Wybrane metody otrzymywania porowatych rusztowań w inżynierii tkankowej

Czasopismo : Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna
Tytuł artykułu : Wybrane metody otrzymywania porowatych rusztowań w inżynierii tkankowej

Autorzy :
Cichoń-Bańkowska, K.
Zachodniopomorski Uniwersytet Technologiczny, Wydział Elektryczny, Katedra Zastosowań Informatyki, 70-313 Szczecin, ul. Sikorskiego 37,
Ziółkowski, M.
Zachodniopomorski Uniwersytet Technologiczny, Wydział Elektryczny, Katedra Elektrotechniki Teoretycznej i Informatyki, 70-313 Szczecin, ul. Sikorskiego 37,
Gratkowski, S.
Zachodniopomorski Uniwersytet Technologiczny, Wydział Elektryczny, Katedra Elektrotechniki Teoretycznej i Informatyki, 70-313 Szczecin, ul. Sikorskiego 37,
Stawicki, K.
Zachodniopomorski Uniwersytet Technologiczny, Wydział Elektryczny, Katedra Elektrotechniki Teoretycznej i Informatyki, 70-313 Szczecin, ul. Sikorskiego 37,
Brykalski, A.
Zachodniopomorski Uniwersytet Technologiczny, Wydział Elektryczny, Katedra Zastosowań Informatyki, 70-313 Szczecin, ul. Sikorskiego 37,
Szymanik, B.
Zachodniopomorski Uniwersytet Technologiczny, Wydział Elektryczny, Katedra Elektrotechniki Teoretycznej i Informatyki, 70-313 Szczecin, ul. Sikorskiego 37,
Żywica, A.
Zachodniopomorski Uniwersytet Technologiczny, Wydział Elektryczny, Katedra Elektrotechniki Teoretycznej i Informatyki, 70-313 Szczecin, ul. Sikorskiego 37,
Dziadek, M.
Akademia Górniczo-Hutnicza w Krakowie, Wydział Inżynierii Materiałowej i Ceramiki, Katedra Fizykochemii i Modelowania Procesów, 30-059 Kraków, al. Mickiewicza 30,
Cholewa-Kowalska, K.
Akademia Górniczo-Hutnicza w Krakowie, Wydział Inżynierii Materiałowej i Ceramiki, Katedra Technologii Szkła i Powłok Amorficznych, 30-059 Kraków, al. Mickiewicza 30,
Abstrakty : Inżynieria tkankowa jest interdyscyplinarną dziedziną, której celem jest opracowanie biologicznych substytutów umożliwiających regenerację lub zastąpienie uszkodzonych lub zmienionych chorobowo tkanek czy organów. Dąży się do tego, aby rusztowania tkankowe posiadały wymagane korzystne cechy oraz spełniały przynajmniej niektóre funkcje naturalnej macierzy zewnątrzkomórkowej. Jednym z najważniejszych etapów opracowania podłoży jest projektowanie i wytwarzanie przestrzennej, wysoko porowatej struktury o pożądanym kształcie i rozmiarze porów. W niniejszym opracowaniu przedstawiono stan wiedzy na temat najpopular-niejszych metod wytwarzania przestrzennych rusztowań w inżynierii tkankowej, do których należą: odlewanie z roztworu z wymywaniem porogenu, termicznie indukowana separacja faz oraz separacja faz w układzie rozpuszczalnik–nierozpuszczalnik.

Tissue engineering is an interdisciplinary field aiming to develop of biological substitutes, that are able to regenerate or replace damaged or diseased tissues or organs. The approach to tissue engineering is to use scaffolds that mimics multiple advantageous characteristics of the native extracellular matrix. One of the most important stages of building scaffolds is the design and preparation of a porous, three-dimensional structure with high porosity, and required size and shape of the pores. In this review, state of the art of the most common fabrication methods of three-dimensional biomimetic scaffolds are presented that include: solvent casting particle leaching (SCPL), thermally induced phase separation (TIPS), and liquid induced phase separation (LIPS).

Słowa kluczowe : inżynieria tkankowa, rusztowania porowate, termicznie indukowana separacja faz, separacja faz w układzie rozpuszczalnik–nierozpuszczalnik, tissue engineering, porous scaffolds, thermally induced phase separation, liquid induced phase separation,
Wydawnictwo : Indygo Zahir Media
Rocznik : 2014
Numer : Vol. 20, nr 4
Strony : 193 – 203
Bibliografia : 1 Y. Tabata: Significance of release technology in tissue engineering, Drug Discovery Today, vol. 10, 2005, s. 1639–1646.
2 B. Chan, B. Leong: Scaffolding in tissue engineering: general approaches and tissue-specific considerations, European Spine Journal, vol. 17, 2008, s. 467–479.
3 S. Liao, C. Chan, S. Ramakrishna: Stem cells and biomimetic materials strategies for tissue engineering, Materials Science and Engineering C, vol. 28, 2008, s. 1189–1202.
4 K. Kima, I. Parkb, T. Hoshibac, H. Jiangd: Design of artificial extracellular matrices for tissue engineering, Progress in Polymer Science, vol. 36, 2011, s. 238–268.
5 T. Kim, H. Shin, D. Lim, Biomimetic scaffolds for tissue engineering, Advanced Functional Materials, vol. 22, 2012, s. 2446–2468.
6 B. Kim, D. Mooney: Development of biocompatible synthetic extracellular matrices for tissue engineering, Tibtech, vol. 16, 1998, s. 224–230.
7 F. Rosso, A. Giordano, M. Barbarisi, A. Barbarisi: From cell–ECM interactions to tissue engineering, Journal of Cellular Physiology, vol. 199, 2004, s. 174–180.
8 C. Liu, Z. Xia, J. Czernuszka: Design and development of three-dimensional scaffolds for tissue engineering, Chemical Engineering Research and Design, vol. 85, 2008, s. 1051–1064.
9 S. Yang, K. Leong, Z. Du, C. Chua: The design of scaffolds for use in tissue engineering part I. Traditional factors, Tissue Engineering, vol. 7, 2001, s. 679–689.
10 S. Owen, M. Shoichet: Design of three-dimensional biomimetic scaffolds, Journal of Biomedical Materials Research A, vol. 94, 2010, s. 1321–1331.
11 A. Seidi, M. Ramalingam, I. Elloumi-Hannachi, S. Ostrovidov: Gradient biomaterials for soft-to-hard interface tissue engineering, Acta Biomaterialia, vol. 7, 2011, s. 1441–1451.
12 P. Ma: Biomimetic materials for tissue engineering, Advanced Drug Delivery Reviews, vol. 60, 2008, s. 184–198.
13 G. Chan, D. Mooney: New materials for tissue engineering: towards greater control over the biological response, Trends in Biotechnology, vol. 26, 2008, s. 382–392.
14 I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, J. Kenny: Biodegradable polymer matrix nanocomposites for tissue engineering: A review, Polymer Degradation and Stability, vol. 95, 2010, s. 2126–2146.
15 M. Vert, S. Li, G. Spenlehauer, P. Guerin: Bioresorbability and biocompatibility of aliphatic polyesters, Journal of Materials Science: Materials in Medicine, vol. 3, 1992, s. 432–446.
16 B. Stevens, Y. Yang, A. Mohandas, B. Stucker, K. Nguyen: A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 85, 2008, s. 573–582.
17 J. Reignier, M. Huneault: Preparation of interconnected polycaprolactone porous scaffolds by a combination of polymer and salt particulate leaching, Polymer, vol. 47, 2006, s. 4703–4717.
18 A. Salgado, O. Coutinho, R. Reis: Bone tissue engineering: state of the art and future trends, Macromolecular Bioscience, vol. 4, 2004, s. 743–765.
19 Q. Cai, J. Yang, J. Bei: A novel porous cells scaffold made of polylactide–dextran blend by combining phase-separation and particle-leaching techniques, Biomaterials , vol. 23, 2002, s. 4483–4492.
20 E. Sachlos, J. Czernuszka: Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds, European Cells and Materials, vol. 5, 2003, s. 29–40.
21 V. Cannillo, F. Chiellini, P. Fabbri: Production of Bioglass 45S5 – Polycaprolactone composite scaffolds, Composite Structures, vol. 92, 2010, s. 1823–1832.
22 T. Kim, H. Shin, D. Lim: Biomimetic scaffolds for tissue engineering, Advanced Functional Materials, vol. 22, 2012, s. 2446–2468.
23 X. Li, J. Shi, X. Dong, L. Zhang, H. Zeng: A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior, Journal of Biomedical Materials Research Part A, vol. 84, 2008, s. 84–91.
24 H. Yu, H. Matthew, P. Wooley: Effect of porosity and pore size on microstructures and mechanical properties of poly-epsilon-caprolactone–hydroxyapatite composites, Journal of Biomedical Materials Research Part A: Applied Biomaterials, vol. 86, 2008, s. 541–547.
25 V. Guarino, F. Causa, P. Netti, G. Ciapetti, S. Pagani: The role of hydroxyapatite as solid signal on performance of PCL porous scaffolds for bone tissue regeneration, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 86, 2008, s. 548–557.
26 A. Mikos, J. Temenoff: Formation of highly porous biodegradable scaffolds for tissue engineering, Electronic Journal of Biotechnology, vol. 3, 2000, s. 1–6.
27 P. van de Witte, P. Dijkstra, J. van den Berg, J. Feijen: Phase separation processes in polymer solutions in relation to membrane formation, Journal of Membrane Science, vol. 117, 1996, s. 1–31.
28 V. Guarino, L. Ambrosio: Temperature-driven processing techniques for manufacturing fully interconnected porous scaffolds in bone tissue engineering, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 224, 2010, s. 1–13.
29 S. Wislet-Gendebien: Advances in Regenerative Medicine, InTech, Rijeka, 2011.
30 M. Di Luccio, R. Nobrega, C. Borges: Microporous anisotropic phase inversion membranes from bisphenol- A polycarbonate: study of a ternary system, Polymer, vol. 41, 2000, s. 4309–4315.
31 Q. Chen, A. Roether, A. Boccaccini: Tissue engineering scaffolds from bioactive glass and composite materials, Topics in Tissue Engineering, vol. 4, 2008, s. 1–27.
32 T. Lu, Y. Li, T. Chen: Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering, International Journal of Nanomedicine, vol. 8, 2013, s. 337–350.
33 M. Woodruff, D. Hutmacher: The return of a forgotten polymer – Polycaprolactone in the 21st century, Progress in Polymer Science, vol. 35, 2010, s. 1217–1256.
34 N. Sultana: Biodegradable Polymer-based Scaffolds for Bone Tissue Engineering, Springer, Berlin 2013.
35 X. Ma: Scaffolds for tissue fabrication, Materials Today, vol. 3, 2004, s. 30–40.
36 C. Schugens, V. Maquet, C. Grandfils, R. Jerome, P. Teyssie: Biodegradable and macroporous polylactide implants for cell transplantation: 1. Preparation of macroporous polylactide supports by solid-liquid phase separation, Polymer, vol. 37, 1996, s. 1027–1038.
37 G. Hou, D. Grijpma, J. Feijen: Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique, Biomaterials, vol. 24, 2003, s. 1937–1947.
38 J. de Groot, A. Nijenhuis, P. Bruin: Use of porous biodegradable polymer implants in meniscus reconstruction. 1) Preparation of porous biodegradable polyurethanes for the reconstruction of meniscus lesions, Colloid & Polymer Science, vol. 268, 1990, s. 1073–1081.
39 P. Ma, R. Zhang: Microtubular architecture of biodegradable polymer scaffolds, Journal of Biomedical Materials Research, vol. 56, 2001, s. 469–477.
40 T. Young, L. Chen, L. Cheng; Membranes with a microparticulate morphology, Polymer, 1996, vol. 37, s. 1305–1310.
41 A.G. Coombes, S.C. Rizzi, M. Williamson, J.E. Barralet: Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery, Biomaterials, vol. 25, 2004, s. 315–325.
42 C. Yeh, Y. Li, P. H. Chiang, C. Huan, Y. Wang, H. Chang: Characterizing microporous PCL matrices for application of tissue engineering, Journal of Medical and Biological Engineering, vol. 29, 2009, s. 92–97.
43 J. Wijmans, J. Kant, M. Mulder, C. Smolders: Phase separation phenomena in solutions of polysulfone in mixtures of a solvent and a nonsolvent: relationship with membrane formation, Polymer, vol. 26, 1985, s. 1539–1545.
44 A. Denga, A. Chena, S. Wanga, Y. Li, Y. Liua, X. Chenga, Z. Zhaoc, D. Lin: Porous nanostructured poly-l-lactide scaffolds prepared by phase inversion using supercritical CO2 as a nonsolvent in the presence of ammonium bicarbonate particles, The Journal of Supercritical Fluids, vol. 77, 2013, s. 110–116.
DOI :
Cytuj : Cichoń-Bańkowska, K. ,Ziółkowski, M. ,Gratkowski, S. ,Stawicki, K. ,Brykalski, A. ,Szymanik, B. ,Żywica, A. ,Dziadek, M. ,Cholewa-Kowalska, K. , Wybrane metody otrzymywania porowatych rusztowań w inżynierii tkankowej. Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna Vol. 20, nr 4/2014
facebook