Wave moment geodynamics

Czasopismo : Acta Geophysica
Tytuł artykułu : Wave moment geodynamics

Autorzy :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia, vik@kscnet.ru,
Abstrakty : The work presents a review of natural-science representations on the rotary motion of matter and its piecewise structure. Development of dense GPS-networks allowed to experimentally confirm the concept of block structures of the geophysical environment and to prove rotary character of block movement. An analysis of both the migration of earthquake sources and the movement of sections of tectonic plates’ borders has allowed to reveal general properties of such movements and to prove their wave nature. It is shown that within the limits of rotational model, blocks and plates are interconnected among themselves by the elastic long-range fields forming a uniform planetary geodynamic field. It is offered to use the geodynamic solutions of rotational model in the one class of phenomena as a basis at the construction of a new geological paradigm – wave moment geodynamics.

Słowa kluczowe : block, plate, rotational wave model,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 2
Strony : 245 – 263
Bibliografia : Antonov, V.A., and B.P. Kondratèv (1995), On the conditional extremum for the gravitational energy inherent to the oblate spheroid, Astron. Astrophys. Trans.: J. Eurasian Astron. Soc. 7, 2-3, 173-176, DOI: 10.1080/10556799508205413.
Bykov, V.G. (2008), Stick-slip and strain waves in the physics of earthquake rupture: experiments and models, Acta Geophys. 56, 2, 270-285, DOI: 10.2478/s11600-008-0002-5.
Chandrasekhar, S., and P.H. Roberts (1963), The ellipticity of a slow rotating configuration, Astrophys. J. 138, 801-808, DOI: 10.1086/147686.
De Rubeis, V., Z. Czechowski, and R. Teisseyre (eds.) (2010), Synchronization and Triggering: from Fracture to Earthquake Processes, GeoPlanet: Earth and Planetary Sciences, Springer-Verlag, Berlin, 390 pp.
Elsasser, W.M. (1969), Convection and stress propagation in the upper mantle. In: S.K. Runcorn (ed.), Applications of Modern Physics to the Earth and Planetary Interiors, Wiley-Interscience, New York, 223-246.
Flesch, L.M., A.J. Haines, and W.E. Holt (2001), Dynamics of the India-Eurasia collision zone, J. Geophys. Res. 106, B8, 16435-16460, DOI: 10.1029/2001JB000208.
Fujiwhara, S., T. Tsujimura, and S. Kusamitsu (1933), On the Earth-Vortex, Echelon Faults and Allied Phenomena, Akademische Verlagsgesellschaft, Leipzig.
Gershenzon, N.I., V.G. Bykov, and G. Bambakidis (2009), Strain waves, earthquakes, slow earthquakes, and afterslip in the framework of the Frenkel–Kontorova model, Phys. Rev. E 79, 056601, DOI: 10.1103/PhysRevE.79.056601.
Heirtzler, J.R., G.O. Dickson, E.M. Herron, W.C. Pitman, and X. Le Pichon (1968), Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents, J. Geophys. Res. 73, 6, 2119-2136, DOI: 10.1029/JB073i006p02119.
Isacks, B., J. Oliver, and L.R. Sykes (1968), Seismology and the new global tectonics, J. Geophys. Res. 73, 133-179, DOI: 10.1029/JB073i018p05855.
Kuzikov, S.I., and Sh.A. Mukhamediev (2010), Structure of the present-day velocity field of the crust in the area of the Central-Asian GPS network, Izv. Phys. Solid Earth 46, 7, 584-601, DOI: 10.1134/S1069351310070037.
Landau, L.D., and E.M. Lifshitz (1976), Mechanics, Course of Theoretical Physics, Vol. 1, Buttroworth-Heinemann, Amsterdam.
Le Pichon, X. (1968), Sea-floor spreading and continental drift, J. Geophys. Res. 73, 12, 3661-3697, DOI: 10.1029/JB073i012p03661.
Lee, J.S. (1928), Some characteristic structural types in Eastern Asia and their Bering upon the problem of continental movements, Geol. Mag. 66, 9, 422-430, DOI: 10.1017/S001675680010531X.
Lee, W.H.K., M. Çelebi, M.I. Todorovska, and H. Igel (2009a), Introduction to the Special Issue on rotational seismology and engineering applications, Bull. Seismol. Soc. Am. 99, 2B, 945-957, DOI: 10.1785/0120080344.
Lee, W.H.K., H. Igel, and D. Trifunac (2009b), Recent advances in rotational seismology, Seismol. Res. Lett. 80, 3, 479-490, DOI: 10.1785/gssrl.80.3.479.
Magnitskiy, V.A. (1967), The Internal Structure and Physics of the Earth, NASA, Washington D.C.
Morgan, W.J. (1968), Rises, trenches, great faults and crustal blocks, J. Geophys. Res. 73, 6, 1959-1982, DOI: 10.1029/JB073i006p01959.
Nikolaevskiy, V.N. (1996), Geomechanics and Fluidodynamics, Kluwer Academic Publ., Dordrecht.
Replumaz, A., and P. Tapponnier (2003), Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks, J. Geophys. Res. 108, 2285, DOI: 10.1029/2001JB000661.
Riemann, B. (1861), Beitrag zu den Untersuchungen über die Bewegung eines flüssigen gleichartingen Ellipsoides, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 9.
Takeuchi, A. (1986), On the episodic vicissitude of tectonic stress field of the Cenozonic northeast Honshu arc, Japan. In: N. Nasu et al. (eds.), Formation of Active Ocean Margins, Kluwer Academic Publ., Tokyo, 443-465.
Teisseyre, R. (2010), Fluid theory with asymmetric molecular stresses: difference between vorticity and spin equations, Acta Geophys. 58, 6, 1056-1071, DOI: 10.2478/s11600-010-0029-2.
Teisseyre, R., and M. Górski (2011), Earthquake fragmentation and slip processes: Spin and shear-twist wave mosaic, Acta Geophys. 59, 3, 453-469, DOI: 10.2478/s11600-011-0001-9.
Thatcher, W. (1995), Microplate versus continuum descriptions of active tectonic deformation, J. Geophys. Res. 100, B3, 3885-3894, DOI: 10.1029/94JB03064.
Vikulin, A.V. (2006), Earth rotation, Elasticity and Geodynamics: Earthquake Wave Rotary Model. In: R. Teisseyre, M. Takeo, and E. Majewski (eds.), Earthquake Source Asymmetry, Structural Media and Rotation Effects, Springer, Berlin, 273-289, DOI: 10.1007/3-540-31337-0_20.
Vikulin, A.V. (2008), Energy and moment of the Earth’s rotational field, Russ. Geol. Geophys. 49, 422-429.
Vikulin, A.V. (2009), Physics of the Earth and Geodynamics, KamGU, Petropavlovsk-Kamchatsky, 463, www.kscnet.ru (in Russian).
Vikulin, A.V. (2011), Seismicity, Volcanism, Geodynamics: Selected Works, KamGU, Petropavlovsk-Kamchatskii, 407, www.kscnet.ru (in Russian).
Vikulin, A.V., and G.A. Ivanchin (2000), Rotational model of seismic process, Russ. J. Pac. Geol. 15, 6, 1225-1240.
Vikulin, A.V., and A.N. Krolevets (2002), Seismotectonic processes and the Chandler oscillation, Acta Geophys. Pol. 50, 3, 395-411.
Vikulin, A.V., and T.Yu. Tveritinova (2008), Momentum-wave nature of geological medium, Mosc. Univ. Geol. Bull. 63, 6, 368-371, DOI: 10.3103/S0145875208060033.
Vikulin, A.V., A.G. Ivanchin, and T.Yu. Tveritinova (2011), Moment vortex geodynamics, Mosc. Univ. Geol. Bull. 66, 1, 29-36, DOI: 10.3103/S014587521101008X.
Xie, X.-S. (2004), Discussion on rotational tectonics stress field and the genesis of circum-Ordos landmass fault system, Acta Seismol. Sinica 17, 4, 464-472.
Cytuj : Vitkulin, A. V. , Wave moment geodynamics. Acta Geophysica Vol. 61, no. 2/2013