Journal : Acta of Bioengineering and Biomechanics
Article : Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy

Authors :
Rumian, Ł.
Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland,
Reczyńska, K.
Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland,
Wrona, M.
Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Krakow, Poland,
Tiainen, H.
Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Oslo, Norway,
Haugen, H. J.
Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Oslo, Norway,
Pamuła, E.
Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland, epamula@agh.edu.pl,
Turek, A.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland, a.turek75@gmail.com,
Kasperczyk, J.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Jelonek, K.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Borecka, A.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Janeczek, H.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Libera, M.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Gruchlik, A.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Dobrzyński, P.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Wojda, S.
Faculty of Mechanical Engineering, Białystok University of Technology, Białystok, Poland,
Szoka, B.
Faculty of Mechanical Engineering, Białystok University of Technology, Białystok, Poland,
Sajewicz, E.
Faculty of Mechanical Engineering, Białystok University of Technology, Białystok, Poland, e.sajewicz@pb.edu.pl,
Kiel-Jamrozik, M.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland, marta.kiel-jamrozik@polsl.pl,
Szewczenko, J.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland,
Basiaga, M.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland,
Nowińska, K.
Silesian University of Technology, Faculty of Mining and Geology, Institute of Applied Geology, Gliwice, Poland,
Abstract : Purpose: The aim of the presented research was to find a combination of surface modification methods of implants made of the Ti-6Al-4V ELI alloy, that lead to formation of effective barrier for metallic ions that may infiltrate into solution. Methods: To this end, the following tests were carried out: roughness measurement, the voltamperometric tests (potentiodynamic and potentiostatic), and the ion infiltration test. Results: The electropolishing process resulted in the lowering of surface roughness in comparison with mechanical treatment of the surface layer. The anodization process and steam sterilization increased corrosion resistance regardless of the mechanical treatment or electropolishing. The crevice corrosion tests revealed that independent of the modification method applied, the Ti-6Al-4V ELI alloy has excellent crevice corrosion resistance. The smallest quantity of ions infiltrated to the solution was observed for surface modification consisting in the mechanical treatment and anodization with the potential of 97 V. Conclusions: Electric parameters determined during studies were the basis for effectiveness estimation of particular surface treatment methods. The research has shown that the anodization process significantly influences the pitting corrosion resistance of the Ti-6Al-4V ELI alloy independent of the previous surface treatment methods (mechanical and electrochemical). The surface layer after such modification is a protective barrier for metallic ions infiltrated to solution and protects titanium alloy against corrosive environment influence.

Keywords : odporność korozyjna, infiltracja, stop tytanu, biomateriały, corrosion resistance, ion infiltration, metallic biomaterials, surface modification, titanium alloys,
Publishing house : Oficyna Wydawnicza Politechniki Wrocławskiej
Publication date : 2015
Number : Vol. 17, nr 1
Page : 31 – 37

Bibliography
: 1 CABRINI M., CIGADA A., RONDELLI G., VICENTINI B., Effect of different surface finishing and of hydroxyapatite coating on passive and corrosion current of Ti6Al4V alloy in simulated physiological solution, Biomaterials, 1997, 18, 783–787.
2 KIEL M., SZEWCZENKO J., MARCINIAK J., NOWIŃSKA K., Electrochemical properties of Ti-6Al-4V ELI alloy after anodization, Lect. Notes Comput. Sc (including subseries Lect. Notes Artif. Int. and Lect. N Bioinformat), 2012, LNBI 7339, 369–378.
3 KIEL-JAMROZIK M., SZEWCZENKO J., WALKE W., MARCINIAK J., Application of EIS method for evaluation of physicochemical properties of modified Ti-6Al-4V ELI alloy, Prz. Elektrotechniczny, 2012, 88(12B), 232–235, (in Polish).
4 KRASICKA-CYDZIK E., Anodic layer formation on titanium and its alloy for biomedical applications, Titanium Alloys, in: Towards Achieving Enhanced Properties for Diversified Applications ed. by A.K.M. Nurul Ami.: Intech, Open Acces Publisher, 2012, 175–200.
5 LIU X., CHU P., DING C., Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater Sci. Eng., 2004, R47, 49–121.
6 MARCINIAK J., KACZMAREK M., ZIĘBOWICZ A., Biomateriały w stomatologii, Wydawnictwo Politechniki Śląskiej, 2008, (in Polish).
7 WEXELL C.L, THOMSON P., ARONSSON B.O., TENGVALL P., RODAHL M., LAUSMAA J., KASEMO B., ERICSSON L.E., International Journal of Biomaterials, 2013, 2013, 1–10.
8 AL-MOBARAK N.A., AL-SWAYIH A.A., Development of titanium surgery implants for improving osseointegration through formation of a titanium nanotube layer, Int. J. Electrochem. Sc., 2014, 9, 32–45.
9 BHOLA R., BHOLA S.M., MISHRA B., AWERS R.A., OLSON D.L., OHNO T., Surface characterization of anodically treated β-titanium alloy for biomedical applications, Электронная обработка материалов, 2011, 47(4), 75–82.
10 FADL-ALLAH S.A., QUAHTANY M., EL-SHENAWY N.S., Surface modification of titanium plate with anodic oxidation and its application in bone growth, Journal of Biomaterials and Nanobiotechnology, 2013, 4, 74–83.
11 INDIRA K., KAMACHI MUDALI U., RAJENDRAN N., Corrosion behavior of electrochemically asseblednanoporoustitania for biomedical applications, Ceram. Int., 2013, 39, 959–967.
12 MARCINIAK J., Biomateriały, Wydawnictwo Politechniki Śląskiej, 2013, (in Polish).
13 NAGY P.M., FERENCZ B., KÁLMÁN E., DJURIČIĆ B., SONNLEITNER R., Morphological evolution of Ti surfaces during oxidation treatment, Mater Manuf. Process, 2005, 20(5), 105–114.
14 NARAYANAN R., SESHADRI S.K., Phosphoric acid anodization of Ti-6Al-4V – Structural and corrosion aspects, Corros. Sci., 2007, 49, 542–558.
15 POCHRZĄST M., WALKE W., MARCINIAK J., KACZMARSKA D., Comparison of electrochemical properties of surface modified Ti-6Al-4V ELI and Ti-6Al-7Nb alloys used in medicine, Przegląd Elektrotechniczny, 2013, 83(12), 310–313, (in Polish).
16 ROESSLER S., ZIMMERMANN R., SCHARNWEBER D., WERNER C., WORCH H., Characterization of oxide layers on Ti6Al4V and titanium by streaming potential and streaming current measurement, Colloid Surfaces B, 2002, 26, 387–395.
17 SZEWCZENKO J., JAGLARZ J., BASIAGA M., KURZYK J., SKOCZEK E., PASZENDA Z., Topography and thickness of passive layers on anodically oxidizedTi6Al4V alloys, Przegląd Elektrotechniczny, 2012, 88(12B), 228–231, (in Polish).
18 SZEWCZENKO J., BASIAGA M., KIEL-JAMROZIK M., KACZMAREK M., GRYGIEL M., Corrosion resistance of Ti6Al7Nb alloy after various surface modification, Solid State Phenomena, 2015, 227, 483–486.
19 ZIĘBOWICZ A., ZIĘBOWICZ B., BĄCZKOWSKI B., Electrochemical behavior of materials used in dental implantological systems, Solid State Phenomena, 2015, 227, 447–450.
20 SZEWCZENKO J., WALKE W., NOWIŃSKA K., MARCINIAK J., Corrosion resistance of Ti-6Al-4V alloy after diverse surface treatments, Material. wiss. Werkst, 2010, 41, 360–371.
21 VAN GILS S., MAST P., STIJNS E., TERRYN H., Colour properties of barrier anodic oxide films on aluminum and titanium studied with total reflectance and spectroscopic ellipsometry, Surf. Coat. Tech., 2004, 185(2–3), 303–310.
22 SONG H.-J., KIM M.-K., JUNG G.-C., VANG M.-S., PARK Y.-J., The effects of spark anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics, Surf. Coat. Tech., 2007, 201, 8738–8745.
23 Standard ASTM F136 – 08e1: Standard Specification for Wrought Titanium 6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications.
24 Norma PN – EN ISO 4287(1999): Specyfikacje geometrii wyrobów. Struktura geometryczna powierzchni: metoda profilowa – Terminy, definicje i parametry struktury geometrycznej powierzchni, (in Polish).
25 Standard ASTM F 746-04(2009)e1: Standard test method for pitting or crevice corrosion of metallic surgical implant materials.
DOI :
Qute : Rumian, Ł. ,Reczyńska, K. ,Wrona, M. ,Tiainen, H. ,Haugen, H. J. ,Pamuła, E. ,Turek, A. ,Kasperczyk, J. ,Jelonek, K. ,Borecka, A. ,Janeczek, H. ,Libera, M. ,Gruchlik, A. ,Dobrzyński, P. ,Wojda, S. ,Szoka, B. ,Sajewicz, E. ,Kiel-Jamrozik, M. ,Szewczenko, J. ,Basiaga, M. ,Nowińska, K. ,Nowińska, K. , Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy. Acta of Bioengineering and Biomechanics Vol. 17, nr 1/2015
facebook