Journal : Acta Chromatographica
Article : The kernel density estimate as a measure of the performance of one and two-dimensional TLC systems with large retention datasets in the context of their use in fingerprinting

Authors :
Turło, J.
Medical University of Warsaw Department of Drug Technology 1 Banacha Street 02-097 Warsaw Poland Medical University of Warsaw Faculty of Pharmacy 1 Banacha Street 02-097 Warsaw Poland, jadwiga.turlo@wum.edu.p,
Komsta, Ł.
Medical University of Lublin Chair and Department of Medicinal Chemistry, Faculty of Pharmacy Jaczewskiego 4 20-090 Lublin Poland Medical University of Lublin Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy Chodźki 1 20-093 Lublin Pola, lukasz.komsta@am.lublin.pl,
Abstract : A new objective chromatographic response function, RK, based on the kernel density estimate, is introduced for estimation of the fingerprinting performance of a particular TLC system (uniformity of retention) for which a large set of experimental RFvalues of possible components of the mixture is available. The RKcriterion is insensitive to large numbers (hundreds or thousands) of RFvalues, when the previously proposed criteria cease. It can be applied to one and two-dimensional TLC and is easily computed. As an example of its application, the performance of twelve general screening systems was evaluated in the context of herbal extract fingerprinting (88 phytochemical standards) by both one and two-dimensional TLC.

Keywords : TLC, screening systems, chromatographic response function, herbal extracts, fingerprinting,
Publishing house : University of Silesia in Katowice
Publication date : 2009
Number : Vol. 21, no. 1
Page : 13 – 27

Bibliography
: 1 E.L. Inman and H.J. Tenbarge, J. Chromatogr. Sci., 26 , 89 (1988)
2 L. Pasti, B. Walczak, D.L. Massart, and P. Reschiglian, Chemom. Intell. Lab. Syst., 48 , 21 (1999)
3 B. Walczak and W. Wu, Chemom. Intell. Lab. Syst., 77 , 173 (2005)
4 V. Pravdova, B. Walczak, and D.L. Massart, Anal. Chim. Acta, 456 , 77 (2002)
5 A.M. van Nederkassel, M. Daszykowski, P.H.C. Eilers, and Y. Vander Heyden, J. Chromatogr. A, 1118 , 199 (2006)
6 M. Daszykowski and B. Walczak, Trends Anal. Chem., 25 , 1081 (2006)
7 M. Waksmundzka-Hajnos, J. Sherma, and T. Kowalska, Thin Layer Chromatography in Phytochemistry, CRC Press, Francis and Taylor, Boca Raton, USA, 2008
8 P. Owen, A. Pendlebury, and A.C. Moffat, J. Chromatogr., 161 , 187 (1978)
9 P. Owen, A. Pendlebury, and A.C. Moffat, J. Chromatogr., 161 , 195 (1978)
10 A.C. Moffat, J. Chromatogr., 110 , 341 (1975)
11 G. Musumarra, G. Scarlatta, G. Cirma, G. Romano, S. Palazzo, S. Clementi, and G. Giuletti, J. Chromatogr., 295 , 31 (1984)
12 G. Musumarra, G. Scarlatta, G. Cirma, G. Romano, S. Palazzo, S. Clementi, and G. Giuletti, J. Chromatogr., 350 , 151 (1985)
13 A.C. Moffat, Clarke’s Analysis of Drugs and Poisons (3rd edn), Pharmaceutical Press, London, 2004
14 Ł. Komsta, W. Markowski, and G. Misztal, J. Planar Chromatogr., 20 , 27 (2007)
15 Ł. Komsta, Acta Chromatogr., 20 , 309 (2008)
16 D.W. Scott, Multivariate Density Estimation. Theory, Practice and Visualization, Wiley, New York, 1992
17 R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org .
DOI :
Qute : Turło, J. ,Komsta, Ł. ,Komsta, Ł. , The kernel density estimate as a measure of the performance of one and two-dimensional TLC systems with large retention datasets in the context of their use in fingerprinting. Acta Chromatographica Vol. 21, no. 1/2009
facebook