The Steinplatte complex (Late Triassic, Northern Calcareous Alps, Austria) – subsidence-controlled development of a carbonate-platform-to-intrashelfbasin-transition

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : The Steinplatte complex (Late Triassic, Northern Calcareous Alps, Austria) – subsidence-controlled development of a carbonate-platform-to-intrashelfbasin-transition

Autorzy :
Fedorowski, J.
Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, PL-61-606 Poznań, Poland,,
Łuczyński, P.
Institute of Geology, Warsaw University, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland,,
Kaufmann, B.
Osterreichische Akademie der Wissenschaften, Kommission fur die palaontologische und stratigraphische Erforschung Osterreichs (KPSOE), c/o Institut fur Erdwissenschaften, Karl-Franzens-Universitat Graz, Heinrichstrasse 26, A-8010 Graz, Austria,,
Abstrakty : In Rhaetian (Late Triassic) times, the Hauptdolomit/Dachstein carbonate shelf situated at the passive continental margin of the northwestern Tethys was characterized by an extensional tectonic regime. Rifting and spreading movements fragmented this shelf into a loosely fitted mosaic of fault-bounded blocks characterized by a differential subsidence pattern. This is expressed in significant thickness variations of platform carbonates and in the formation of the intrashelf Kossen Basin. In this study, it can be demonstrated that tectonic subsidence triggered the development of a carbonate platform margin and that the influence of eustatic sea-level changes was negligible. The Steinplatte complex developed at the transition of the Kossen Basin to the Dachstein Carbonate Platform. Small-scale isolated carbonate mounds situated on a smoothly inclined homoclinal ramp characterized the initial phase and acted as nuclei of further carbonate buildup growth. However, only the ideal palaeogeographic position far enough away from the carbonate-suppressive terrigenous influence of the Kossen Beds, combined with vigorous carbonate production stimulated by rapid subsidence-caused sea-level rise, favoured continuous mound growth. Once established, the carbonate buildup was characterized by rapid aggradational growth, developing a palaeogeographic high with a steep slope and a depression with decreased sedimentation behind, several kilometres distant from the Dachstein Carbonate Platform. Contemporaneously, isostatic adjustment caused an accommodation minimum on the nearby margin of the Dachstein Carbonate Platform leading to its westward progradation. Fading out of subsidence caused filling of the former depression in the back of the buildup by prograding shallow-water Dachstein Limestones. Thus, a new platform margin was established in the Steinplatte area, elevated almost 200 m above the adjacent Kossen Basin. At the Triassic-Jurassic boundary, the Steinplatte complex was subjected to subaerial exposure by a sudden tectonic uplift followed by a rapid isostatic drop. Emergence is indicated by levels of karstified limestones directly underlying supposed exposure surfaces. Final drowning of the Steinplatte complex as well as of the whole Dachstein Carbonate Platform is indicated by the cover of Early Jurassic (Sinemurian) deeper water, ammonitebearing limestones (Adnet Formation).

Słowa kluczowe : Alpy, osiadanie, platforma węglanowa, rafa, ret, Steinplatte, Carbonate Platform, Northern Calcareous Alps, Reef, Rhaetian, Steinplatte, Subsidence,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2009
Numer : Vol. 59, no. 3
Strony : 341 – 357
Bibliografia : Barth, W. 1968. Geologie der Hochkalter-Gruppe in den Berchtesgadener Alpen. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 131, 119–177.
Bernecker, M., Weidlich, O. and Flügel, E. 1999. Response of Triassic reef coral communities to sea-level fluctuations, storms and sedimentation: evidence from a spectacular outcrop (Adnet, Austria). Facies, 40, 229–280.
Brack, P., Rieber, H., Nicora, A. and Mundil, R. 2005. The Global boundary Stratotype Section and Point (GSSP) of the Ladinian Stage (Middle Triassic) at Bagolino (Southern Alps, Northern Italy) and its implications for the Triassic time scale. Episodes, 28, 233–244.
Braun, R. 1998. Die Geologie des Hohen Gölls. Nationalpark Berchtesgaden, Forschungsbericht, 40, 1–192.
Fischer, A.G. 1964. The Lofer cyclothems of the Alpine Triassic. In: Merriam, D.F. (Ed.), Symposium on Cyclic Sedimentation. Kansas Geological Survey Bulletin, 169, 107–149.
Gallet, Y., Krystyn, L., Besse, J. and Marcoux, J. 2003. Improving the Upper Triassic numerical time scale from cross-correlation between Tethyan marine sections and the continental Newark basin sequence. Earth and Planetary Science Letters, 212, 255–261.
Gallet, Y., Krystyn, L., Marcoux, J. and Besse, J. 2007. New constraints on the End-Triassic (Upper Norian-Rhaetian) magnetostratigraphy. Earth and Planetary Science Letters, 255, 458–470.
Garrison, R.E. and Fischer A.G. 1969. Deep-water limestones and radiolarites of the Alpine Jurassic. SEPM Special Publication, 14, 20–56.
Gawlick, H.-J. 2000. Paläogeographie der Ober-Trias Karbonatplattform in den Nördlichen Kalkalpen. Exkursionsführer, Sediment 2000. Mitteilungen der Gesellschaft der Geologie- und Bergbaustudenten in Österreich, 44, 45–95.
Golebiowski, R. 1991. Becken und Riffe der alpinen Obertrias Lithostratigraphie und Biofazies der Kössener Formation. In: D. Nagel and G. Rabeder (Eds), Exkursionen im Jungpalaäozoikum und Mesozoikum Österreichs, 79–119. Österreichische Paläontologische Gesellschaft.
Hahn, F.F. 1910. Geologie der Kammerker-Sonntagshorngruppe. I. Teil. Jahrbuch der Kaiserlich – Königlichen Geologischen Reichsanstalt, 60, 311–420.
Hahn, F.F. 1913. Geologie des oberen Saalachgebietes zwischen Lofer und Diesbachtal. Jahrbuch der Kaiserlich – Königlichen Geologischen Reichsanstalt, 63, 1–76.
Hallam, A. 1988. A reevaluation of Jurassic eustasy in the light of new data and the revised Exxon curve. In: C.K. Wilgus, B.S. Hastings, C.G.St.C. Kendall, H.W. Posamentier, C.A. ROSS and J.C. Van Wagoner (Eds), Sealevel changes: an integrated approach. SEPM Special Publication, 42, 261–273.
Hüssner, H., Fritsch, D. and Roessler, J. 1996. Steuernde Faktoren in der alpinen Obertrias. Zentralblatt für Geologie und Paläontologie, Teil I, 1995, 159–172.
Kent, D. and Olsen, P. 1999. Astronomically tuned geomagnetic polarity time scale for the Late Triassic. Journal of Geophysical Research, 104, 12831–12841.
Krystyn, L. 1980. Stratigraphy of the Hallstatt region. In: Schönlaub, H. (Ed.), Second European Conodont Symposium. Abhandlungen der Geologischen Bundesanstalt, 35, 69–98.
Krystyn, L. 1988. Zur RHÄT-Stratigraphie in den Zlambach-Schichten (vorläufiger Bericht). Sitzungsberichte der Österreichischen Akademie der Wissenschaften, 196, 21–36.
Krystyn, L., Böhm, F., Kürschner, W. and Delecat, S. 2005. The Triassic-Jurassic boundary in the Northern Calcareous Alps. 5th Field Workshop IGCP 458 Project,A1–39.
Krystyn, L., Bouquerel, H., Kuerschner, W., Richoz, S. and Gallet, Y. 2007. Proposal for a candidate GSSP for the base of the Rhaetian stage. In: S.G. Lucas and J.A. Spielmann (Eds), The Global Triassic. New Mexico Museum of Natural History and Science, Bulletin, 41, 189–199.
Marcoux, J., Baud, A., Ricou, L.-E., Gaetani, M., Krystyn, L., Bellion, Y., Guiraud, R., Besse, J., Gallet, Y., Jaillard, E., Moreau, C. and Theveniaut, H. 1993. Late Norian (215-212 Ma). In: J. Dercourt, L.E. Ricou and B. Vrielynck (Eds), Atlas Tethys Palaeoenvironmetal Maps. Explanatory Notes, 35–53. Gauthier-Villars; Paris.
Mazzullo, S.J., Bischoff, W.D. and Lobitzer, H. 1990. Diagenesis of radiaxial fibrous calcites in a subunconformity, shallow-burial setting: Upper Triassic and Liassic. Northern Calcareous Alps, Austria. Sedimentology, 37, 407–425.
Mojsisovics, E.v. 1871. Beiträge zur topischen Geologie der Alpen. Jahrbuch der Kaiserlich – Königlichen Geologischen Reichsanstalt, 21, 189–210.
Newell, N.D., Rigby, J.J., Fischer, A.G., Whiteman, J.E., Hickox, J.E. and Bradley, J.S. 1953. The Permian reef complex of the Guadelupe Mountains region, Texas and New Mexico. A study in palaeoecology. pp. 1–235. Freeman; San Francisco.
Ogg, J.G. 2004. The Triassic Period. In: F.M. Gradstein, J.G. Ogg, A.G. Smith (Eds), A Geologic Time Scale 2004, 271-306. Cambridge University Press; Cambridge.
Ohlen, H.R. 1959. The Steinplatte Reef Complex of the Alpine Triassic (Rhaetian) of Austria. Unpublished PhD thesis, pp. 1–122, Princeton University; New Jersey.
Pálfy, J. 2008. The quest for refined calibration of the Jurassic time-scale. Proceedings of the Geologists’ Association, 119, 85–95.
Piller, W.E. 1976. Fazies und Lithostratigraphie des gebankten Dachsteinkalkes (Obertrias) am Nordrand des Toten Gebirges (S Grünau/Almtal, Oberösterreich). Mitteilungen der Gesellschaft der Geologie- und Bergbaustudenten in Österreich, 23, 113–152.
Piller, W.E. 1981. The Steinplatte Reef Complex, part of an Upper Triassic Carbonate Platform near Salzburg, Austria. SEPM Special Publication, 30, 261–290.
Piller, W. and Lobitzer, H. 1979. Die obertriassische Karbonatplattform zwischen Steinplatte (Tirol) und Hochkönig (Salzburg). Verhandlungen der Geologischen Bundesanstalt, 1979, 171–180.
Rakús, M. 1993. Early Liassic Ammonites from the Steinplatte-KammerköhralmArea (Northern CalcareousAlps/Salzburg). Jahrbuch der Geologische Bundesanstalt, 136, 919–932.
Saller, A.H., Harris, P.M., Kirkland, B.L. and Mazzullo, S.J. 1999. Geologic framework of the Capitan Reef. SEPM Special Publication, 65, 1–224.
Satterley, A.K. 1994. Sedimentology of the Upper Triassic Reef Complex of the Hochkönig Massif (Northern Calcareous Alps, Austria). Facies, 30, 119–150.
Satterley, A.K. 1996. Cyclic carbonate sedimentation in the Upper Triassic Dachstein Limestone, Austria: the role of patterns of sediment supply and tectonics in a platformreef-basin system. Journal of Sedimentary Research, 66, 307–323.
Schäfer, P. 1979. Fazielle Entwicklung und palökologische Zonierung zweier obertriadischer Riffstrukturen in den Nördlichen Kalkalpen („Oberrhät“-Riff-Kalke, Salzburg). Facies, 1, 3–245.
Schlager, W. 2000. Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems. In: E. Insalaco, P.W. Skelton and T.J. Palmer (Eds), Carbonate Platform Systems: components and interactions. Geological Society, London, Special Publication, 178, 217–227.
Sieber, R. 1937. Neue Untersuchungen über die Stratigraphie und Ökologie der alpinen Triasfaunen. I. Die Fauna der nordalpinen Rhätriffkalke. Neues Jahrbuch für Geologie und Paläontologie, Beilagen, 78, 123–188.
Stanton, R.J.Jr. and Flügel, E. 1989. Problems with Reef Models: The Late Triassic Steinplatte “Reef” (Northern Alps, Salzburg/Tyrol, Austria). Facies, 20, 1–138.
Stanton, R.J.Jr. and Flügel, E. 1995. An accretionally distally steepened ramp at an intrashelf basin: an alternative explanation for the Upper Triassic Steinplatte “reef” (Northern Calcareous Alps, Austria). Sedimentary Geology, 95, 269–286.
Tollmann, A. 1985. Geologie von Österreich. Band II. Außerzentralalpiner Anteil, pp. 1–710. Deuticke; Vienna.
Wurm, D. 1982. Mikrofazies, Paläontologie und Palökologie der Dachsteinriffkalke (Nor) des Gosaukammes, Österreich. Facies, 6, 203–296.
Zankl, H. 1969. Der Hohe Göll – Aufbau und Lebensbild eines Dachsteinkalk-Riffes in der Obertrias der nördlichen Kalkalpen. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 519, 1–123.
Cytuj : Fedorowski, J. ,Łuczyński, P. ,Kaufmann, B. , The Steinplatte complex (Late Triassic, Northern Calcareous Alps, Austria) – subsidence-controlled development of a carbonate-platform-to-intrashelfbasin-transition. Acta Geologica Polonica Vol. 59, no. 3/2009