Water vapour mixing ratio profiles over Hornsund, Arctic. Intercomparison of lidar and AIRS results

Czasopismo : Acta Geophysica
Tytuł artykułu : Water vapour mixing ratio profiles over Hornsund, Arctic. Intercomparison of lidar and AIRS results

Autorzy :
Belegante, L
National Institute of R&D for Optoelectronics, Magurele, Ilfov, Romania,
Nicola, D
National Institute of R&D for Optoelectronics, Magurele, Ilfov, Romania, nnicol@inoe.ro,
Nemuc, A
National Institute of R&D for Optoelectronics, Magurele, Ilfov, Romania,
Talianu, C
National Institute of R&D for Optoelectronics, Magurele, Ilfov, Romania,
Derognat, C
ARIA Technologies SA, Boulogne Billancourt, France,
Bloch, M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, mbloch@igf.edu.pl,
Karasiński, G.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Abstrakty : Since October 2009, a ground-based Raman lidar system has been deployed to perform a regular, night-time, vertical sounding of a water vapour content in the lower and middle troposphere above Polish Polar Station at Hornsund (77.00°N, 15.55°E, 10 m a.s.l.) in the Arctic. The water vapour mixing ratio profiles were obtained for the atmosphere up to 6 km altitude, based on analysis of inelastic Raman backscattering signals from nitrogen molecules (at 387 nm) and water vapour particles (at 407 nm), calibrated with the data from a local Vaisala’s automatic meteorological station. The results obtained for winter seasons in the years 2009-2012 are in a good general agreement with the results obtained from the atmospheric infrared sounder (AIRS) on the Aqua satellite.

Słowa kluczowe : para wodna, proporcje mieszania, lidar ramanowski, Arctic, teledetekcja, AIRS, water vapour, mixing ratio, Raman lidar, Arctic, remote sensing, AIRS,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2014
Numer : Vol. 62, no. 2
Strony : 290 – 301
Bibliografia : Chen, Y., J.R. Miller, J.A. Francis, and G.L. Russell (2011), Projected regime shift in Arctic cloud and water vapor feedbacks, Environ. Res. Lett. 6, 4, 044007, DOI: 10.1088/1748-9326/6/4/044007.
Coulson, K.L. (1959), Characteristic of the radiation emerging from the top of a Rayleigh atmosphere – I: Intensity and polarization, Planet. Space Sci. 1, 4, 265-276, DOI: 10.1016/0032-0633(59)90031-5.
Gerding, M., Ch. Ritter, M. Müller, and R. Neuber (2004), Tropospheric water vapor soundings by lidar at high Arctic latitudes, Atmos. Res. 71, 4, 289-302, DOI: 10.1016/j.atmosres.2004.07.002.
Harries, J.E. (1997), Atmospheric radiation and atmospheric humidity, Q. J. Roy. Meteorol. Soc. 123, 544, 2173-2186, DOI: 10.1002/qj.49712354402.
Hoffmann, A., C. Ritter, M. Stock, M. Shiobara, A. Lampert, M. Maturilli, T. Orgis, R. Neuber, and A. Herber (2009), Ground-based lidar measurements from Ny-Ålesund during ASTAR 2007, Atmos. Chem. Phys. 9, 22, 9059-9081, DOI: 10.5194/acp-9-9059-2009.
Karasiński, G., M. Posyniak, M. Bloch, P. Sobolewski, Ł. Małarzewski, and J. Soroka (2014), Lidar observations of volcanic dust over Polish Polar Station at Hornsund after eruptions of Eyjafjallajökull and Grimsvötn, Acta Geophys. 62, 2, 316-339, DOI: 10.2478/s11600-013-0183-4 (this issue).
Moss, A., R.J. Sica, E. McCullough, K. Strawbridge, K. Walker, and J. Drummond (2012), Calibration and validation of water vapour lidar measurements from Eureka, Nunavut using radiosondes and the Atmospheric Chemistry Experiment Fourier transform spectrometer, Atmos. Meas. Tech. Discuss. 5, 4, 5665-5689, DOI: 10.5194/amtd-5-5665-2012.
Neely, R.R., and J.P. Thayer (2011), Raman lidar profiling of tropospheric water vapor over Kangerlussuaq, Greenland, J. Atmos. Ocean. Tech. 28, 9, 1141-1148, DOI: 10.1175/JTECH-D-10-05021.1.
Nott, G.J., T.J. Duck, J.G. Doyle, M.E.W. Coffin, C. Perro, C.P. Thackray, J.R. Drummond, P.F. Fogal, E. McCullough, and R.J. Sica (2012), A remotely operated lidar for aerosol, temperature, and water vapor profiling in the High Arctic, J. Atmos. Ocean. Tech. 29, 2, 221-234, DOI: 10.1175/JTECH-D-11-00046.1.
Pietruczuk, A., and G. Karasiński (2010), LIDAR at Polish Polar Station, instrument design and first results. In: Reviewed Papers of 25th International Laser Radar Conference, 5-9 July 2010, St. Petersburg, Russia.
Serreze, M.C., A.P. Barrett, and J. Stroeve (2012), Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses, J. Geophys. Res. 117, D10, D10104, DOI: 10.1029/2011JD017421.
Stachlewska, I.S., and C. Ritter (2010), On retrieval of lidar extinction profiles using Two-Stream and Raman techniques, Atmos. Chem. Phys. 10, 6, 2813-2824, DOI: 10.5194/acp-10-2813-2010.
Stachlewska, I.S., R. Neuber, A. Lampert, C. Ritter, and G. Wehrle (2010), AMALi – the Airborne Mobile Aerosol Lidar for Arctic research, Atmos. Chem. Phys. 10, 6, 2947-2963, DOI: 10.5194/acp-10-2947-2010.
Veselovskii, I.A., H.K. Cha, D.H. Kim, S.C. Choi, and J.M. Lee (2000), Raman lidar for the study of liquid water and water vapor in the troposphere, Appl. Phys. B 71, 1, 113-117, DOI: 10.1007/s003400000290.
Whiteman, D.N. (2003), Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols, Appl. Optics 42, 15, 2593-2608, DOI: 10.1364/AO.42.002593.
Whiteman, D.N., K.D. Evans, B. Demoz, D.O.C. Starr, E.W. Eloranta, D. Tobin, W. Feltz, G.J. Jedlovec, S.I. Gutman, G.K. Schwemmer, M. Cadirola, S.H. Melfi, and F.J. Schmidlin (2001), Raman lidar measurements of water vapor and cirrus clouds during the passage of Hurricane Bonnie, J. Geophys. Res. 106, D6, 5211-5225, DOI: 10.1029/2000JD900621.
DOI :
Cytuj : Belegante, L ,Nicola, D ,Nemuc, A ,Talianu, C ,Derognat, C ,Bloch, M. ,Karasiński, G. , Water vapour mixing ratio profiles over Hornsund, Arctic. Intercomparison of lidar and AIRS results. Acta Geophysica Vol. 62, no. 2/2014
facebook