Journal : Acta Geophysica
Article : Wavefield downward extrapolation for migration velocity analysis on Marmousi data-set

Authors :
Teisseyre, R.
Institute of Geophysics, Polish Academy of Sciences ul. Księcia Janusza 64, 01-452 Warszawa, Poland, rt@igf.edu.pl,
Pilchin, A.N.
Universal Geoscience and Environmental Consulting Company, 205 Hilda Ave., Willowdale, Ontario, M2M 4B1, Canada, apilchin1521@rogers.com,
Bubnov, V.P.
North-West Ltd., Podolskih kursantov 24D, 117546 Moscow, Russia, pavel_pushkarev@mtu-net.ru,
Bojdys, G.
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland, bojdys@geol.agh.edu.pl,
Essa, K.S.
Geophysics Department, Faculty of Science, Cairo University, Giza, Egypt, khalid_sa_essa@yahoo.com,
Pietsch, K.
Department of Geophysics, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland, pietsch@agh.edu.pl,
Kostecki, A.
Oil and Gas Institute, ul. Lubicz 25A, 31-503 Kraków, Poland, kostecki@inig.pl,
Abstract : The authors present a method for estimation of interval velocities using the downward continuation of the wavefield to perform layer-stripping migration ve-locity analysis. The generalized, phase-shift migration MG(F-K) in wavenumber–frequency domain was used for fulltime downward extrapolation of the wavefield. Such downward depth extrapolation accounts for strong changes of velocity in lat-eral and vertical directions and helps in correct positioning of the wavefield image in complex structures. Determination of velocity is the recursive process which means that the wavefield on depth level zn-1 (n = 0, 1, …) is an input data-set for determination of velocity on level zn. The velocity v[x, zn – zn-1] can be thus treated as interval velocity Δzn=zn-zn-1 step. This method was tested on synthetic Marmousi data-set and showed satisfactory results for complex, inhomogeneous media.

Keywords : wavefield downward extrapolation, Marmousi data-set, migration velocity analysis, seismic migration,
Publishing house : Instytut Geofizyki PAN
Publication date : 2007
Number : Vol. 55, no. 2
Page : 209 – 221

Bibliography
: Al-Yahya, K., 1989, Velocity analysis by iterative profile migration, Geophysics 54, 718-729.
Berkhout, A.J., 1997, Pushing the limits of seismic imaging. Part II: Integration of prestack migration, velocity estimation, and AVO analysis, Geophysics 62, 954-969.
Cox, H.L.H., F.P.J. Oomes, C.P.A. Wapenaar and A.J. Berkhout, 1988, Verification of macro subsurface model using a shot record approach, 58th Ann. Intern. Mtg, Sot. Expl. Geophys., Expanded Abstract 904-908.
Deregowski, S.M., 1990, Common-offset migrations and velocity analysis, First Break 8, 6, 225-234.
Doherty, S., and J. Clearbout, 1974, Velocity analysis based on the wave equation, Geophysics 37, 741-768.
Fomel, S.B., 1994, Method of velocity continuation in the problem of temporal seismic migration, Russian Geology and Geophysics 35, 5, 100-111.
Foss, S., B. Ursin and H. Sollid, 2004, A practical approach to PP seismic angle tomography, Geophys. Prosp. 52, 663-669.
Hubral, P., M. Tygiel and J. Schleicher, 1996, Seismic image waves, Geophys. J. Int. 125, 431-442.
Kosloff, D., L. Sherwood, Z. Koren, E. Machat and Y. Falkowitz, 1996, Velocity and interface depth determination by tomography of depth migrated gathers, Geophysics 61, 1511-1523.
Kostecki, A., 1979, The method of determination effective velocity based on seismic migration, Pr. Inst. Górn. Naft. i Gaz. 19 (in Polish).
Kostecki, A., 1994, Algorithm of prestack migration of wavefield, Pr. Inst. Górn. Naft. i Gaz., Techn. Konferencja, Mogilany-Kraków (in Polish).
Kostecki, A., and A. Półchłopek, 1998, Stable depth extrapolation of seismic wavefields by a Neumann series, Geophysics 63, 6, 2063-2071.
Lafond, C., and A. Levander, 1993, Migration moveout analysis and depth focusing, Geophysics 58, 91-100.
Lambare, G., M. Alerini, R. Baina and P. Podwin, 2004, Stereotomography: a semi-automatic approach for velocity macromodel estimation, Geophys. Prosp. 52, 671-681.
Lee, W., and L. Zhang, 1992, Residual shot profile migration, Geophysics 59, 815-822. Liu, Z., 1997, An analytical approach to migration velocity analysis, Geophysics 62, 1235-1249.
Liu, Z., and N. Bleistein, 1995, Migration velocity analysis, theory and an iterative algorithm, Geophysics 60, 142-153.
Lynn, W., and I. Claerbout, 1982, Velocity estimation in laterally varying media, Geophysics 47, 884-897.
MacKay, S., and R. Abma, 1992, Imaging and velocity estimation with depth-focusing analysis, Geophysics 57, 1608-1622.
Murphy, G., and S. Gray, 1999, Manual seismic reflection tomography, Geophysics 64, 1546-1552.
Sava, P., and B. Biondi, B., 2004, Wave-equation migration velocity analysis. I. Theory, Geophys. Prosp. 52, 593-606.
Schleicher, I., A. Novais and F. Munerato, 2004, Migration velocity analysis by depth imagewave remigration: first results, Geophys. Prosp. 52, 559-573.
Stolt, R.H., 1978, Migration by Fourier transform, Geophysics 43, 23-48.
Stork, C., 1992, Reflection tomography in the postmigrated domain, Geophysics 57, 680-692.
Stork, C., and R. Clayton, 1991, An implementation of tomographic velocity analysis, Geophysics 56, 472-482.
Versteeg, R., and G. Grau, 1991, The Marmousi experience, Proceedings of the 1990 EAEG Workshop on “Practical Aspects of Seismic Data Inversion”, 52nd EAEG Meeting.
DOI :
Qute : Teisseyre, R. ,Pilchin, A.N. ,Bubnov, V.P. ,Bojdys, G. ,Essa, K.S. ,Pietsch, K. ,Kostecki, A. ,Kostecki, A. , Wavefield downward extrapolation for migration velocity analysis on Marmousi data-set. Acta Geophysica Vol. 55, no. 2/2007
facebook