The lidar ratio derived from sun-photometer measurements at Belsk Geophysical Observatory

Czasopismo : Acta Geophysica
Tytuł artykułu : The lidar ratio derived from sun-photometer measurements at Belsk Geophysical Observatory

Autorzy :
Sobotka, J.
University of Wrocław, Institute of Geological Sciences, Department of Structural Geology, Wrocław, Poland, jerzysob@ing.uni.wroc.pl,
Sedighi, M.
K.N. Toosi University of Technology, Faculty of Geodesy and Geomatics Engineering, Tehran, Iran, sedighi@ncc.org.ir,
Rezaei, K.
LMU University, Munich, Germany, khalil.rezaei@yahoo.com,
Narayan, J.
Dept. of Earthquake Engineering, Indian Institute of Technology, Roorkee, India, jaypnfeq@iitr.ernet.in,
Rozmarynowska, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, rozmaryn@igf.edu.pl,
Gnyp, A.
Carpathian Branch, Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Lviv, Ukraine, gnyp@cb-igph.lviv.ua,
Wiejacz, P.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, pwiejacz@igf.edu.pl,
Karakostas, V.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, vkarak@geo.auth.gr,
Mukhopadhyay, B.
Central Headquarters, Geological Survey of India, Kolkata, India, basabmukhopadhyay@yahoo.com,
Tezcan, S.
Bogazici University, Bebek, Istanbul, Turkey, tezokan@superonline.com,
Orlecka-Sikora, B.
Faculty of Geology Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Poland, orlecka@geol.agh.edu.pl,
Aniszewski, A.
Department of Sanitary Engineering, Szczecin University of Technology, Szczecin, Poland, andrzej.aniszewski@ps.pl,
Al Farajat, M.
Institute of Earth and Environmental Sciences, Al al-Bayt University, Mafraq, Jordan, alfarajat@aabu.edu.jo,
Pietruczuk, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, alek@igf.edu.pl,
Abstrakty : The lidar ratios at 500 and 1020 nm were derived from POM 01L sun-sky scanning photometer measurements taken at Belsk Geophysical Observatory (long. 20°47', lat. 51°50') in the period from 2002 to 2006. The most frequently occurring lidar ratio values for the study period are 50 sr and 30 sr at 500 nm and 1020 nm, respectively. Calculations of lidar ratios for summer and winter seasons have been made as well. Back trajectory analysis was also performed to final aerosol source of origin.

Słowa kluczowe : aerosol, lidar, sun-photometer, lidar ratio, back trajectory, backscatter aerosol lidar,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2009
Numer : Vol. 57, no. 2
Strony : 476 – 493
Bibliografia : 1. Ackermann, J. (1998), The extinction-to-backscatter ratio of tropospheric aerosols: A numerical study, J. Atmos. Oceanic Technol. 15, 1043-1050, DOI: 10.1175/1520-0426(1998)015<1043:TETBRO>2.0.CO;2.
2. Anderson, T.L., S.J. Masonis, D.S. Covert, R.J. Charlson, and M.J. Rood (2000), In situ measurement of the aerosol extinction-to-backscatter ratio at a polluted continental site. J. Geophys. Res.105, D22, 26907-26915, DOI: 10.1029/2000JD900400.
3. Ansmann, A., M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michaelis (1992). Combined Raman elastic backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio, Appl. Phys. B 55, 18-28, DOI: 10.1007/BF00348608.
4. Ansmann, A., F. Wagner, D. Althausen, D. Muller, A. Herber, and U. Wandinger (2001), European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast, J. Geophys. Res. 106, D18, 20725-20733, DOI: 10.1029/2000JD000091.
5. Aoki, K., and Y. Fujiyoshi (2003), Sky radiometer measurements of aerosol optical properties over Sapporo, Japan, J. Meteor. Soc. Japan 81, 3, 493-513, DOI: 10.2151/jmsj.81.493
6. Balis, D.S., V. Amiridis, C. Zerefos, E. Gerasopoulos, M. Andreae, P. Zanis, A. Kazantzidis, S. Kazadzis, and A. Papayannis (2003), Raman lidar and sunphotometric measurements of aerosol optical properties over Thessaloniki, Greece during a biomass burning episode, Atmos. Environ. 37, 32, 4529-4538, DOI: 10.1016/S1352-2310(03)00581-8.
7. Barnaba, F., and G.P. Gobbi (2001) Lidar estimation of tropospheric aerosol extinction, surface area and volume: Maritime and desert-dust cases, J. Geophys. Res. 106, D3, 3005-3018. DOI: 10.1029/2000JD900492.
8. Barnaba, F., and G.P. Gobbi (2004), Modeling the aerosol extinction versus backscatter relationship for lidar applications: Maritime and continental conditions, J. Atmos. Oceanic Technol. 21, 3, 428-442, DOI: 10.1175/1520-0426(2004)021<0428:MTAEVB>2.0.CO;2.
9. Bohren, C.F., and D.R, Huffman (1983), Absorption and Scattering of Light by Small Particles, Willey, New York.
10. Campbell, J.R., E.J. Welton, J.D. Spinhirne, Q. Ji, S.C. Tsay, S.J. Piketh, M. Barenbrug, and B.N. Holben (2003), Micropulse lidar observations of tropospheric aerosols over northeastern South Africa during the ARREX and SAFARI 2000 dry season experiments, J. Geophys. Res. 108, D13, 8497, DOI: 10.1029/2002JD002563.
11. Cattrall, C., J. Reagan, K. Thome, and O. Dubovik (2005), Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations, J. Geophys. Res. 110, D10S11, DOI: 10.1029/2004JD005124.
12. Charlson, R.J., S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley, J.E. Hansen, and D.J. Hofmann (1992), Aerosols and global warming response, Science 256, 5057, 598-599, DOI: 10.1126/science.256.5057.598-a.
13. Chazette, P. (2003), The monsoon aerosol extinction properties at Goa during INDOEX as measured with lidar, J. Geophys. Res. 108, D6, 4187, DOI: 10.1029/2002JD002074.
14. Chudzyński, S., A. Czyżewski, K. Ernst, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, A. Szymański, I. Sówka, A. Zwoździak, and J. Zwoździak (2001), Observation of Ozone Concentration during the Solar Eclipse, Atmos. Res. 57, 1, 43-49, DOI: 10.1016/S0169-8095(00)00071-5.
15. Collis, R.T.H., and P.B. Russell (1976), Lidar measurement of particles and gases by elastic backscattering and differential absorption. In: E. Hinkley (ed.), Laser Monitoring of the Atmosphere, Springer Verlag, New York, 71-152.
16. Doherty, S.J., T.L. Anderson, and R.J. Charlson (1999), Measurement of the lidar ratio for atmospheric aerosols with a 180° backscatter nephelometer, Appl.Opt. 38, 1823-1832, DOI: 10.1364/AO.38.001823.
17. Doherty, S.J., P.K. Quinn, A. Jefferson, C.M. Carrico, T.L. Anderson, and D. Hegg (2005), A comparison and summary of aerosol optical properties as observed in situ from aircraft, ship, and land during ACE-Asia, J. Geophys. Res. 110, D04201, DOI: 10.1029/2004JD004964.
18. Douglas, L.R., M.R. Schoeberl, S.R. Kawa, and E.V. Browell (2001), A composite view of ozone evolution in 1995-1996 northern winter polar vortex development from airborne lidar and satellite observations, J. Geophys. Res. 106, D9, 9879-9895, DOI: 10.1029/2000JD900590.
19. Draxler, R.R., and G.D. Hess (1998), An overview of the Hysplit_4 modeling system for trajectories, dispersion, and deposition, Aust. Met. Mag. 47, 295-308.
20. Endemann, M., P. Dubock, P. Ingmann, R. Wimmer, D. Morancais, and D. Demuth (2004), The ADM – AEOLUS mission – The first wind lidar in space. In: G. Pappalardo, A. Amodeo, and B. Warmbein (eds.), Proceedings of the 22nd International Laser Radar Conference (ILRC 2004), Matera, Italy, 953-956, ESA Publ. Div., ESTEC, Noordwijk.
21. Ernst, K., G. Karasiński, A. Pietruczuk, and T. Stacewicz (2003), Retrieving the atmospheric aerosol size distribution by means of multiwavelength lidar, SPIE Proceedings 525258, 156-159.
22. European Space Agency (ESA) (2004), Earth clouds, aerosols, and radiation explorer, Special Publ. ESA SP-1279, 1.
23. Fernald, F.G. (1984), Analysis of atmospheric lidar observations: Some comments, Appl. Opt. 23, 5, 652-653.
24. Franke, K., A. Ansmann, D. Muller, D. Althausen, F. Wagner, R. Scheele (2001), One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar, Geophys. Res. Lett. 28, 24, 4559-4562, DOI: 10.1029/2001GL013671.
25. Grund, C.J., and E.W. Eloranta (1991), University of Wisconsin high spectral resolution lidar, Opt. Eng. 30, 6-12, DOI: 10.1117/12.55766.
26. He, Q.S., C.C. Li, J.T. Mao, and A.K.H. Lau (2006), A study on aerosol extinctionto-backscatter ratio with combination of micro-pulse lidar and MODIS over Hong Kong, Atmos. Chem. Phys. Discuss. 6, 3099-3133.
27. Holben, B.N., T.F. Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov (1998), AERONET – A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ. 66, 1, 1-16, DOI: 10.1016/S0034-4257(98)00031-5.
28. IPCC (2007), Climate Change 2007: The Physical Science Basis. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, UK and New York, NY, 996 pp.
29. Kent, G.S., C.R. Trepte, K.M. Skeens, and D.M. Winker (1998), LITE and SAGE II measurements of aerosols in the southern hemisphere upper troposphere, J. Geophys. Res. 103, D15, 19111-19127, DOI: 10.1029/98JD00364.
30. King, M.D., Y. Kaufman, P. Menzel, and D. Tanré (1992), Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS), IEEE Trans. Geosci. Remote Sens. 30, 2-27, DOI: 10.1109/36.124212.
31. Klett, J.D. (1985), Lidar inversion with variable backscatter/extinction ratios, Appl. Opt. 24, 11, 1638-1643.
32. Kovalev, V.A. (1995), Sensitivity of the lidar solution to errors of the aerosol backscatter to extinction ratio: Influence of a monotonic change in the aerosol extinction coefficient, Appl. Opt. 34, 18, 3457-3462, DOI: 10.1364/ AO.34.003457.
33. Masonis, S.J., T.L. Anderson, D.S. Covert, V. Kapustin, A.D. Clarke, S. Howell, and K. Moore (2003), A study of the extinction-to-backscatter ratio of marine aerosol during the shoreline environment aerosol study, J. Atmos. Oceanic Technol. 20, 10, 1388-1402, DOI: 10.1175/1520-0426(2003)020<1388:ASOTER>2.0.CO;2.
34. Menon, S., J. Hansen, L. Nazarenko, and Y. Luo (2002), Climate effects of black carbon aerosols in China and India, Science 297, 2250-2253, DOI: 10.1126/science.1075159.
35. Mishchenko, M.I., L.D. Travis, R.A. Kahn, and R.A. West (1997), Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids, J. Geophys. Res. 102, D14, 16831-16847, DOI: 10.1029/96JD02110.
36. Muller, D., A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, U. Althausen, and G. Pisani (2007), Aerosol-type-dependent lidar ratios observed with Raman lidar, J. Geophys. Res. 112, D16202, DOI: 10.1029/2006JD008292.
37. Nakajima, T., M. Tanaka, and T. Yamauchi (1983), Retrieval of the optical properties of aerosols from aureole and extinction data, Appl. Opt. 22, 2951-2959.
38. Nakajima, T., and M. Tanaka (1986), Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere, J. Quant. Spectrosc. Radiat. Transfer 35, 13-21, DOI: 10.1016/0022-4073(86)90088-9.
39. Nakajima, T., G. Tonna, R. Rao, Y. Kaufman, and B. Holben (1996), Use of sky brightness measurements from ground for remote sensing of particulate polydispersions, Appl. Opt. 35, 2672-2686, DOI: 10.1364/AO.35.002672.
40. Papayannis, A., D. Balis, A. Chaikovsky, A. Comeron, R. Eixmann, A. Hägärd, M. Iarlori, L. Komguem, I. Mattis, V. Mitev, M. Pandolfi, J.A. Rodrigues, L. Sauvage, V. Simeonov, P. Sobolewski, N. Spinelli, F. De Tomasi, T. Trickl, G. Tsaknakis, and M. Wiegner (2002), Two years of continuous observations of Saharan dust events over the European continent using a coordinated LIDAR Network in the frame of the EARLINET Project. In: L. Bissonnette, G. Roy, and G. Vall?e (eds.), Lidar Remote Sensing in Atmospheric and Earth Sciences, 309-312.
41. Papayannis, A., V. Amiridis, L. Mona, G. Tsaknakis, D. Balis, J. Bösenberg, A. Chaikovski, F. De Tomasi, I. Grigorov, I. Mattis, V. Mitev, D. Müller, S. Nickovic, C. Pérez, A. Pietruczuk, G. Pisani, F. Ravetta, V. Rizi, M. Sicard, T. Trickl, M. Wiegner, M. Gerding, R. E. Mamouri, G. D'Amico, and G. Pappalardo (2008), Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002), J. Geophys. Res. 113, D10204, DOI: 10.1029/2007JD009028.
42. Peppler, R.A., C.P. Bahrmann, J.C. Barnard, J.R. Campbell, M.D. Cheng, R.A. Ferrare, R.N. Halthore, L.A. Heilman, D.L. Hlavka, N.S. Laulainen, C.J. Lin, J.A. Ogren, M.R. Poellot, L.A. Remer, K. Sassen, J.D. Spinhirne, M.E. Splitt, and D.D. Turner (2000), ARM Southern Great Plains site observations of the smoke pall associated with the 1998 Central American fires, Bull. Am. Meteor. Soc. 81, 2563-2591, DOI: 10.1175/1520-0477(2000)081<2563:ASGPSO>2.3.CO;2.
43. Pietruczuk, A., and A.P. Chaikovsky (2007), Properties of fire smoke in Eastern Europe measured by remote sensing method, Proc. SPIE 6745, DOI: 10.1117/12.740916.
44. Powell, D.M., J.A. Reagan, M.A. Rubio, W.H. Erxleben, and J.D. Spinhirne (2000), ACE-2 multiple angle micro-pulse lidar observations from Las Galletas, Tenerife, Canary Islands, Tellus B 52, 2, 652-661, DOI: 10.1034/j.1600-0889.2000.00059.x.
45. Rosen, J.M., R.G. Pinnick, and D.M. Garvey (1997), Measurement of extinction to backscatter ratio for near surface aerosols, J. Geophys. Res. 102, D5, 6017-6024, DOI: 10.1029/97JD00005.
46. Salemink, H.W.M., P. Schotanus, and J.B. Bergwerff (1984), Quantitative lidar at 532nm for vertical extinction profiles and the effect of relative humidity, Appl. Phys. B 34, 187-189, DOI: 10.1007/BF00697633.
47. Sasano, Y., E.V. Browell, and S. Ismail, (1985), Error caused by using a constant extinction/backscattering ratio in the lidar solution, Appl. Opt. 24, 3929-3932.
48. Schneider, J., D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A.P. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A.H. Hagard, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M.R. Perrone, D.P. Resendes, N. Spinelli, T. Trickl, G. Vaughan, and G.Visconti (2001), A European Aerosol Research Lidar Network to establish an aerosol climatology (EARLINET), J. Aerosol Science 31, 592-593, DOI: 10.1016/S0021-8502(00)90601-3.
49. Spinphire, J.D., J.A. Reagan, and B.M. Herman (1980), Vertical distribution of aerosol extinction cross section and interference of aerosol imaginary index in the troposphere by lidar technique, J. Appl. Meteorol. 19, 426-438, DOI: 10.1175/1520-0450(1980)019<0426:VDOAEC>2.0.CO;2.
50. Stoffelen, A., G.-J. Marseille, E. Andersson, and D.G.H. Tan (2005), The atmospheric dynamics mission for global wind field measurement, Bull. Am. Meteorol. Soc. 86, 73-87, DOI: 10.1175/BAMS-86-1-73.
51. Takamura, T., Y. Sasano, and T. Hayasaka (1994), Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements, Appl. Opt. 33, 30, 7132-7140.
52. Twomey, S. (1977), Influence of pollution on the short wave albedo of clouds, J. Atmos. Sci. 34, 1149-1152.
53. Voss, K.J., E.J. Welton, P.K. Quinn, J. Johnson, A.M. Thompson, and H.R. Gordon (2001), Lidar measurements during Aerosols99, J. Geophys. Res. 106, D18, 20821, DOI: 10.1029/2001JD900217.
54. Waggoner, A.P., N.C. Ahlquist, and R.J. Charlson (1972), Measurement of the aerosol total scatter-backscatter ratio, Appl. Opt. 11, 2886-2889.
55. Wiegner, M., J. Bösenberg, C. Böckmann, R. Eixmann, V. Freudenthaler, I. Mattis, and T. Trickl (1999), Lidar network to establish an aerosol climatology, J. Aerosol Sci. 30, 1, S429-S430, DOI: 10.1016/S0021-8502(99)80226-2.
56. Welton, E.J., K.J. Voss, H.R. Gordon, H. Maring, A. Smirnov, B.N. Holben, B. Schmid, J.M. Livingston, P.B. Russell, P.A. Durkee, P. Formenti, and M.O. Andreae (2000), Ground based lidar measurements of aerosols during ACE 2: Lidar description, results, and comparisons with other ground based and airborne measurements, Tellus B. 52, 636-651, DOI: 10.1034/ j.1600-0889.2000.00025.x.
57. Winker, D.M., W.H. Hunt, and C.A. Hostetler (2004), Status and performance of the CALIOP lidar, SPIE Proceedings 5575, 8-15, DOI: 10.1117/12.571955.
58. Young, S.A., D.R. Cutten, M.J. Lynch, J.E. Davies (1993), Lidar-derived variations in the backscatter-to-extinction ratio in Southern Hemisphere Coastal Maritime Aerosols, Atmos. Environ. 27A, 1541-1551.
DOI :
Cytuj : Sobotka, J. ,Sedighi, M. ,Rezaei, K. ,Narayan, J. ,Rozmarynowska, A. ,Gnyp, A. ,Wiejacz, P. ,Karakostas, V. ,Mukhopadhyay, B. ,Tezcan, S. ,Orlecka-Sikora, B. ,Aniszewski, A. ,Al Farajat, M. ,Pietruczuk, A. , The lidar ratio derived from sun-photometer measurements at Belsk Geophysical Observatory. Acta Geophysica Vol. 57, no. 2/2009
facebook