930046.
34. Weaver, H.A., P.D. Feldman, M.F. A'Hearn, C. Arpigny, J.C. Brandt, and S.A. Stern (1999), Post-perihelion HST observations of comet Hale-Bopp (C/1995 O1), Icarus 141, 1, 1-12, DOI: 10.1006/icar.1999.6159.
35. Whipple, F.L. (1950), Post-perihelion HST observations of comet Hale-Bopp (C/1995 O1), Astrophys. J. 111, 375-394.
36. Woods, T.N., P.D. Feldman, and G.J. Rottman (2000), Ultraviolet observations of Comet Hale-Bopp (C/1995 O1) by the UARS SOLSTICE, Icarus 144, 1, 182-186, DOI: 10.1006/icar.1999.6262.
Cytuj : Sobotka, J. ,Sedighi, M. ,Rezaei, K. ,Narayan, J. ,Rozmarynowska, A. ,Gnyp, A. ,Wiejacz, P. ,Karakostas, V. ,Mukhopadhyay, B. ,Tezcan, S. ,Orlecka-Sikora, B. ,Aniszewski, A. ,Al Farajat, M. ,Pietruczuk, A. ,Posyniak, M. ,Dziak-Jankowska, B. , Sublimation-driven evolution of the local radius and the moment of inertia of a long-period comet. Acta Geophysica Vol. 57, no. 2/2009