Journal : Acta of Bioengineering and Biomechanics
Article : The study of physicochemical properties of stabilizing plates removed from the body after treatment of pectus excavatum

Authors :
Demiral, M.
Department of Mechanical Engineering, University of Turkish Aeronautical Association, 06790 Ankara, Turkey,
Abdel-Wahab, A.
Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, LE11 3TU, UK,
Silberschmidt, V.
Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, LE11 3TU, UK,
Jaramillo, H.
Universidad del Valle, Cali-Colombia,
Gomez, L.
Universidad del Valle, Cali-Colombia,
Garcia, J. J.
Universidad del Valle, Cali-Colombia,
Mróz, A.
Metal Forming Institute, Poznań, Poland, adrian.mroz@inop.poznan.pl,
Skalski, K.
Warsaw University of Technology, Institute of Precision Mechanics, Warsaw, Poland,
Walczyk, W.
Metal Forming Institute, Poznań, Poland,
Kajzer, A.
Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland, anita.kajzer@polsl.pl,
Kajzer, W.
Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland,
Dzielicki, J.
Medical University of Silesia, School of Medicine in Katowice, Katowice, Poland,
Matejczyk, D.
Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland,
Abstract : This paper presents the results of a physicochemical surface study and clinical observation of a new generation of plates for the treatment of pectus excavatum. Analysis of the data allowed us to investigate the effect of implant design and condition of their surface on the results of treatment of pectus excavatum. In the study, we performed an analysis of clinical data, obtained after a suitable period of treatment with the use of implants, as well as a study of physicochemical properties of stabilizing plates after their removal from the body. Surface roughness, the surface wettability and corrosion resistance were measured, and the results were compared with clinical observations. When removing the plates we found only slight inflammatory-periosteal reactions around the wire fixing transverse stabilizing plates to the ribs and locking the base plate correcting the distortion. The corrective plates did not shift or rotate during the entire treatment period, giving an optimal, oval and natural shape of the chest. The obtained values of the parameters investigated indicate that the reduction in resistance to pitting corrosion occurred in the areas where laser marking was made to identify the plate. The remaining plates, in spite of mechanical damage of the surface, were characterized by good corrosion resistance, a fact which is confirmed by the results of clinical evaluation.

Keywords : biomateriały, obserwacja kliniczna, odporność korozyjna, stabilizing plate, corrosion resistance, clinical assessment,
Publishing house : Oficyna Wydawnicza Politechniki Wrocławskiej
Publication date : 2015
Number : Vol. 17, nr 2
Page : 35 – 44

Bibliography
: 1 BASIAGA M., PASZENDA Z., SZEWCZENKO J., KACZMAREK M., Influence of surgical drills wear on thermal process generated in bones, Acta Bioeng. Biomech., 2013 15(4), 21–29.
2 BOHOSIEWICZ J., KUDELA G., KOSZUTSKI T., Results of Nuss procedures for the correction of pectus excavatum, Eur. J. Pediatr. Surg., 2005, 15(1), 6–10.
3 DZIELICKI J., KORLACKI W., JANICKA I., DZIELICKA E., Difficulties and limitations in minimally invasive repair of pectus excavatum – 6 years experiences with Nuss technique, Eur. J. Cardiothorac. Surg., 2006, 30, 801–804.
4 FONKALSRUD E.W., Current management of pectus excavatum, World J. Surg., 2003, 27, 502–508.
5 GODDARD J.M., HOTCHKISS J.H., Polymer surface modification for the attachment of bioactive compounds, Prog. Polym. Sci., 2007, 32, 698–725.
6 HALLER J.A., COLOMBANI P.M., HUMPHRIES C.T., AZIZKHAN R.G., LOUGHLIN G.M., Chest wall constriction after too extensive and too early operations for pectus excavatum, Ann. Thorac. Surg., 1996, 61, 1618–1625.
7 JAROSZEWSKI D., NOTRICA D., MCMAHON L., STEIDLEY D.E., DESCHAMPS C., Current management of pectus excavatum: a review and update of therapy and treatment recommendations, JABFM, 2010, 23, 230–239.
8 KAJZER A., KAJZER W., GZIK-ZROZKA B., WOLAŃSKI W., JANICKA I., DZIELICKI J., Experimental biomechanical assessment of plate stabilizers for treatment of pectus excavatum, Acta Bioeng. Biomech., 2013, 15(3), 113–121.
9 KAJZER W., KAJZER A., GZIK-ZROSKA B., WOLAŃSKI W., JANICKA I., DZIELICKI J., Comparison of Numerical and Experimental Analysis of Plates Used in Treatment of Anterior Surface Deformity of Chest, Information Technologies in Biomedicine, Springer-Verlag, Berlin–Heidelberg, 2012, 319–330.
10 KAJZER W., KAJZER A., Badania potencjodynamiczne i impedancyjne implantów do leczenia zniekształceń przedniej ściany klatki piersiowej, Przegląd Elektrotechniczny, 2013, 12, 275–279.
11 KAJZER W., KRAUZE A., KACZMAREK M., MARCINIAK J., FEM Analysis of the Expandable Intramedullary Nail,Information Technologies in Biomedicine, ASC, Vol. 47, Springer-Verlag, Berlin–Heidelberg, 2008, 537–544.
12 KELLY R.E., SHAMBERGER R.C., MELLINS R.B., Prospective multicenter study of surgical correction of pectus excavatum: Design, perioperative complications, pain, and baseline pulmonary function facilitated by internet-based data collection, J. Am. Coll. Surg., 2007, 205, 205–216.
13 KIEL M., SZEWCZENKO J., MARCINIAK J., NOWIŃSKA K., Electrochemical properties of Ti-6Al-4V ELI alloy after anodization, Information Technologies in Biomedicine, SpringerVerlag, Berlin–Heidelberg, 2012, 369–378.
14 KIM M.S., KHANG G., LEE H.B., Gradient polymer surfaces for biomedical applications, Prog. Polym. Sci., 2008, 33(1), 138–164.
15 KRAUZE A., MARCINIAK J., Biomechanical analysis of a femurintramedullary nails system in children, Danubia-Adria Symposium on Experimental Methods and Solid Mechanics, 22nd DAS – 2005, Parma, 2005, 80–81.
16 LIBER-KNEĆ A., ŁAGAN S., Zastosowanie pomiarów kąta zwilżania i swobodnej energii powierzchniowej do charakterystyki powierzchni polimerów wykorzystywanych w medycynie, Polim. Med., 2014, 44, 29–37.
17 MANIVASAGAM G., DHINASEKARAN D., RAJAMANICKAM A., Biomedical Implants: Corrosion and its Prevention – A Review, Recent Patents on Corrosion Science, 2010, 2, 40–54.
18 MUDALI U., SRIDHAR T.M., RAJ B., Corrosion of bio implants, Sādhanā, India, 28 (3,4), 601–637.
19 WALKE W., PRZONDZIONO J., Influence of hardening and surface modification of endourological wires on corrosion resistance, Acta Bioeng. Biomech., 2012, 14(3), 93–99.
20 WILLITAL G.H., SAXENA A.K., SCHUTZE U., RICHTER W., Chest deformities: a proposal for a classification, World J. Pediatr., 2011, 7, 118–23.
21 XU L.C., Effect of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials, 2007, 28, 3273–3283.
22 ZIĘBOWICZ A., KAJZER A., KAJZER W., MARCINIAK J., Metatarsal osteotomy using double-threaded screws – biomechanical analysis, Information Technologies in Biomedicine, Springer-Verlag, Berlin–Heidelberg, 2010, 465–472.
DOI :
Qute : Demiral, M. ,Abdel-Wahab, A. ,Silberschmidt, V. ,Jaramillo, H. ,Gomez, L. ,Garcia, J. J. ,Mróz, A. ,Skalski, K. ,Walczyk, W. ,Kajzer, A. ,Kajzer, W. ,Dzielicki, J. ,Matejczyk, D. ,Matejczyk, D. , The study of physicochemical properties of stabilizing plates removed from the body after treatment of pectus excavatum. Acta of Bioengineering and Biomechanics Vol. 17, nr 2/2015
facebook