Uniform parameterized theory of convection in medium sized icy satellites of Saturn

Czasopismo : Acta Geophysica
Tytuł artykułu : Uniform parameterized theory of convection in medium sized icy satellites of Saturn

Autorzy :
Sobotka, J.
University of Wrocław, Institute of Geological Sciences, Department of Structural Geology, Wrocław, Poland, jerzysob@ing.uni.wroc.pl,
Sedighi, M.
K.N. Toosi University of Technology, Faculty of Geodesy and Geomatics Engineering, Tehran, Iran, sedighi@ncc.org.ir,
Rezaei, K.
LMU University, Munich, Germany, khalil.rezaei@yahoo.com,
Narayan, J.
Dept. of Earthquake Engineering, Indian Institute of Technology, Roorkee, India, jaypnfeq@iitr.ernet.in,
Rozmarynowska, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, rozmaryn@igf.edu.pl,
Gnyp, A.
Carpathian Branch, Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Lviv, Ukraine, gnyp@cb-igph.lviv.ua,
Wiejacz, P.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, pwiejacz@igf.edu.pl,
Karakostas, V.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, vkarak@geo.auth.gr,
Mukhopadhyay, B.
Central Headquarters, Geological Survey of India, Kolkata, India, basabmukhopadhyay@yahoo.com,
Tezcan, S.
Bogazici University, Bebek, Istanbul, Turkey, tezokan@superonline.com,
Orlecka-Sikora, B.
Faculty of Geology Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Poland, orlecka@geol.agh.edu.pl,
Aniszewski, A.
Department of Sanitary Engineering, Szczecin University of Technology, Szczecin, Poland, andrzej.aniszewski@ps.pl,
Al Farajat, M.
Institute of Earth and Environmental Sciences, Al al-Bayt University, Mafraq, Jordan, alfarajat@aabu.edu.jo,
Pietruczuk, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, alek@igf.edu.pl,
Posyniak, M.
Atmospheric Physics Division, Institute of Geophysics, University of Warsaw, Warszawa, Poland, mpos@igf.fuw.edu.pl,
Dziak-Jankowska, B.
Space Research Centre, Polish Academy of Sciences, Warszawa, Poland, bdziak@cbk.waw.pl,
Singh, K.
Physics Department, Banaras Hindu University, Hindu, India, krishna23singh@rediffmail.com,
Czechowski, L.
Institute of Geophysics, Warsaw University, Warszawa, Poland, lczech@fuw.edu.pl,
Abstrakty : We develop a parameterized theory of convection driven by radiogenic and tidal heating. The tidal heating depends on eccentricity e of a satellite's orbit. Using parameterized theory we determine the intensity of convection as a function of e and satellite's properties. The theory is used for 6 medium sized satellites of Saturn. We find that endogenic activity on Tethys and Dione is possible if e exceeds some critical values e[cr]. For Enceladus, e was probably close to the present value for billions of years. We cannot find constrains for e of Mimas and Iapetus. The theory successfully predicts the possibility of present endogenic activity in Dione and rules out such activity in Tethys. Both these facts were recently confirmed by Cassini mission.

Słowa kluczowe : medium-sized satellites, thermal evolution, tectonics, orbit, eccentricity,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2009
Numer : Vol. 57, no. 2
Strony : 548 – 566
Bibliografia : 1. Barr, A.C., and R.T. Pappalardo (2005), Onset of convection in the icy Galilean satellites: Influence of rheology, J. Geophys. Res. 110, E12005, DOI: 10.1029/2004JE002371.
2. Burch, J.L., J. Goldstein, W.S. Lewis, D.T. Young, A.J. Coates, M.K. Dougherty, and N. André (2007), Tethys and Dione as sources of outward-flowing plasma in Saturn's magnetosphere, Nature 447, 833-835, DOI: 10.1038/nature05906.
3. Castillo, J.C., D.L. Matson, C. Sotin, T.V. Johnson, J.I. Lunine, and P.C. Thomas (2006), A new understanding of the internal evolution of Saturnian icy satellites from Cassini observations, 37th Annual Lunar and Planetary Science Conference, March 13-17, 2006, League City, TX, abstr. no. 2200.
4. Chen, E.M.A., and F. Nimmo (2008), Thermal and orbital evolution of Tethys as constrained by surface observations, 39th Lunar and Planetary Science Conference, March 10-14, 2008, League City, TX, p. 1968.
5. Christensen, U. (1984), Convection with pressure and temperature-dependent non-Newtonian rheology, Geophys. J. Roy. Astron. Soc. 77, 343-384.
6. Czechowski, L. (1993), Theoretical approach to mantle convection. In: R. Teisseyre, L. Czechowski, and J. Leliwa-Kopystyński (eds.), Dynamics of the Earth's Evolution, Elsevier, Amsterdam, 161-271.
7. Czechowski, L. (2006a), Parameterized model of convection driven by tidal and radiogenic heating, Adv. Space Res. 38, 4, 788-793, DOI: 10.1016/j.asr.2005.12.013, presented also in COSPAR 2004, Session B0.5/D3.7/C3.4.
8. Czechowski, L. (2006b), Two models of parameterized convection for mediumsized icy satellites of Saturn, Acta Geophys. 54, 3, 280-302, DOI: 10.2478/s11600-006-0021-z.
9. Czechowski, L. (2006c), Endogenic activity of medium size icy satellites of Saturn and eccentricities of their orbits, 36th COSPAR Scientific Assembly, 16-23 July, 2006, Beijing, China, Session B0.3-0035.
10. Czechowski, L., and J. Leliwa-Kopystyński (2005), Convection driven by tidal and radiogenic heating in medium size icy satellites, Planet. Space Sci. 53, 7, 749-769, DOI: 10.1016/j.pss.2005.01.004.
11. Czechowski, L., and J. Leliwa-Kopystyński (2008), The Iapetus's ridge: Possible explanations of its origin, J. Adv. Space Res. 42, 1, 61-69, DOI: 10.1016/j.asr.2007.08.008.
12. Davaille, A., and C. Jaupart (1993), Transient high-Rayleigh-number thermal convection with large viscosity variations, J. Fluid Mech. 253, 141-166, DOI: 10.1017/S0022112093001740.
13. de Pater, I., and J.J. Lissauer (2001), Planetary Sciences, Cambridge Univ. Press, Cambridge, 528 pp.
14. Dumoulin, C., M.-P. Doin, and L. Fleitout (1999), Heat transport in stagnant lid convection with temperature- and pressure-dependent Newtonian or non-Newtonian rheology, J. Geophys. Res. 104, B6, 12759-12777, DOI: 10.1029/1999JB900110.
15. Durham, W.B., S.H. Kirby, and L.A. Stern (1993), Flow of ices in the ammoniawater system, J. Geophys. Res. 98, B10, 17667-17682, DOI: 10.1029/93JB01564.
16. Durham, W.B., S.H. Kirby, and L.A. Stern (1998), Rheology of planetary ices. In: B. Schmitt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publ., Dordrecht, 63-78.
17. Fischer, H.-J., and T. Spohn (1990), Thermal-orbital histories of viscoelastic models of Io (J1), Icarus 83, 1, 39-65, DOI: 10.1016/0019-1035(90)90005-T.
18. Forni, O., A. Coradini, and C. Federico (1991), Convection and lithospheric strength in Dione, an icy satellite of Saturn, Icarus 94, 1, 232-245, DOI: 10.1016/0019-1035(91)90153-K.
19. Gavrilov, S.V., and V.N. Zharkov (1977), Love numbers of the giant planets, Icarus 32, 4, 443-449, DOI: 10.1016/0019-1035(77)90015-X.
20. Goldsby, D.L., and D.L. Kohlstedt (1997), Grain boundary sliding in fine-grained ice I, Scr. Mater. 37, 9, 1399-1406, DOI: 10.1016/S1359-6462(97)00246-7.
21. Goldsby, D.L., and D.L. Kohlstedt (2001), Superplastic deformation of ice: Experimental observations, J. Geophys. Res. 106, B6, 11017-11030, DOI: 10.1029/2000JB900336.
22. Hobbs, P.V. (1974), Ice Physics, Oxford Univ. Press, New York.
23. Jacobson, R.A. (2004), The orbits of the major Saturnian satellites and the gravity field of Saturn from spacecraft and Earth-based observations, Astron. J. 128, 1, 492-501, DOI: 10.1086/421738.
24. Jurac, S., R.E. Johnson, J.D. Richardson, and C. Paranicas (2001), Satellite sputtering in Saturn's magnetosphere, Planet. Space Sci. 49, 3-4, 319-326, DOI: 10.1016/S0032-0633(00)00153-7.
25. Kargel, J.S., and S. Pozio (1996), The volcanic and tectonic history of Enceladus, Icarus 119, 2, 385-404, DOI: 10.1006/icar.1996.0026.
26. Kossacki, K.J., and J. Leliwa-Kopystyński (1993), Medium-sized icy satellites: thermal and structural evolution during accretion, Planet. Space Sci. 41, 10, 729-741, DOI: 10.1016/0032-0633(93)90115-I.
27. Leisner, J.S., K.K. Khurana, C.T. Russell, M.K. Dougherty, A.M. Persoon, X. Blanco-Cano, and R.J. Strangeway (2007), Observations of Enceladus and Dione as sources for Saturn's neutral cloud, 38th Lunar and Planetary Science Conference, 12-16 March, 2007, League City, TX, p. 1425.
28. Officer, C.B. (1974), Introduction to Theoretical Geophysics, Springer-Verlag, Berlin.
29. Meyer, J., and J. Wisdom (2007), Tidal heating in Enceladus, Icarus 188, 2, 535-539, DOI: 10.1016/j.icarus.2007.03.001.
30. Meyer, J., and J. Wisdom (2008), Tidal evolution of Mimas, Enceladus, and Dione, Icarus 193, 1, 213-223, DOI: 10.1016/j.icarus.2007.09.008.
31. Multhaup, K., and T. Spohn (2007), Stagnant lid convection in the mid-sized icy satellites of Saturn, Icarus 186, 2, 420-435, DOI: 10.1016/j.icarus.2006.09.001.
32. Peale, S.J., P. Cassen, and R.T. Reynolds (1979), Melting of Io by tidal dissipation, Science 203, 4383, 892-894, DOI: 10.1126/science.203.4383.892.
33. Peale, S.J. (2003), Tidally induced volcanism, Celest. Mech. and Dyn. Astr. 87, 1/2, 129-155, DOI: 10.1023/A:1026187917994.
34. Peltier, W.R., and G.T. Jarvis (1982), Whole mantle convection and the thermal evolution of the Earth, Phys. Earth Planet. Int. 29, 3-4, 281-304, DOI: 10.1016/0031-9201(82)90018-8.
35. Prentice, A.J.R. (2005), Saturn's icy moons: a model for their origin and bulk chemical composition, 36th Lunar and Planetary Science Conference, 14-18 March, 2005, League City, TX, 2378.pdf.
36. Poirier, J.P., L. Boloh, and P. Chambon (1983), Tidal dissipation in small viscoelastic ice moons: The case of Enceladus, Icarus 55, 2, 218-230, DOI: 10.1016/0019-1035(83)90076-3.
37. Porco, C.C., and 34 co-workers (2005), Cassini Imaging Science: Initial results on Phoebe and Iapetus, Science 307, 5713, 1237-1242, DOI: 10.1126/science.1107981.
38. Porco, C.C., and 24 co-workers (2006), Cassini observes the active south pole of Enceladus, Science 311, 5766, 1393-1401, DOI: 10.1126/science.1123013.
39. Roscoe, R. (1952), The viscosity of suspensions of rigid spheres, British J. Appl. Phys. 3, 8, 267-269, DOI: 10.1088/0508-3443/3/8/306.
40. Ross, M.N., and G. Schubert (1989), Viscoelastic models of tidal heating in Enceladus, Icarus 78, 1, 90-101, DOI: 10.1016/0019-1035(89)90071-7.
41. Rothery, D.A. (1992), Satellites of the Outer Planets, Clarendon Press, Oxford.
42. Schubert, G., T. Spohn, and R.T. Reynolds (1986), Thermal histories, compositions and internal structures of the moons of the solar system. In: J.A. Burns and M.S. Matthews (eds.), Satellites, Univ. of Arizona Press, Tucson, 224-292.
43. Schubert, G., D.L. Turcotte and P. Olson (2001), Mantle Convection in the Earth and Planets, Cambridge Univ. Press, Cambridge, 940 pp.
44. Sohl, F., H. Hussman, B. Schwentker, T. Spohn, and R.D. Lorenz (2003), Interior structure models and tidal Love numbers of Titan, J. Geophys. Res. 108, E12, 5130, DOI: 10.1029/2003JE002044.
45. Solomatov, V.S. (1995), Scaling of temperature- and stress-dependent viscosity convection, Phys. Fluids 7, 2, 266-274, DOI: 10.1063/1.868624.
46. Turcotte, D.L., and G. Schubert (1982), Geodynamics, J. Wiley & Sons, New York, 450 pp.
47. Wagner, R.J., G. Neukum, B. Giese, T. Roatsch, and U. Wolf (2007), Geomorphology of Saturn's satellite Rhea: preliminary implicatons from the Cassini ISS data, Geophys. Res. Abstracts 9, 09505.
Cytuj : Sobotka, J. ,Sedighi, M. ,Rezaei, K. ,Narayan, J. ,Rozmarynowska, A. ,Gnyp, A. ,Wiejacz, P. ,Karakostas, V. ,Mukhopadhyay, B. ,Tezcan, S. ,Orlecka-Sikora, B. ,Aniszewski, A. ,Al Farajat, M. ,Pietruczuk, A. ,Posyniak, M. ,Dziak-Jankowska, B. ,Singh, K. ,Czechowski, L. , Uniform parameterized theory of convection in medium sized icy satellites of Saturn. Acta Geophysica Vol. 57, no. 2/2009