Journal : Acta of Bioengineering and Biomechanics
Article : The morphology of the articular surfaces of biological knee joints provides essential guidance for the construction of functional knee endoprostheses

Authors :
Demiral, M.
Department of Mechanical Engineering, University of Turkish Aeronautical Association, 06790 Ankara, Turkey,
Abdel-Wahab, A.
Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, LE11 3TU, UK,
Silberschmidt, V.
Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, LE11 3TU, UK,
Jaramillo, H.
Universidad del Valle, Cali-Colombia,
Gomez, L.
Universidad del Valle, Cali-Colombia,
Garcia, J. J.
Universidad del Valle, Cali-Colombia,
Mróz, A.
Metal Forming Institute, Poznań, Poland, adrian.mroz@inop.poznan.pl,
Skalski, K.
Warsaw University of Technology, Institute of Precision Mechanics, Warsaw, Poland,
Walczyk, W.
Metal Forming Institute, Poznań, Poland,
Kajzer, A.
Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland, anita.kajzer@polsl.pl,
Kajzer, W.
Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland,
Dzielicki, J.
Medical University of Silesia, School of Medicine in Katowice, Katowice, Poland,
Matejczyk, D.
Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland,
Nagerl, H.
University of Göttingen, Biomechanical Working Group in Department of Orthodontics, Germany,
Dathe, H.
University of Göttingen, Biomechanical Working Group in Department of Orthodontics, Germany,
Fiedler, Ch.
Lima Corporate; Hamburg, Germany,
Gowers, L.
University of Göttingen, Biomechanical Working Group in Department of Orthodontics, Germany,
Kirsch, S.
University of Göttingen, Biomechanical Working Group in Department of Orthodontics, Germany,
Kubein-Meesenburg, D.
University of Göttingen, Biomechanical Working Group in Department of Orthodontics, Germany,
Dumont, C.
University of Göttingen, Department of Trauma Surgery, Plastic and Reconstructive Surgery, Göttingen, Germany,
Wachowski, M. M.
University of Göttingen, Department of Trauma Surgery, Plastic and Reconstructive Surgery, Göttingen, Germany, martin.wachowski@web.de,
Abstract : Purpose: In comparative examinations of kinematics of the knees of humans and pigs in flexional/extensional motion under compressive loads, the significant differential geometric essentials of articular guidance are elaborated to criticise the shaping of the articular surfaces of conventional knee-endoprostheses and to suggest constructional outlines that allow the endoprosthesis to adopt natural knee kinematics. Implantation is discussed with regard to the remaining ligamentous apparatus. Methods: Twelve fresh pig knee joints and 19 preserved human knee joints were moved into several flexional/extensional positions. In each joint, the tibia and femur were repeatably caught by metal plates. After removing all ligaments, the tibia and femur were again caught in these positions, and their points of contact were marked on both articular surfaces. Along the marker points, a thin lead wire was glued onto each surface. The positions and shapes of the four contact lines were mapped by teleradiography. Results: All contact lines were found to be plane curves. The medial and lateral planes were parallel, thus defining the joint’s sagittal plane. In the human knee, as compared to the lateral, the medial femoral contact line was always shifted anteriorly by several millimetres. The tibial contact curve was laterally convex and medially concave. In the pig knees, the lateral and medial contact lines were asymmetrically placed. Both tibial curves were convex. Conclusions: Both knees represent cam mechanisms (with one degree of freedom) that produce rolling of the articular surfaces during the stance phase. Implantation requires preservation of the anterior cruciate ligament, and ligamentous balancing is disadvantageous.

Keywords : kolano, kinematyka, biomechanika, endoproteza, knee arthroplasty, kinematics, biomechanics, knee, endoprosthesis, pig,
Publishing house : Oficyna Wydawnicza Politechniki Wrocławskiej
Publication date : 2015
Number : Vol. 17, nr 2
Page : 45 – 53

Bibliography
: 1 BANKS S., BELLEMANS J., NOZAKI H., WHITESIDE L.A., HARMAN M., HODGE W.A., Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties, Clin. Orthop. Relat. Res., 2003, 410, 131–138.
2 BELLEMANS J., BANKS S., VICTOR J., VANDENNEUCKER H., MOEMANS A., Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset, J. Bone Joint. Surg. Br, 2002, 84(1), 50–53.
3 BLACHARSKI P.A., SOMERSET J.H., MURRAY D.G., A threedimensional study of the kinematics of the human knee, J. Biomech., 1975, 8(6), 375–384.
4 DUMONT C., ALBUS G., KUBEIN-MEESENBURG D., FANGHANEL J., STURMER K.M., NÄGERL H., Morphology of the interphalangeal joint surface and its functional relevance, J. Hand Surg. Am., 2008, 33(1), 9–18.
5 FISCHER O., Kinematik organischer Gelenke 1907, ViewegVerlag, Braunschweig, 189.
6 HEINE G., Biomechanische Untersuchung des Tibiofemoralgelenkes in der Extensions-Flexionsbewegung am Hausschwein, in: Medizinische Fakultät der Universität Göttingen University of Göttingen, Göttingen 2002.
7 JOHANSSON H., SJOLANDER P., SOJKA P., A sensory role for the cruciate ligaments, Clin. Orthop. Relat. Res., 1991, 268, 161–178.
8 KAPANDJI I.A., Funktionelle Anatomie der Gelenke: Schematisierte und kommentierte Zeichnungen zur menschlichen Biomechanik, Band 2: Untere Extremität, Enke, Stuttgart, 1985.
9 KNÖSEL M., KUBEIN-MEESENBURG D., STÜHMER C., NÄGERL H., MANSOUR M., FANGHÄNEL J., Adjustable mechanical stability of the balanced tibiofemoral joint in flexion/extension: a novel measuring method in vitro, Acta Bioeng. Biomech., 2000, 6, 3–15.
10 KUBEIN-MEESENBURG D., NÄGERL H., FANGHÄNEL J., Elements of a general theory of joints. 1. Basic kinematic and static function of diarthrosis, Anat. Anz., 1990, 170(3–4), 301–308.
11 LI G., DEFRATE L.E., PARK S.E., GILL T.J., RUBASH H.E., In vivo articular cartilage contact kinematics of the knee: an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models, Am. J. Sports Med., 2005, 33(1), 102–107.
12 NÄGERL H., BLÜMEL A., KRAATZ U., KUBEIN-MEESENBURG D., MIEHE B., FANGHÄNEL J., The sensory apparatus for perception in the tibiofemoral joint and outlines of a functional knee endoprosthesis, Acta Bioeng. Biomech., 2002, 4(Suppl.), 319–320.
13 NÄGERL H., FROSCH K.H., WACHOWSKI M.M., DUMONT C., ABICHT C., ADAM P., KUBEIN-MEESENBURG D., A novel total knee replacement by rolling articulating surfaces. In vivo functional measurements and tests, Acta Bioeng. Biomech., 2008, 10(1), 55–60.
14 NÄGERL H., KUBEIN-MEESENBURG D., COTTA H., FANGHÄNEL J., Biomechanical principles of diarthroses and synarthroses. III: Mechanical aspects of the tibiofemoral joint and role of the cruciate ligaments, Z Orthop. Ihre Grenzgeb, 1993, 131(5), 385–396.
15 NÄGERL H., WALTERS J., FROSCH K.H., DUMONT C., KUBEINMEESENBURG D., FANGHÄNEL J., WACHOWSKI M.M., Knee motion analysis of the non-loaded and loaded knee: a re-look at rolling and sliding, J. Physiol. Pharmacol., 2009, 60(Suppl. 8), 69–72.
16 NICKEL R., SCHUMMER A., SEIFERLE E., Bewegungsapparat, 5 ed., Lehrbuch der Anatomie der Haustiere. 1, Parcy, Berlin, Hamburg, 1984.
17 PANDIT H., WARD T., HOLLINGHURST D., BEARD D.J., GILL H.S., THOMAS N.P., MURRAY D.W., Influence of surface geometry and the cam-post mechanism on the kinematics of total knee replacement, J. Bone Joint. Surg. Br., 2005, 87(7), 940–945.
18 PINSKEROVA V., JOHAL P., NAKAGAWA S., SOSNA A., WILLIAMS A., GEDROYC W., FREEMAN M.A., Does the femur roll-back with flexion? J. Bone Joint. Surg. Br., 2004, 86(6), 925–931.
19 RAUBER A., KOPSCH F., Anatomie des Menschen, Lehrbuch und Atlas: Bewegungsapparat, ed. B. Tillmann and G. Töndury. 1, Georg Thieme Verlag, Stuttgart, New York, 1987.
20 STIEHL J.B., DENNIS D.A., KOMISTEK R.D., KEBLISH P.A., In vivo kinematic analysis of a mobile bearing total knee prosthesis, Clin. Orthop. Relat. Res., 1997(345), 60–66.
21 STUKENBORG-COLSMAN C., OSTERMEIER S., WENGER K.H., WIRTH C.J., Relative motion of a mobile bearing inlay after total knee arthroplasty–dynamic in vitro study, Clin. Biomech. (Bristol, Avon), 2002, 17(1), 49–55.
22 WACHOWSKI M.M., FIEDLER C., WALDE T.A., BALCAREK P., SCHUTTRUMPF J.P., FROSCH S., FROSCH K.H., FANGHÄNEL J., GEZZI R., KUBEIN-MEESENBURG D., NÄGERL H., Construction-conditioned rollback in total knee replacement: fluoroscopic results, Acta Bioeng. Biomech., 2011, 13(3), 35–42.
23 WACHOWSKI M.M., WALDE T.A. BALCAREK P., SCHUTTRUMPF J.P., FROSCH S., STAUFFENBERG C., FROSCH K.H., FIEDLER C., FANGHÄNEL J., KUBEIN-MEESENBURG D., NÄGERL H., Total knee replacement with natural rollback, Ann. Anat., 2012, 194(2), 195–199.
24 WALKER P.S., ROVICK J.S., ROBERTSON D.D., The effects of knee brace hinge design and placement on joint mechanics, J. Biomech., 1988, 21(11), 965–974.
25 WEBER W., WEBER F., Mechanics of the human walking apparatus, Section 4: on the knee, Springer Verlag, Berlin, 1992.
26 WISMANS J., VELDPAUS F., JANSSEN J., HUSON A., STRUBEN P., A three-dimensional mathematical model of the kneejoint, J. Biomech., 1980, 13(8), 677–685.
27 ZIMNY M.L., SCHUTTE M., DABEZIES E., Mechanoreceptors in the human anterior cruciate ligament, Anat. Rec., 1986, 214(2), 204–209.
DOI :
Qute : Demiral, M. ,Abdel-Wahab, A. ,Silberschmidt, V. ,Jaramillo, H. ,Gomez, L. ,Garcia, J. J. ,Mróz, A. ,Skalski, K. ,Walczyk, W. ,Kajzer, A. ,Kajzer, W. ,Dzielicki, J. ,Matejczyk, D. ,Nagerl, H. ,Dathe, H. ,Fiedler, Ch. ,Gowers, L. ,Kirsch, S. ,Kubein-Meesenburg, D. ,Dumont, C. ,Wachowski, M. M. ,Wachowski, M. M. , The morphology of the articular surfaces of biological knee joints provides essential guidance for the construction of functional knee endoprostheses. Acta of Bioengineering and Biomechanics Vol. 17, nr 2/2015
facebook