Category: Vol. 60, no. 3

Statistical mechanics in earth physics and natural hazards

Czasopismo : Acta Geophysica
Tytuł artykułu : Statistical mechanics in earth physics and natural hazards

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Abstrakty :
Słowa kluczowe : statistical mechanics, earth physics, natural hazard,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 499 – 501
Bibliografia : Main, I. (1996), Statistical physics, seismogenesis, and seismic hazard, Rev. Geophys. 34, 4, 433-462, DOI: 10.1029/96RG02808.
Main, I.G., G. O’Brien, and J.R. Henderson (2000), Statistical physics of earthquakes: Comparison of distribution exponents for source area and potential energy and the dynamic emergence of log-periodic energy quanta, J. Geophys. Res. 105, B3, 6105-6126, DOI: 10.1029/1999JB900396.
Rundle, J.B., D.L. Turcotte, R. Shcherbakov, W. Klein, and C. Sammis (2003), Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems, Rev. Geophys. 41, 1019, DOI: 10.1029/2003RG 000135.
Tsallis, C. (1988), Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys. 52, 1-2, 479-487, DOI: 10.1007/BF01016429.
DOI :
Cytuj : Vallianatos, F. , Statistical mechanics in earth physics and natural hazards. Acta Geophysica Vol. 60, no. 3/2012

Nonadditive entropy Sq and nonextensive statistical mechanics: Applications in geophysics and elsewhere

Czasopismo : Acta Geophysica
Tytuł artykułu : Nonadditive entropy Sq and nonextensive statistical mechanics: Applications in geophysics and elsewhere

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Abstrakty : The celebrated Boltzmann-Gibbs (BG) entropy, SBG = -kΣIpiln pi , and associated statistical mechanics are essentially based on hypotheses such as ergodicity, i.e., when ensemble averages coincide with time averages. This dynamical simplification occurs in classical systems (and quantum counterparts) whose microscopic evolution is governed by a positive largest Lyapunov exponent (LLE). Under such circumstances, relevant microscopic variables behave, from the probabilistic viewpoint, as (nearly) independent. Many phenomena exist, however, in natural, artificial and social systems (geophysics, astrophysics, biophysics, economics, and others) that violate ergodicity. To cover a (possibly) wide class of such systems, a generalization (nonextensive statistical mechanics) of the BG theory was proposed in 1988. This theory is based on nonadditive entropies such as Sq=k 1-Σipqi / q-1 (S1=SBG) . Here we comment some central aspects of this theory, and briefly review typical predictions, verifications and applications in geophysics and elsewhere, as illustrated through theoretical, experimental, observational, and computational results.

Słowa kluczowe : nonadditive entropy, nonextensive statistical mechanics, complex systems,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 502 – 525
Bibliografia : Abe, S., N.V. Sarlis, E.S. Skordas, H. Tanaka, and P.A. Varotsos (2005), Origin of the usefulness of the natural-time representation of complex time series, Phys. Rev. Lett. 94, 17, 170601, DOI: 10.1103/PhysRevLett.94.170601.
Afsar, O., and U. Tirnakli (2010), Probability densities for the sums of iterates of the sine-circle map in the vicinity of the quasiperiodic edge of chaos, Phys. Rev. E 82, 4, 046210, DOI: 10.1103/PhysRevE.82.046210.
ALICE Collaboration, K. Aamodt, N. Abel, U. Abeysekara, A. Abrahantes Quintana, A. Abramyan, D. Adamová, M.M. Aggarwal, G. Aglieri Rinella, and A.G. Agocs, et al. (2011), Production of pions, kaons and protons in pp collisions at s = 900 GeV with ALICE at the LHC, Eur. Phys. J. C 71, 6, 1655, DOI: 10.1140/epjc/s10052-011-1655-9.
Añaños, G.F.J., and C. Tsallis (2004), Ensemble averages and nonextensivity at the edge of chaos of one-dimensional maps, Phys. Rev. Lett. 93, 2, 020601, DOI: 10.1103/PhysRevLett.93.020601.
Añaños, G.F.J., F. Baldovin, and C. Tsallis (2005), Anomalous sensitivity to initial conditions and entropy production in standard maps: Nonextensive approach, Eur. Phys. J. B 46, 3, 409-417, DOI: 10.1140/epjb/e2005-00269-1.
Anastasiadis, A.D., and G.D. Magoulas (2004), Nonextensive statistical mechanics for hybrid learning of neural networks, Physica A 344, 3-4, 372-382, DOI: 10.1016/j.physa.2004.06.005.
Anastasiadis, A.D., M.P. de Albuquerque, M.P. de Albuquerque, and D.B. Mussi (2010), Tsallis q-expo-nential describes the distribution of scientific citations – a new characterization of the impact, Scientometrics 83, 1, 205-218, DOI: 10.1007/s11192-009-0023-0.
Andrade, Jr., J.S., G.F.T. da Silva, A.A. Moreira, F.D. Nobre, and E.M.F. Curado (2010), Thermostatistics of overdamped motion of interacting particles, Phys. Rev. Lett. 105, 26, 260601, DOI: 10.1103/PhysRevLett.105.260601.
Andricioaei, I., and J.E. Straub (1996), Generalized simulated annealing algorithms using Tsallis statistics: Application to conformational optimization of a tetrapeptide, Phys. Rev. E 53, 4, R3055-R3058, DOI: 10.1103/ Phys-RevE.53.R3055.
Anteneodo, C., and C. Tsallis (1998), Breakdown of the exponential sensitivity to the initial conditions: Role of the range of the interaction, Phys. Rev. Lett. 80, 24, 5313-5316, DOI: 10.1103/PhysRevLett.80.5313.
Arevalo, R., A. Garcimartin, and D. Maza (2007), Anomalous diffusion in silo drainage, Eur. Phys. J. E 23, 191-198, DOI: 10.1140/epje/i2006-10174-1.
ATLAS Collaboration (2010), Charged-particle multiplicities in pp interactions at √s = 900 GeV measured with the ATLAS detector at the LHC, Phys. Letter. B 688, 1, 21-42, DOI: 10.1016/j.physletb.2010.03.064.
Bakar, B., and U. Tirnakli (2010), Return distributions in dog-flea model revisited, Physica A 389, 17, 3382-3386, DOI: 10.1016/j.physa.2010.04.037.
Balasis, G., I.A. Daglis, C. Papadimitriou, M. Kalimeri, A. Anastasiadis, and K. Eftaxias (2009), Investigating dynamical complexity in the magnetosphere using various entropy measures, J. Geophys. Res. 114, A00D06, DOI: 10.1029/2008JA014035.
Baldovin, F., and A. Robledo (2004), Nonextensive Pesin identity: Exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map, Phys. Rev. E 69, 045202(R), DOI: 10.1103/PhysRevE.69.045202.
Baris Bağci, G., and U. Tirnakli (2009), Self-organization in dissipative optical lattices, Chaos 19, 3, 033113, DOI: 10.1063/1.3194107.
Beck, C., and E.G.D. Cohen (2003), Superstatistics, Physica A 322, 1, 267-275, DOI: 10.1016/S0378-4371.
Bediaga, I., E.M.F. Curado, and J.M. de Miranda (2000), A nonextensive thermodynamical equilibrium approach in e+e- → hadrons, Physica A 286, 156-163, DOI: 10.1016/S0378-4371(00)00368-X.
Biró, T.S., G. Purcsel, and K. Ürmössy (2009), Non-extensive approach to quark matter, Eur. Phys. J. A 40, 3, 325-340, DOI: 10.1140/epja/i2009-10806-6.
Boghosian, B.M. (1996), Thermodynamic description of the relaxation of twodimensional turbulence using Tsallis statistics, Phys. Rev. E 53, 5, 4754-4763, DOI: 10.1103/PhysRevE.53.4754.
Bologna, M., C. Tsallis, and P. Grigolini (2000), Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions, Phys. Rev. E 62, 2, 2213-2218, DOI: 10.1103/PhysRevE.62.2213.
Boon, J.P., and C. Tsallis (eds.) (2005), Nonextensive Statistical Mechanics: New Trends, New Perspectives. Special Issue, Europhys. News 36, 6, DOI: 10.1051/epn:2005601.
Borges, E.P. (2004), Empirical nonextensive laws for the county distribution of total personal income and gross domestic product, Physica A 334, 255-266, DOI: 10.1016/j.physa.2003.11.003.
Borges, E.P., C. Tsallis, G.F.J. Ananos, and P.M.C. de Oliveira (2002), Nonequilibrium probabilistic dynamics at the logistic map edge of chaos, Phys. Rev. Lett. 89, 254103, DOI: 10.1103/PhysRevLett.89.254103.
Borland, L. (2002), Option pricing formulas based on a non-Gaussian stock price model, Phys. Rev. Lett. 89, 098701, DOI: 10.1103/PhysRevLett.89.098701.
Borland, L. (2005), Long-range memory and nonextensivity in financial markets, Europhys. News 36, 6, 228-231, DOI: 10.1051/epn:2005615.
Borland, L., and J.-P. Bouchaud (2004), A non-Gaussian option pricing model with skew, Quant. Finance 7, 6, 703, DOI: 10.1080/14697680701790014.
Budde, C., D. Prato, and M. Ré (2001), Superdiffusion in decoupled continuous time random walks, Phys. Lett. A 283, 5-6, 309-312, DOI: 10.1016/S0375-9601(01)00234-1.
Burlaga, L.F., and N.F. Ness (2011), Transition from the sector zone to the unipolar zone in the heliosheath: Voyager 2 magnetic field observations, Astrophys. J. 737, 1, 35, DOI: 10.1088/0004-637X/737/1/35.
Burlaga, L.F., and A.F. Viñas (2005), Triangle for the entropic index q of nonextensive statistical mechanics observed by Voyager 1 in the distant heliosphere, Physica A 356, 1-2, 375-384, DOI: 10.1016/j.physa.2005.06.065.
Caride, A.O., C. Tsallis, and S.I. Zanette (1983), Criticality of the anisotropic quantum Heisenberg model on a self-dual hierarchical lattice, Phys. Rev. Lett. 51, 3, 145-147, DOI: 10.1103/PhysRevLett.51.145.
Caruso, F., and C. Tsallis (2008), Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics, Phys. Rev. E 78, 2, 021102, DOI: 10.1103/PhysRevE.78.021102.
Caruso, F., A. Pluchino, V. Latora, S. Vinciguerra, and A. Rapisarda (2007), Analysis of self-organized criticality in the Olami-Feder-Christensen model and in real earthquakes, Phys. Rev. E 75, 5, 055101(R), DOI: 10.1103/PhysRevE.75.055101.
Carvalho, J.C., R. Silva, J.D. do Nascimento, and J.R. de Medeiros (2008), Power law statistics and stellar rotational velocities in the Pleiades, Europhys. Lett. 84, 5, 59001, DOI: 10.1209/0295-5075/84/59001.
Carvalho, J.C., J.D. do Nascimento, R. Silva, and J.R. De Medeiros (2009), Nongaussian statistics and stellar rotational velocities of main-sequence field stars, Astrophys. J. Lett. 696, 1, L48, DOI: 10.1088/0004-637X/696/1/L48.
Celikoglu, A., U. Tirnakli, and S.M. Duarte Queirós (2010), Analysis of return distributions in the coherent noise model, Phys. Rev. E 82, 2, 021124, DOI: 10.1103/PhysRevE.82.021124.
CMS Collaboration (2010), Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at s = 7 TeV, Phys. Rev. Lett. 105, 2, 022002, DOI: 10.1103/PhysRevLett.105.022002.
Curado, E.M.F., and C. Tsallis (1991), Generalized statistical mechanics: connection with thermodynamics, J. Phys. A 24, L69-L72, DOI: 10.1088/0305-4470/24/2/004 (Corrigenda: DOI: 10.1088/0305-4470/25/4/038).
Daniels, K.E., C. Beck, and E. Bodenschatz (2004), Defect turbulence and generalized statistical mechanics, Physica D 193, 1-4, 208-217, DOI: 10.1016/j.physd.2004.01.033.
De Souza, A.M.C., and C. Tsallis (1997), Student’s t- and r-distributions: Unified derivation from an entropic variational principle, Physica A, 236, 1-2, 52-57, DOI: 10.1016/S0378-4371(96)00395-0.
De Voe, R.G. (2009), Power-law distributions for a trapped ion interacting with a classical buffer gas, Phys. Rev. Lett. 102, 6, 063001, DOI: 10.1103/PhysRevLett.102.063001.
dos Santos, B.C., and C. Tsallis (2010), Time evolution towards q-Gaussian stationary states through unified Itô-Stratonovich stochastic equation, Phys. Rev. E 82, 6, 061119, DOI: 10.1103/PhysRevE.82.061119.
Douglas, P., S. Bergamini, and F. Renzoni (2006), Tunable Tsallis distributions in dissipative optical lattices, Phys. Rev. Lett. 96, 11, 110601, DOI: 10.1103/PhysRevLett.96.110601.
Duarte Queirós, S.M. (2005a), On non-Gaussianity and dependence in financial in time series: A nonextensive approach, Quant. Finance 5, 5, 475-487, DOI: 10.1080/14697680500244403.
Duarte Queirós, S.M. (2005b), On the emergence of a generalised Gamma distribution. Application to traded volume in financial markets, Europhys. Lett. 71, 3, 339, DOI: 10.1209/epl/i2005-10109-0.
Eftaxias, K. (2010), Footprints of nonextensive Tsallis statistics, selfaffinity and universality in the preparation of the L’Aquila earthquake hidden in a pre-seismic EM emission, Physica A 389, 1, 133-140, DOI: 10.1016/j.physa.2009.08.034.
Esquivel, A., and A. Lazarian (2010), Tsallis statistics as a tool for studying interstellar turbulence, Astrophys. J. 710, 1, 125, DOI: 10.1088/0004-637X/710/1/125.
Ferrero, J.C. (2011), A statistical analysis of stratification and inequity in the income distribution, Eur. Phys. J. B 80, 2, 255-261, DOI: 10.1140/epjb/e2011-11018-2.
Ferri, G.L., M.F. Reynoso Savio, and A. Plastino (2010), Tsallis q-triplet and the ozone layer, Physica A 389, 9, 1829-1833, DOI: 10.1016/j.physa.2009.12.020.
Frank, T.D. (2011), Stochastic processes and mean field systems defined by nonlinear Markov chains: An illustration for a model of evolutionary population dynamics, Braz. J. Phys. 41, 2-3, 129-134, DOI: 10.1007/s13538-011-0024-3.
Fuentes, M.A., Y. Sato, and C. Tsallis (2011), Sensitivity to initial conditions, entropy production, and escape rate at the onset of chaos, Phys. Lett. A 375, 33, 2988-2991, DOI: 10.1016/j.physleta.2011.06.039.
Fuks, D., S. Dorfman, K.C. Mundim, and D.E. Ellis (2001), Stochastic molecular dynamics in simulations of metalloid impurities in metals, Int. J. Quant. Chem. 85, 4-5, 354-367, DOI: 10.1002/qua.1533.
Gell-Mann, M., and C. Tsallis (eds.) (2004), Nonextensive Entropy Interdisciplinary Applications, Oxford University Press, New York.
Gutterres, R.F., M. Argollo de Menezes, C.E. Fellows, and O. Dulieu (1999), Generalized simulated annealing method in the analysis of atom-atom interaction, Chem. Phys. Lett. 300, 1-2, 131-139, DOI: 10.1016/S0009-2614(98)01243-3.
Hahn, M.G., X. Jiang, and S. Umarov (2010), On q-Gaussians and exchangeability, J. Phys. A 43, 16, 165208, DOI: 10.1088/1751-8113/43/16/165208.
Hanel, R., and S. Thurner (2011), A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions, Europhys. Lett. 93, 2, 20006, DOI: 10.1209/0295-5075/93/20006.
Hanel, R., S. Thurner, and C. Tsallis (2009), Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example, Eur. Phys. J. B 72, 2, 263-268, DOI: 10.1140/epjb/e2009-00330-1.
Hanel, R., S. Thurner, and M. Gell-Mann (2011), Generalized entropies and the transformation group of superstatistics, Proc. Nat. Acad. Sci. USA 108, 16, 6390-6394, DOI: 10.1073/pnas.1103539108.
Hansmann, U.H.E., M. Masuya, and Y. Okamoto (1997), Characteristic temperatures of folding of a small peptide, Proc. Natl. Acad. Sci. USA 94, 20, 10652-10656, DOI: 10.1073/pnas.94.20.10652.
Hilhorst, H.J. (2009), Central limit theorems for correlated variables: some critical remarks, Braz. J. Phys. 39, 2A, 371-379.
Hilhorst, H.J. (2010), Note on a q-modified central limit theorem, J. Stat. Mech. 2010, P10023, DOI: 10.1088/1742-5468/2010/10/P10023.
Hilhorst, H.J., and G. Schehr (2007), A note on q-Gaussians and non-Gaussians in statistical mechanics, J. Stat. Mech. 2007, P06003, DOI: 10.1088/1742-5468/2007/06/P06003.
Jauregui, M., and C. Tsallis (2010), New representations of π and Dirac delta using the nonextensive-statistical-mechanics q-exponential function, J. Math. Phys. 51, 6, 063304, DOI: 10.1063/1.3431981.
Jauregui, M., and C. Tsallis (2011), q-generalization of the inverse Fourier transform, Phys. Lett. A 375, 21, 2085-2088, DOI: 10.1016/j.physleta.2011.04.014.
Jauregui, M., C. Tsallis, and E.M.F. Curado (2011), q-moments remove the degeneracy associated with the inversion of the q-Fourier transform, J. Stat. Mech. 2011, P10016, DOI: 10.1088/1742-5468/2011/10/P10016.
Kim, J., and J.E. Straub (2009), Optimal replica exchange method combined with Tsallis weight sampling, J. Chem. Phys. 130, 14, 144114, DOI: 10.1063/1.3108523.
Leo, M., R.A. Leo, and P. Tempesta (2010), Thermostatistics in the neighborhood of the π-mode solution for the Fermi-Pasta-Ulam β system: From weak to strong chaos, J. Stat. Mech. 2010, P04021, DOI: 10.1088/1742-5468/2010/04/P04021.
Liu, B., and J. Goree (2008), Superdiffusion and non-Gaussian statistics in a drivendissipative 2D dusty plasma, Phys. Rev. Lett. 100, 5, 055003, DOI: 10.1103/PhysRevLett.100.055003.
Livadiotis, G., and D.J. McComas (2009), Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas, J. Geophys. Res. 114, A11105, DOI: 10.1029/2009JA014352.
Livadiotis, G., D.J. McComas, M.A. Dayeh, H.O. Funsten, and N.A. Schwadron (2011), First sky map of the inner heliosheath temperature using IBEX spectra, Astrophys. J. 734, 1, DOI: 10.1088/0004-637X/734/1/1.
Lucena, L.S., L.R. da Silva, and C. Tsallis (1995), Departure from Boltzmann-Gibbs statistics makes the hydrogen-atom specific heat a computable quantity, Phys. Rev. E 51, 6, 6247-6249, DOI: 10.1103/PhysRevE.51.6247.
Ludescher, J., C. Tsallis, and A. Bunde (2011), Universal behaviour of interoccurrence times between losses in financial markets: An analytical description, Europhys. Lett. 95, 6, 68002, DOI: 10.1209/0295-5075/95/68002.
Lutz, E. (2003), Anomalous diffusion and Tsallis statistics in an optical lattice, Phys. Rev. A 67, 5, 051402(R), DOI: 10.1103/PhysRevA.67.051402.
Lyra, M.L., and C. Tsallis (1998), Nonextensivity and multifractality in lowdimensional dissipative systems, Phys. Rev. Lett. 80, 1, 53-56, DOI: 10.1103/PhysRevLett.80.53.
Mattedi, A.P., F.M. Ramos, R.R. Rosa, and R.N. Mantegna (2004), Value-at-risk and Tsallis statistics: Risk analysis of the aerospace sector, Physica A 344, 3-4, 554-561, DOI: 10.1016/j.physa.2004.06.031.
Mohanalin, J., Beenamol, P.K. Kalra, and N. Kumar (2010), A novel automatic microcalcification detection technique using Tsallis entropy and a type II fuzzy index, Comput. Math. Appl. 60, 8, 2426-2432, DOI: 10.1016/j.camwa.2010.08.038.
Montemurro, M.A. (2004), A generalization of the Zipf-Mandelbrot law in linguistics. In: M. Gell-Mann and C. Tsallis (eds.), Nonextensive Entropy – Interdisciplinary Applications, Oxford University Press, New York.
Moret, M.A., P.G. Pascutti, P.M. Bisch, M.S.P. Mundim, and K.C. Mundim (2006), Classical and quantum conformational analysis using Generalized Genetic Algorithm, Physica A 363, 2, 260-268, DOI: 10.1016/j.physa.2005.08.062.
Moyano, L.G., and C. Anteneodo (2006), Diffusive anomalies in a long-range Hamiltonian system, Phys. Rev. E 74, 021118, DOI: 10.1103/PhysRevE.74.021118.
Moyano, L.G., C. Tsallis, and M. Gell-Mann (2006), Numerical indications of a q-generalised central limit theorem, Europhys. Lett. 73, 6, 813, DOI: 10.1209/epl/i2005-10487-1.
Mundim, K.C., and C. Tsallis (1996), Geometry optimization and conformational analysis through generalized simulated annealing, Int. J. Quant. Chem. 58, 4, 373-381, DOI: 10.1002/(SICI)1097-461X(1996)58:4<373::AID-QUA6>3.0.CO;2-V.
Nobre, F.D., and C. Tsallis (1995), Infinite-range Ising ferromagnet: thermodynamic limit within generalized statistical mechanics, Physica A 213, 3, 337-356, DOI: 10.1016/0378-4371(94)00231-H (Erratum: DOI: 10.1016/0378-4371(95)00073-G).
Nobre, F.D., M.A. Rego-Monteiro, and C. Tsallis (2011), Nonlinear relativistic and quantum equations with a common type of solution, Phys. Rev. Lett. 106, 14, 140601, DOI: 10.1103/PhysRevLett.106.140601.
Okamoto, Y., and U.H.E. Hansmann (2001), Protein folding simulations by a generalized-ensemble algorithm based on Tsallis statistics. In: S. Abe and Y. Okamoto (eds.), Nonextensive Statistical Mechanics and Its Applications, Series Lecture Notes in Physics, Springer, Heidelberg.
Oliveira-Neto, N.M., E.M.F. Curado, F.D. Nobre, and M.A. Rego-Monteiro (2007), A simple model to describe the low-temperature behaviour of some atoms and molecules: An application to the hydrogen atom, J. Phys. B 40, 11, 1975, DOI: 10.1088/0953-4075/40/11/003.
Papadimitriou, C., M. Kalimeri, and K. Eftaxias (2008), Nonextensivity and universality in the earthquake preparation process, Phys. Rev. E 77, 3, 036101, DOI: 10.1103/PhysRevE.77.036101.
Penrose, O. (1970), Foundations of Statistical Mechanics: A Deductive Treatment, Pergamon, Oxford.
Pickup, R.M., R. Cywinski, C. Pappas, B. Farago, and P. Fouquet (2009), Generalized spin glass relaxation, Phys. Rev. Lett. 102, 9, 097202, DOI: 10.1103/PhysRevLett.102.097202.
Plastino, A.R., and A. Plastino (1995), Non-extensive statistical mechanics and generalized Fokker-Planck equation, Physica A 222, 1-4, 347-354, DOI: 10.1016/0378-4371(95)00211-1.
Pluchino, A., A. Rapisarda, and C. Tsallis (2008), A closer look at the indications of q-generalized Central Limit Theorem behavior in quasi-stationary states of the HMF model, Physica A 387, 13, 3121-3128, DOI: 10.1016/j.physa. 2008.01.112.
Portes de Albuquerque, M., I.A. Esquef, A.R.G. Mello, and M. Portes de Albuquerque (2004), Image thresholding using Tsallis entropy, Pattern Recogn. Lett. 25, 9, 1059-1065, DOI: 10.1016/j.patrec.2004.03.003.
Reis, Jr., J.L., J. Amorim, and A. Dal Pino, Jr. (2011), Occupancy of rotational population in molecular spectra based on nonextensive statistics, Phys. Rev. E 83, 1, 017401, DOI: 10.1103/PhysRevE.83.017401.
Rios, L.A., and R.M.O. Galvão (2011), Modulation of whistler waves in nonthermal plasmas, Phys. Plasmas 18, 2, 022311, DOI: 10.1063/1.3556125.
Rodríguez, A., and C. Tsallis (2010), A generalization of the cumulant expansion. Application to a scale-invariant probabilistic model, J. Math. Phys. 51, 7, 073301, DOI: 10.1063/1.3448944.
Rodríguez, A., V. Schwämmle, and C. Tsallis (2008), Strictly and asymptotically scale-invariant probabilistic models of N correlated binary random variables having q-Gaussians as N → ∞ limiting distributions, J. Stat. Mech. P09006, DOI: 10.1088/1742-5468/2008/09/P09006.
Rosso, O.A., M.T. Martin, and A. Plastino (2003), Brain electrical activity analysis using wavelet-based informational tools (II): Tsallis non-extensivity and complexity measures, Physica A 320, 497-511, DOI: 10.1016/S0378-4371 (02)01529-7.
Saguia, A., and M.S. Sarandy (2010), Nonadditive entropy for random quantum spin-S chains, Phys. Lett. A 374, 34, 3384-3388, DOI: 10.1016/j.physleta. 2010.06.038.
Serra, P., A.F. Stanton, and S. Kais (1997), Pivot method for global optimization, Phys. Rev. E 55, 1, 1162-1165, DOI: 10.1103/PhysRevE.55.1162.
Shao, M., L. Yi, Z. Tang, H. Chen, C. Li, and Z. Xu (2010), Examination of the species and beam energy dependence of particle spectra using Tsallis statistics, J. Phys. G 37, 8, 085104, DOI: 10.1088/0954-3899/37/8/085104.
Shi, W., Y. Miao, Z. Chen, and H. Zhang (2009), Research of automatic medical image segmentation algorithm based on Tsallis entropy and improved PCNN. In: IEEE International Conference on Mechatronics and Automation, ICMA 2009, 1004-1008, DOI: 10.1109/ICMA.2009.5246315.
Sotolongo-Grau, O., D. Rodriguez-Perez, J.C. Antoranz, and O. Sotolongo-Costa (2010), Tissue radiation response with maximum Tsallis entropy, Phys. Rev. Lett. 105, 15, 158105, DOI: 10.1103/PhysRevLett.105.158105.
Straub, J.E., and I. Andricioaei (1999), Computational methods inspired by Tsallis statistics: Monte Carlo and molecular dynamics algorithms for the simulation of classical and quantum systems, Braz. J. Phys. 29, 1, 179, DOI: 10.1590/S0103-97331999000100016.
Takahashi, T., H. Oono, and M.H.B. Radford (2007), Empirical estimation of consistency parameter in intertemporal choice based on Tsallis’ statistics, Physica A 381, 338-342, DOI: 10.1016/j.physa.2007.03.038.
Takahashi, T., T. Hadzibeganovic, S.A. Cannas, T. Makino, H. Fukui, and S. Kitayama (2009), Cultural neuroeconomics of intertemporal choice, Neuroendocrinol. Lett. 30, 2, 185-191.
Tamarit, F.A., S.A. Cannas, and C. Tsallis (1998), Sensitivity to initial conditions in the Bak-Sneppen model of biological evolution, Eur. Phys. J. B 1, 4, 545-548, DOI: 10.1007/s100510050217.
Telesca, L. (2010a), Nonextensive analysis of seismic sequences, Physica A 389, 9, 1911-1914, DOI: 10.1016/j.physa.2010.01.012.
Telesca, L. (2010b), Analysis of Italian seismicity by using a nonextensive approach, Tectonophysics 494, 155-162, DOI: 10.1016/j.tecto.2010.09.012.
Tempesta, P. (2011), Group entropies, correlation laws, and zeta functions, Phys. Rev. E 84, 021121, DOI: 10.1103/PhysRevE.84.021121.
Thistleton, W.J., J.A. Marsh, K.P. Nelson, and C. Tsallis (2009), q-Gaussian approximants mimic non-extensive statistical-mechanical expectation for many-body probabilistic model with long-range correlations, Cent. Eur. J. Phys. 7, 3, 387-394, DOI: 10.2478/s11534-009-0054-4.
Thurner, S., and C. Tsallis (2005), Nonextensive aspects of self-organized scalefree gas-like networks, Europhys. Lett. 72, 2, 197, DOI: 10.1209/epl/i2005-10221-1.
Tirnakli, U., and S. Abe (2004), Aging in coherent noise models and natural time, Phys. Rev. E 70, 5, 056120, DOI: 10.1103/PhysRevE.70.056120.
Tirnakli, U., C. Beck, and C. Tsallis (2007), Central limit behavior of deterministic dynamical systems, Phys. Rev. E 75, 4, 040106(R), DOI: 10.1103/PhysRevE.75.040106.
Tirnakli, U., C. Tsallis, and C. Beck (2009), A closer look on the time-average attractor at the edge of chaos of the logistic map, Phys. Rev. E 79, 5, 056209, DOI: 10.1103/PhysRevE.79.056209.
Tong, S., A. Bezerianos, J. Paul, Y. Zhu, and N. Thakor (2002), Nonextensive entropy measure of EEG following brain injury from cardiac arrest, Physica A 305, 3-4, 619-628, DOI: 10.1016/S0378-4371(01)00621-5.
Treumann, R.A. (1998), Generalized-Lorentziann path integrals, Phys. Rev. E 57, 5, 5150-5153, DOI: 10.1103/PhysRevE.57.5150.
Tsallis, A.C., C. Tsallis, A.C.N. Magalhaes, and F.A. Tamarit (2003), Human and computer learning: An experimental study, Complexus 1, 4, 181-189, DOI: 10.1159/000082448.
Tsallis, C. (1988), Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52, 1-2, 479-487, DOI: 10.1007/BF01016429.
Tsallis, C. (2004), Nonextensive statistical mechanics: Construction and physical interpretation. In: M. Gell-Mann and C. Tsallis (eds.), Nonextensive Entropy – Interdisciplinary Applications, Oxford University Press, New York.
Tsallis, C. (2005), Nonextensive statistical mechanics, anomalous diffusion and central limit theorems, Milan J. Math. 73, 1, 145-176, arXiv:cond-mat/0412132v1.
Tsallis, C. (2009a), Introduction to Nonextensive Statistical Mechanics –Approaching a Complex World, Springer, New York, DOI: 10.1007/978-0-387-85359-8.
Tsallis, C. (2009b), Entropy. In: R.A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, Springer, Berlin.
Tsallis, C. (2011), The nonadditive entropy Sq and its applications in physics and elsewhere: Some remarks, Entropy 13, 10, 1765-1804, DOI: 10.3390/e13101765.
Tsallis, C., and D.J. Bukman (1996), Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis, Phys. Rev. E 54, R2197-R2200, DOI: 10.1103/PhysRevE.54.R2197.
Tsallis, C., and M.P. Portes de Albuquerque (2000), Are citations of scientific papers a case of nonextensivity?, Eur. Phys. J. B 13, 777, DOI: 10.1007/s100510050097.
Tsallis, C., and D.A. Stariolo (1996), Generalized simulated annealing, Physica A 233, 395-406.
Tsallis, C., R.S. Mendes, and A.R. Plastino (1998), The role of constraints within generalized nonextensive statistics, Physica A 261, 3, 534-554, DOI: 10.1016/S0378-4371(98)00437-3.
Tsallis, C., M. Gell-Mann, and Y. Sato (2005), Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive, Proc. Natl. Acad. Sci. USA 102, 43, 15377-15382, DOI: 10.1073/pnas.0503807102.
Tsallis, C., A.R. Plastino, and R.F. Alvarez-Estrada (2009), Escort mean values and the characterization of power-law-decaying probability densities, J. Math. Phys. 50, 4, 043303, DOI: 10.1063/1.3104063.
Umarov, S., C. Tsallis, and S. Steinberg (2008), On a q-central limit theorem consistent with nonextensive statistical mechanics, Milan J. Math. 76, 307-328, DOI: 10.1007/s00032-008-0087-y.
Umarov, S., C. Tsallis, M. Gell-Mann, and S. Steinberg (2010), Generalization of symmetric α-stable Lévy distributions for q > 1, J. Math. Phys. 51, 3, 033502, DOI: 10.1063/1.3305292.
Upadhyaya, A., J.-P. Rieu, J.A. Glazier, and Y. Sawada (2001), Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates, Physica A 293, 3-4, 549-558, DOI: 10.1016/S0378-4371(01) 00009-7.
Vallianatos, F. (2009), A non-extensive approach to risk assessment, Nat. Hazards Earth Syst. Sci. 9, 1, 211-216, DOI: 10.5194/nhess-9-211-2009.
Vallianatos, F. (2011), A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field, Physica A 390, 10, 1773-1778, DOI: 10.1016/j.physa.2010.12.040.
Vallianatos, F., and P. Sammonds (2010), Is plate tectonics a case of non-extensive thermodynamics?, Physica A 389, 21, 4989-4993, DOI: 10.1016/j.physa. 2010.06.056.
Vallianatos, F., E. Kokinou, and P. Sammonds (2011a), Non-extensive statistical physics approach to fault population distribution. A case study from the Southern Hellenic Arc (Central Crete), Acta Geophys. 59, 4, 770-784, DOI: 10.248/s11600-011-0015-3.
Vallianatos, F., D. Triantis, and P. Sammonds (2011b), Non-extensivity of the isothermal depolarization relaxation currents in uniaxial compressed rocks, Europhys. Lett. 94, 6, 68008, DOI: 10.1209/0295-5075/94/68008.
Vignat, C., and A. Plastino (2007), Central limit theorem and deformed exponentials, J. Phys. A: Math. Theor. 40, 45, F969-F978, DOI: 10.1088/1751-8113/40/45/F02.
Vignat, C., and A. Plastino (2009), Geometry of the central limit theorem in the nonextensive case, Phys. Lett. A 373, 20, 1713-1718, DOI: 10.1016/j.physleta.2009.03.029.
Wedemann, R.S., R. Donangelo, and L.A.V. de Carvalho (2009), Generalized memory associativity in a network model for the neuroses, Chaos 19, 015116, DOI: 10.1063/1.3099608.
Wilk, G., and Z. Wlodarczyk (2009), Power laws in elementary and heavy-ion collisions – A story of fluctuations and nonextensivity?, Eur. Phys. J. A 40, 3, 299, arXiv: 0810.2939.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. , Nonadditive entropy Sq and nonextensive statistical mechanics: Applications in geophysics and elsewhere. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Non-extensive framework for earthquakes: the role of fragments

Czasopismo : Acta Geophysica
Tytuł artykułu : Non-extensive framework for earthquakes: the role of fragments

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Abstrakty : The inclusion of fragment-asperity interaction inside tectonic plates to find a frequency magnitude relation for earthquakes, and the need for non-extensive statistics in this case is exposed. The usefulness of this formulation is shown. A comparison with seismic observations is also discussed.

Słowa kluczowe : non-extensivity, statistics, fragmentation,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 526 – 534
Bibliografia : Abe, S. (2008), Instability of q-expectation value, arXiv:0806.3934v1 condmat. stat-mech.
Abe, S. (2010), Essential discreteness in generalized thermostatistics with nonlogarithmic entropy, EPL 90, 5, 50004, DOI: 10.1209/0295-5075/90/50004.
Academia Sinica (1974), Catalogue of great earthquakes in China, 780 BC to 1973 AD, Academia Sinica, Inst. Geophys., Beijing, 31 pp. (in Chinese).
Bagci, G.B., T. Oikonomou, and U. Tirnakli (2010), Comment on “Essential discreteness in generalized thermostatistics with non-logarithmic entropy” by S. Abe, arXiv:1006.1284v2 cond-mat.stat-mech.
Bak, P. (1996), How Nature Works: The Science of Self-Organised Criticality, Copernicus Press, New York.
Burridge, R., and L. Knopoff (1967), Model and theoretical seismicity, Bull Seismol. Soc. Am. 57, 3, 341-371.
Cabo, A. (2010), Is the Tsallis q-mean value instable?, arXiv:1010.5825v1 condmat. stat-mech.
De Rubeis, V., R. Hallgass, V. Loreto, G. Paladin, L. Pietronero, and P. Tosi (1996), Self-affine asperity model for earthquakes, Phys. Rev. Lett. 76, 14, 2599-2602, DOI: 10.1103/PhysRevLett.76.2599.
Englman, R., N. Rivier, and Z. Jaeger (1987), Fragment-size distribution in disintegration by maximum-entropy formalism, Philos. Mag. B 56, 6, 751-769, DOI: 10.1080/13642818708215309.
Gutenberg, B., and C.F. Richter (1944), Frequency of earthquakes in California, Bull. Seimol. Soc. Am. 34, 4, 185-188.
Herrmann, H.J., G. Mantica, and D. Bessis (1990), Space-filling bearings, Phys. Rev. Lett. 65, 26, 3223-3226, DOI: 10.1103/PhysRevLett.65.3223.
Ishii, T., and M. Matsushita (1992), Fragmentation of long thin glass rods, J. Phys. Soc. Jpn. 61, 3474-3477, DOI: 10.1143/JPSJ.61.3474.
Lomnitz-Adler, J., and C. Lomnitz (1979), A modified form of the Gutenberg–Richter magnitude-frequency relation, Bull. Seismol. Soc. Am. 69, 4, 1209-1214.
Matsushita, M. (1985), Fractal viewpoint of fracture and accretion, J. Phys. Soc. Jpn. 54, 857-860, DOI: 0.1143/JPSJ.54.857.
Olami, Z., H.J.S. Feder, and K. Christensen (1992), Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett. 68, 8, 1244-1247, DOI: 10.1103/PhysRevLett.68.1244.
Sarlis, N.V., E.S. Skordas, and P.A. Varotsos (2010), Nonextensivity and natural time: The case of seismicity, Phys. Rev. E 82, 2, 021110, DOI: 10.1103/PhysRevE.82.021110.
Silva, R., G.S. França, C.S. Vilar, and J.S. Alcaniz (2006), Nonextensive models for earthquakes, Phys. Rev. E 73, 026102, DOI: 10.1103/PhysRevE.73.026102.
Sotolongo-Costa, O., and A. Posadas (2004), Fragment-asperity interaction model for earthquakes, Phys. Rev. Lett. 92, 4, 048501, DOI: 10.1103/PhysRevLett. 92.048501.
Sotolongo-Costa, O., E. Lopez-Pages, F. Barreras-Toledo, and J. Marin-Antuña (1994), Scaling in drop distributions: An application in combustion, Phys. Rev. E 49, 5, 4027-4030, DOI: 10.1103/PhysRevE.49.4027.
Sotolongo-Costa, O., Y. Moreno-Vega, J.J. Lloveras-González, and J.C. Antoranz (1996), Criticality in droplet fragmentation, Phys. Rev. Lett. 76, 1, 42-45, DOI: 10.1103/PhysRevLett.76.42.
Telesca, L., and C.-C. Chen (2010), Nonextensive analysis of crustal seismicity in Taiwan, Nat. Hazards Earth Syst. Sci. 10, 1293-1297, DOI: 10.5194/nhess-10-1293-2010.
Tsallis, C. (1988), Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys. 52, 1-2, 479-487, DOI: 10.1007/BF01016429.
Tsallis, C., S.V.F. Lévy, A.M.C. Souza, and R. Maynard (1995), Statisticalmechanical foundation of the ubiquity of Lévy distributions in nature, Phys. Rev. Lett. 75, 20, 3589-3593, DOI: 10.1103/PhysRevLett.75.3589.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. , Non-extensive framework for earthquakes: the role of fragments. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Earthquakes, model systems and connections to q-statistics

Czasopismo : Acta Geophysica
Tytuł artykułu : Earthquakes, model systems and connections to q-statistics

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abstrakty : In this work, we make an attempt to review some of the recent studies on earthquakes using either real catalogs or synthetic data coming from some model systems. A common feature of all these works is the use of q -statistics as a tool.

Słowa kluczowe : earthquake model, q-statistics, statistical mechanics,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 535 – 546
Bibliografia : Abe, S. (2003), Geometry of escort distribution, Phys. Rev. E 68, 031101, DOI: 10.1103/PhysRevE.68.031101.
Abe, S., and N. Suzuki (2004), Aging and scaling of earthquake aftershocks, Physica A 332, 533-538, DOI: 10.1016/j.physa.2003.10.002.
Bath, M. (1965), Lateral inhomogeneities of upper mantle, Tectonophysics 2, 6, 483-514, DOI: 10.1016/0040-1951(65)90003-X.
Celikoglu, A., U. Tirnakli, and S.M.D. Queiros (2010), Analysis of return distributions in the coherent noise model, Phys. Rev. E 82, 021124, DOI: 10.1103/Phys-RevE.82.021124.
Christensen, K., and Z. Olami (1992), Scaling, phase transition, and nonuniversality in a self-organized critical cellular-automaton model, Phys. Rev. A 46, 4, 1829-1838, DOI: 10.1103/PhysRevA.46.1829.
Darooneh, A. H., and A. Mehri (2010), A nonextensive modification of the Gutenberg–Richter law: q-stretched exponential form, Physica A 389, 509-514, DOI: 10.1016/j.physa.2009.10.006.
Gutenberg, B., and C.F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34, 185-188.
Kagan, Y.Y., and D.D. Jackson (1991), Seismic gap hypothesis: ten years after, J. Geophys. Res. 96, B13, 21419-21431, DOI: 10.1029/91JB02210.
Newman, M.E.J. (1996), Self-organized criticality, evolution and the fossil extinction record, Proc. R. Soc. London, Ser. B 263, 1605-1610, DOI: 10.1098/rspb.1996.0235.
Newman, M.E.J., and K. Sneppen (1996), Avalanches, scaling, and coherent noise, Phys. Rev. E 54, 6, 6226-6231, DOI: 10.1103/PhysRevE.54.6226.
Olami, Z., H.J.S. Feder, and K. Christensen (1992), Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett. 68, 1244-1248, DOI: 10.1103/PhysRevLett.68.1244.
Omori, F. (1894), On the aftershocks of earthquakes, J. Coll. Sci. Imp. Tokyo 7, 111-200.
Silva, R., G.S. Franca, and J.S. Vilar (2006), Nonextensive models for earthquakes, Phys. Rev. E 73, 026102, DOI: 10.1103/PhysRevE.73.026102.
Sneppen, K., and M.E.J. Newman (1997), Coherent noise, scale invariance and intermittency in large systems, Physica D 110, 209-222, DOI: 10.1016/S0167-2789(97)00128-0.
Sornette, D. (1999), Earthquakes: from chemical alteration to mechanical rupture, Phys. Rep. 313, 237-291, DOI: 10.1016/S0370-1573(98)00088-X.
Sotolongo-Costa, O., and A. Posadas (2004), Fragment-asperity interaction model for earthquakes, Phys. Rev. Lett. 92, 048501, DOI: 10.1103/Phys-RevLett.92.048501.
Tirnakli, U. (2004), Aging in earthquakes model. In: C. Beck, G. Benedeck, A. Rapisarda, and C. Tsallis (eds.), Complexity, Metastability and Nonextensivity. Proc. 31st Workshop of Int. School of Solid State Physics Erice, Sicily, Italy, 20-26 July 2004, World Scientific, Singapore, 350-354.
Tirnakli, U., and S. Abe (2004), Aging in coherent noise models and natural time, Phys. Rev. E 70, 056120, DOI: 10.1103/PhysRevE.70.056120.
Tsallis, C. (1988), Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys. 52, 479-487, DOI: 10.1007/BF01016429.
Tsallis, C. (2009), Introduction to Nonextensive Statistical Mechanics–Approaching a Complex World, Springer, New York, DOI: 10.1007/987-0-387-85359-8.
Tsallis, C., and U. Tirnakli (2010), Nonadditive entropy and nonextensive statistical mechanics—Some central concepts and recent applications, J. Phys. Conf. Ser. 201, 012001, DOI: 10.1088/1742-6596/201/1/012001.
Tsallis, C., G. Bemski, and R.S. Mendes (1999), Is re-association in folded proteins a case of nonextensivity?, Phys. Lett. A 257, 93-98, DOI: 10.1016/S0375-9601(99)00270-4.
Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge.
Vallianatos, F. (2009), A non-extensive approach to risk assessment, Nat. Hazards. Earth Syst. Sci. 9, 211-216, DOI: 10.5194/nhess-9-211-2009.
Vallianatos, F., and P. Sammonds (2010), Is plate tectonics a case of non-extensive thermodynamics? Physica A 389, 4989-4993, DOI: 10.1016/j.physa.2010.06.056.
Vallianatos, F., and P. Sammonds (2011), A non-extensive statistics of the faultpopulation at the Valles Marineris extensional province, Mars, Tectonophysics 509, 50-54, DOI: 10.1016/j.tecto.2011.06.001.
Zhang, G.Q., U. Tirnakli, L. Wang, and T.L. Chen (2011), Self organized criticality in a modified Olami-Feder-Christensen model, Eur. Phys. J. B 82, 83-89, DOI: 10.1140/epjb/e2011-10941-4.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. , Earthquakes, model systems and connections to q-statistics. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Aftershocks in modern perspectives: Complex earthquake network, aging, and non-Markovianity

Czasopismo : Acta Geophysica
Tytuł artykułu : Aftershocks in modern perspectives: Complex earthquake network, aging, and non-Markovianity

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Abstrakty : The phenomenon of aftershocks is studied in view of science of complexity. In particular, three different concepts are examined: (i) the complex-network representation of seismicity, (ii) the event-event correlations, and (iii) the effects of long-range memory. Regarding (i), it is shown that the clustering coefficient of the complex earthquake network exhibits a peculiar behavior at and after main shocks. Regarding (ii), it is found that aftershocks experience aging, and the associated scaling holds. And regarding (iii), the scaling relation to be satisfied by a class of singular Markovian processes is violated, implying the existence of the longrange memory in processes of aftershocks.

Słowa kluczowe : aftershocks, complex earthquake networks, aiging, glassy dynamics, non-Markovian singular point processes,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 547 – 561
Bibliografia : Abe, S., and N. Suzuki (2003), Law for the distance between successive earthquakes, J. Geophys. Res. 108, B2, 2113-2117, DOI: 10.1029/2002JB002220.
Abe, S., and N. Suzuki (2004a), Scale-free network of earthquakes, Europhys. Lett. 65, 4, 581-586, DOI: 10.1209/epl/i2003-10108-1.
Abe, S., and N. Suzuki (2004b), Aging and scaling of earthquake aftershocks, Physica A 332, 533-538, DOI: 10.1016/j.physa.2003.10.002.
Abe, S., and N. Suzuki (2004c), Small-world structure of earthquake network, Physica A 337, 1-2, 357-362, DOI: 10.1016/j.physa.2004.01.059.
Abe, S., and N. Suzuki (2005a), Scale-free statistics of time interval between successive earthquakes, Physica A 350, 2-4, 588-596, DOI: 10.1016/j.physa.2004.10.040.
Abe, S., and N. Suzuki (2005b), Scale-invariant statistics of period in directed earthquake network, Eur. Phys. J. B 44, 1, 115-117, DOI: 10.1140/epjb/e2005-00106-7.
Abe, S., and N. Suzuki (2006a), Complex-network description of seismicity, Nonlin. Processes Geophys. 13, 2, 145-150, DOI: 10.5194/npg-13-145-2006.
Abe, S., and N. Suzuki (2006b), Complex earthquake networks: Hierarchical organization and assortative mixing, Phys. Rev. E 74, 2, 026113, DOI: 10.1103/PhysRevE.74.026113.
Abe, S., and N. Suzuki (2007), Dynamical evolution of clustering in complex network of earthquakes, Eur. Phys. J. B 59, 1, 93-97, DOI: 10.1140/epjb/e2007-00259-3.
Abe, S., and N. Suzuki (2009a), Violation of the scaling relation and non-Markovian nature of earthquake aftershocks, Physica A 388, 9, 1917-1920, DOI: 10.1016/j.physa.2009.01.031.
Abe, S., and N. Suzuki (2009b), Scaling relation for earthquake networks, Physica A 388, 12, 2511-2514, DOI: 10.1016/j.physa.2009.02.022.
Abe, S., and N. Suzuki (2009c), Determination of the scale of coarse graining in earthquake networks, Europhys. Lett. 87, 4, 48008, DOI: 10.1209/0295-5075/87/48008.
Abe, S., D. Pastén, and N. Suzuki (2011), Finite data-size scaling of clustering in earthquake networks, Physica A 390, 7, 1343-1349, DOI: 10.1016/j.physa.2010.11.033.
Albert, R., H. Jeong, and A.-L. Barabási (2000), Error and attack tolerance of complex networks, Nature 406, 378-382, DOI: 10.1038/35019019.
Barabási, A.-L. and R. Albert (1999), Emergence of scaling in random networks, Science 286, 5439, 509-512, DOI: 10.1126/science.286.5439.509.
Bardou, F., J.-P. Bouchaud, A. Aspect, and C. Cohen-Tannoudji (2002), Lévy Statistics and Laser Cooling. How Rare Events Bring Atoms to Rest, Cambridge University Press, Cambridge.
Barndorff-Nielsen, O.E., F.E. Benth, and J.L. Jensen (2000), Markov jump processes with a singularity, Adv. Appl. Probab. 32, 3, 779-799, DOI: 10.1239/aap/1013540244.
Bollobás, B. (2001), Random Graphs, 2nd ed., Cambridge Studies in Advanced Mathematics, Vol. 73, Cambridge University Press, Cambridge.
Corral, Á. (2004), Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett. 92, 10, 108501, DOI: 10.1103/PhysRevLett.92.108501.
Fischer, K.H., and J.A. Hertz (1991), Spin Glasses, Cambridge Studies in Magnetism, Vol. 1, Cambridge University Press, Cambridge.
Goldstein, M.L., S.A. Morris, and G.G. Yen (2004), Problems with fitting to the power-law distribution, Eur. Phys. J. B 41, 2, 255-258, DOI: 10.1140/epjb/e2004-00316-5.
Gutenberg, B. and C.F. Richter (1949), Seismicity of the Earth and Associated Phenomena, Princeton University Press, Princeton.
Newman, M.E.J. (2002), Assortative mixing in networks, Phys. Rev. Lett. 89, 20, 208701, DOI: 10.1103/PhysRevLett.89.208701.
Newman, M.E.J. (2005), Power laws, Pareto distributions and Zipf’s law, Contemp. Phys. 46, 5, 323-351, DOI: 10.1080/00107510500052444.
Omori, F. (1894), On the after-shocks of earthquakes, J. Coll. Sci. Imp. Univ. Tokyo 7, 111-200.
Ravasz, E., and A.-L. Barabási (2003), Hierarchical organization in complex networks, Phys. Rev. E 67, 2, 026112, DOI: 10.1103/PhysRevE.67.026112.
Steeples, D.W., and D.D. Steeples (1996), Far-field aftershocks of the 1906 earthquake, Bull. Seismol. Soc. Am. 86, 4, 921-924.
Utsu, T. (1961), A statistical study on the occurrence of aftershocks, Geophys. Mag. 30, 521-605.
Watts, D.J., and S.H. Strogatz (1998), Collective dynamics of ‘small-world’ networks, Nature 393, 440-442, DOI: 10.1038/30918.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. , Aftershocks in modern perspectives: Complex earthquake network, aging, and non-Markovianity. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Long-term correlations in earth sciences

Czasopismo : Acta Geophysica
Tytuł artykułu : Long-term correlations in earth sciences

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Abstrakty : In this article we review the occurrence and consequences of longterm memory in geophysical records like climate and seismic records, and describe similarities with financial data sets. We review several methods to detect linear and nonlinear long-term correlations, also in the presence of external trends, and show how external trends can be detected in data with long-term memory. We show as well that long-term correlations lead to a natural clustering of extreme events and discuss the implications for several geophysical data sets.

Słowa kluczowe : long-term correlations, extreme values, multi-fractality, trend detection,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 562 – 588
Bibliografia : Bogachev, M.I., and A. Bunde (2008), Memory effects in the statistics of interoccurence times between large events in financial markets, Phys. Rev. E 78, 036114, DOI: 10.1103/PhysRevE.78.036114.
Bogachev, M.I., J.F. Eichner, and A. Bunde (2007), The effect of nonlinear correlations on the statistics of return intervals in multifractal data sets, Phys. Rev. Lett. 99, 240601, DOI: 10.1103/PhysRevLett.99.240601.
Bogachev, M.I., I.S. Kireenkov, E.M. Nifontov, and A. Bunde (2009), Statistics of return intervals between large heartbeat intervals and their usability for online prediction of disorders, New J. Phys. 11, 063036, DOI: 10.1088/1367-2630/11/6/063036.
Brohan, P., J.J. Kennedy, I. Harris, S.F.B. Tett, and P.D. Jones (2006), Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850, J. Geophys. Res. 111, D12106, DOI: 10.1029/2005JD006548.
Bunde, A., S. Havlin, J.W. Kantelhardt, T. Penzel, J.-H. Peter, and K. Voigt (2000), Correlated and uncorrelated regions in heart-rate fluctuations during sleep, Phys. Rev. Lett. 85, 3736, DOI: 10.1103/PhysRevLett.85.3736.
Bunde, A., J. Kropp, and H.-J. Schellnhuber (eds.) (2002), The Science of Disasters-Climate Disruptions, Heart Attacks, and Market Crashes, Springer, Berlin.
Bunde, A., J. Eichner, S. Havlin, and J.W. Kantelhardt (2003), The effect of longterm correlations on the return periods of rare events, Physica A 330, 1, DOI: 10.1016/j.physa.2003.08.004.
Bunde, A., J. Eichner, S. Havlin, and J.W. Kantelhardt (2005), Long-term memory: A natural mechanism for the clustering of extreme events and anomal residual times in climate records, Phys. Rev. Lett. 94, 048701, DOI: 10.1103/Phys-RevLett.94.048701.
Corral, A. (2004), Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett. 92, 108501, DOI: 10.1103/Phys-RevLett.92.108501.
Eichner, J.F., E. Koscielny-Bunde, A. Bunde, S. Havlin, and H.-J. Schellnhuber (2003), Power-law persistence and trends in the atmosphere: A detailed study of long temperature records, Phys. Rev. E 68, 046133, DOI: 10.1103/Phys-RevE.68.046133.
Eichner, J.F., J. W. Kantelhardt, A. Bunde, and S. Havlin (2006), Extreme value statistics in records with long-term persistence, Phys. Rev. E 73, 016130, DOI: 10.1103/PhysRevE.73.016130.
Feder, J. (1988), Fractals, Plenum, New York.
Giese, E., I. Mossig, D. Rybski, and A. Bunde (2007), Long-term analysis of air temperature trends in Central Asia, Erdkunde 61, 186-202.
Glaser, R. (2001), Klimageschichte Mitteleuropas,Wissenschaftliche Buchgesellschaft, Darmstadt.
Govindan, R.B., D. Vjushin, S. Brenner, A. Bunde, S. Havlin, and H.-J. Schellnhuber (2002), Global climate models violate scaling of the observed atmospheric variability, Phys. Rev. Lett. 89, 028501, DOI: 10.1103/Phys-RevLett.89.028501.
Hurst, H.E., R.P. Black, and Y.M. Simaika (1965), Long-term Storage: An Experimental study, Constable & Co. Ltd., London.
Ivanov, P.Ch., A.L. Goldberger, S. Havlin, M.G. Rosenblum, Z. Struzik, and H.E. Stanley (1999), Multifractality in human heartbeat dynamics, Nature 399, 461-465, DOI: 10.1038/20924.
Kantelhardt, J.W., E. Koscielny-Bunde, H.H.A. Rego, A. Bunde, and S. Havlin (2001), Detecting long-range correlations with detrended fluctuation analysis, Physica A 295, 441-454, DOI: 10.1016/S0378-4371(01)00144-3.
Kantelhardt, J.W., E. Koscielny-Bunde, D. Rybski, P. Braun, A. Bunde, and S. Havlin (2006), Long-term persistence and multifractality of precipitation and river runoff records, J. Geophys. Res. 111, D01106, DOI: 10.1029/2005JD005881.
Király, A., I. Bartos, and I.M. Jánosi (2006), Correlation properties of daily temperature anomalies over land, Tellus, 58A, 5, 593-600, DOI: 10.1111/j.1600-0870.2006.00195.x.
Koscielny-Bunde, E., A. Bunde, S. Havlin, H.E. Roman, Y. Goldreich, and H.-J. Schellnhuber (1998), Indication of a universal persistence law governing atmospheric variability, Phys. Rev. Lett. 81, 3, 729-732, DOI: 10.1103/Phys-RevLett.81.729.
Koscielny-Bunde, E., J.W. Kantelhardt, P. Braun, A. Bunde, and S. Havlin (2006), Long-term persistence and multifractality of river runoff records: Detrended fluctuation studies, J. Hydrol. 322, 120-137, DOI: 10.1016/j.jhydrol.2005.03.004.
Leland, W.E., M.S. Taqqu, W. Willinger, and D.V. Wilson (1994), On the self-similar nature of ethernet traffic (extended version), IEEE ACM Trans. Network. 2, 1-15, DOI: 10.1109/90.282603.
Lennartz, S., and A. Bunde (2009a), Trend evaluation in records with long-term memory; Application to global warming, Geophys. Res. Lett. 36, L16706, DOI: 10.1029/2009GL039516.
Lennartz, S., and A. Bunde (2009b), Eliminating finite-size effects and detecting the amount of white noise in short records with long-term memory, Phys. Rev. E 79, 066101, DOI: 10.1103/PhysRevE.79.066101.
Lennartz, S., and A. Bunde (2011), Distribution of natural trends in long-term correlated records: A scaling approach, Phys. Rev. E 84, 021129, DOI: 10.1103/PhysRevE.84.021129.
Lennartz, S., V.N. Livina, A. Bunde, and S. Havlin (2008), Long-term memory in earthquakes and the distribution of interoccurrence times, Europhys. Lett. 81, 69001, DOI: 10.1209/0295-5075/81/69001.
Lennartz, S., A. Bunde, and D.L. Turcotte (2011), Modelling seismic catalogues by cascade models: Do we need long-term magnitude correlations?, Geophys. J. Int. 184, 1214-1222, DOI: 10.1111/j.1365-246X.2010.04902.x.
Liu, Y.H., P. Cizeau, M. Meyer, C.-K. Peng, and H.E. Stanley (1997), Correlations in economic time series, Physica A 245, 437-440, DOI: 10.1016/S0378-4371(97)00368-3;
Liu, Y.H., P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Peng, and H.E. Stanley (1999), Statistical properties of the volatility of price fluctuations, Phys. Rev. E 60, 1390-1400, DOI: 10.1103/PhysRevE.60.1390.
Livina, V.N., Y. Ashkenazy, P. Braun, A. Monetti, A. Bunde, S. Havlin (2003), Nonlinear volatility of river flux fluctuations, Phys. Rev. E 67, 042101, DOI: 10.1103/PhysRevE.67.042101.
Livina, V.N., S. Havlin, and A. Bunde (2005), Memory in the occurence of earthquakes, Phys. Rev. Lett. 95, 208501, DOI: 10.1103/PhysRevLett.95.208501.
Ludescher, J., C. Tsallis, and A. Bunde (2011), Universal behaviour of interoccurrence times between losses in financial markets: An analytical description, Europhys. Lett. 95, 68002, DOI: 10.1209/0295-5075/95/68002.
Malamud, B.D., and D.L. Turcotte (1999), Self-affine time series: I. Generation and Analyses, Adv. Geophys. 40, 1-90.
Mandelbrot, B.B. (1977), Fractals: Form, Chance and Dimension, Freeman, San Francisco.
Mandelbrot, B.B. (1982), The Fractal Geometry of Nature, Freeman, San Francisco.
Mandelbrot, B.B., and J. van Ness (1968), Fractional Brownian motions, fractional noises and applications, SIAM Review 10, 422-437.
Mandelbrot, B.B., and J.R. Wallis (1969), Some long-run properties of geophysical records, Water. Resour. Res. 5, 321-340, DOI: 10.1029/WR005i002p00321.
Monetti, A., S. Havlin, and A. Bunde (2003), Long-term persistence in the sea surface temperature fluctuations, Physica A 320, 581-589, DOI: 10.1016/S0378-4371(02)01662-X.
Mudelsee, M. (2007), Long memory of rivers from spatial aggregation, Water. Resour. Res. 43, W01202, DOI: 10.1029/2006WR005721.
Mudelsee, M., M. Börngen, G. Tetzlaff, and U. Grünwald (2003), No upward trends in the occurrence of extreme floods in central Europe, Nature, 425, 166-169, DOI: 10.1038/nature01928.
Peitgen, H.-O., H. Jürgens, and D. Saupe (1991), Chaos and Fractals, Springer Verlag, Heidelberg.
Peitgen, H.-O., H. Jürgens, and D. Saupe (1992), Chaos and Fractals, Springer Verlag, New York.
Pelletier, J.D., and D.L. Turcotte (1999), Self-affine time series: II. Applications and models, Adv. Geophys. 40, 91, DOI: 10.1016/S0065-2687(08)60294-0.
Peng, C.-K., J. Mietus, J.M. Hausdorff, S. Havlin, H.E. Stanley, and A.L. Goldberger (1993), Long-range anticorrelations and non-Gaussian behavior of the heartbeat, Phys. Rev. Lett. 70, 1343-1346, DOI: 10.1103/PhysRevLett.70.1343.
Pfisterer, C. (1998), Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen 1496-1995, Verlag Paul Haupt, Bern.
Rybski, D., and A. Bunde (2009), On the detection of trends in long-term correlated records, Physica A 388, 1687-1695, DOI: 10.1016/j.physa.2008.12.026.
Rybski, D., A. Bunde, S. Havlin, and H. von Storch (2006), Long-term persistence in climate and the detection problem, Geophys. Res. Lett. 33, 6, L06718, DOI: 10.1029/2005GL025591.
Santhanam, M.S., and H. Kantz (2005), Long-range correlations and rare events in boundary layer wind fields, Physica A 345, 713-721, DOI: 10.1016/j.physa.2004.07.012.
Schertzer, D., and S. Lovejoy (1991), Nonlinear Variability in Geophysics: Scaling and Fractals, Springer, New York.
Schertzer, D., S. Lovejoy, F. Schmitt, Y. Chigirinskaya, and D. Marsan (1997), Multifractal cascade dynamics and turbulent intermittency, Fractals 5, 3, 427-471, DOI: 10.1142/S0218348X97000371.
Schreiber, T., and A. Schmitz (1996), Improved Surrogate Data for Nonlinearity Tests, Phys. Rev. Lett. 77, 635-638, DOI: 10.1103/PhysRevLett.77.635.
Stanley, H.E., and P. Meakin (1988), Multifractal Phenomena in Physics and Chemistry, Nature 355, 405-409, DOI: 10.1038/335405a0.
Talkner, P., and R.O. Weber (2000), Power spectrum and detrended fluctuation analysis: application to daily temperatures, Phys. Rev. E 62, 150-160, DOI: 10.1103/PhysRevE.62.150.
Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, 2nd edn., Cambridge Univ. Press, Cambridge.
Vjushin, D., I. Zhidkov, S. Brenner, S. Havlin, and A. Bunde (2004), Volcanic forcing improves atmosphere-ocean coupled general circulation model scaling performance, Geophys. Res. Lett. 31, L10206, DOI: 10.1029/2004GL019499.
Yamasaki, K., L. Muchnik, S. Havlin, A. Bunde, and H.E. Stanley (2005), Scaling and memory in volatility return intervals in financial markets, PNAS 102, 26, 9424-9428, DOI: 10.1073/pnas.0502613102.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. , Long-term correlations in earth sciences. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Visibility graph analysis of geophysical time series: Potentials and possible pitfalls

Czasopismo : Acta Geophysica
Tytuł artykułu : Visibility graph analysis of geophysical time series: Potentials and possible pitfalls

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Abstrakty : Recently, complex network approaches to time series analysis have been developed and successfully applied to geophysical records. In this paper, the visibility graph approach is re-considered, which has been found useful as an alternative tool for describing the fractal properties of a time series. The interpretation of various graph-theoretical measures in the context of visibility graphs, their mutual interdependence, and their sensitivity in the presence of missing values and uncertainties (posing typical challenges in geophysical time series analysis) are thoroughly discussed. The obtained results are illustrated for some exemplary records from different fields of geosciences.

Słowa kluczowe : geophysical time series, complex networks, fractals, uncertainty,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 589 – 623
Bibliografia : Abe, S., and N. Suzuki (2004), Scale-free network of earthquakes, Europhys. Lett. 65, 581-586, DOI: 10.1209/epl/i2003-10108-1.
Ahmadlou, M., H. Adeli, and A. Adeli (2010), New diagnostic EEG markers of the Alzheimer’s disease using visibility graphs, J. Neural Transm. 117, 1099-1109, DOI: 10.1007/s00702-010-0450-3.
Albert, R., and A.-L. Barabasi (2002), Statistical mechanics of complex networks, Rev. Mod. Phys. 74, 47-97, DOI: 10.1103/RevModPhys.74.47.
Albert, R., H. Jeong, and A.-L. Barabasi (2000), Error and attack tolerance of complex networks, Nature 406, 378-382, DOI: 10.1038/35019019.
Baiesi, M., and M. Paczuski (2004), Scale-free networks of earthquakes and aftershocks, Phys. Rev. E 69, 066106, DOI: 10.1103/PhysRevE.69.066106.
Barrat, A., and M. Weigt (2000), On the properties of small-world network models, Eur. Phys. J. B 13, 547-560, DOI: 10.1007/s100510050067.
Barthelemy, M. (2004), Betweenness centrality in large complex networks, Eur. Phys. J. B 38, 163-168, DOI:10.1140/epjb/e2004-00111-4.
Bialonski, S., M.-T. Horstmann, and K. Lehnertz (2010), From brain to earth and climate systems: Small-world interaction networks or not?, Chaos 20, 013134, DOI: 10.1063/1.3360561.
Boccaletti, S., V. Latora, Y. Moreno, M. Chavez, and D.-U. Huang (2006), Complex networks: structure and dynamics, Phys. Rep. 424, 175-308, DOI: 10.1016/j.physrep.2005.10.009.
Costa, L. da F., F.A. Rodrigues, G. Travieso, and P.R. Villas Boas (2007), Characterization of complex networks: a survey of measurements, Adv. Phys. 56, 167-242, DOI: 10.1080/00018730601170527.
Davidsen, J., P. Grassberger, and M. Paczuski (2008), Networks of recurrent events, a theory of records, and an application to finding causal signatures in seismicity, Phys. Rev. E 77, 066104, DOI: 10.1103/PhysRevE.77.066104.
de Floriani, L., P. Marzano, and E. Puppo (1994), Line-of-sight communication on terrain models, Int. J. Geograph. Inform. Sci. 8, 329-342, DOI: 10.1080/02693799408902004.
Dong, Z., and X. Li (2010), Comment on “Network analysis of human heartbeat dynamics” Appl. Phys. Lett. 96, 073703 (2010), Appl. Phys. Lett. 96, 266101, DOI: 10.1063/1.3458811.
Donges, J.F., Y. Zou, N. Marwan, and J. Kurths (2009), The backbone of the climate network, Europhys. Lett. 87, 48007, DOI: 10.1209/0295-5075/87/48007.
Donges, J.F., R.V. Donner, K. Rehfeld, N. Marwan, M.H. Trauth, and J. Kurths (2011a), Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis, Nonlin. Proc. Geophys. 18, 545-562, DOI: 10.5194/npg-18-545-2011.
Donges, J.F., R.V. Donner, M.H. Trauth, N. Marwan, H.J. Schellnhuber, and J. Kurths (2011b), Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution, Proc. Natl. Acad. Sci. USA 108, 20422-20427, DOI: 10.1073/pnas.1117052108.
Donner, R.V., Y. Zou, J.F. Donges, N. Marwan, and J. Kurths (2010), Recurrence networks – a novel paradigm for nonlinear time series analysis, New J. Phys. 12, 033025, DOI: 10.1088/1367-2630/12/3/033025.
Donner, R.V., M. Small, J.F. Donges, N. Marwan, Y. Zou, R. Xiang, and J. Kurths (2011), Recurrence-based time series analysis by means of complex network methods, Int. J. Bifurcation Chaos 21, 1019-1048, DOI: 10.1142/S0218127411029021.
Dykoski, C.A., R.L. Edwards, H. Cheng, D. Yuan, Y. Cai, M. Zhang, Y. Lin, J. Qing, Z. An, and J. Revenaugh (2005), A high-resolution, absolute dated Holocene and deglacial Asian monsoon record from Dongge Cave, China, Earth Planet. Sci. Lett. 233, 71-86, DOI: 10.1016/j.epsl.2005.01.036.
Elsner, J.B., T.H. Jagger, and E.A. Fogarty (2009), Visibility network of United States hurricanes, Geophys. Res. Lett. 36, L16702, DOI: 10.1029/2009GL039129.
Gallos, L.K., C. Song, and H.A. Makse (2008), Scaling of degree correlations and its influence on diffusion in scale-free networks, Phys. Rev. Lett. 100, 248701, DOI: 10.1103/PhysRevLett.100.248701.
Goh, K.-I., B. Kahng, and D. Kim (2001), Universal behavior of load distribution in scale-free networks, Phys. Rev. Lett. 87, 278701, DOI: 10.1103/PhysRevLett.87.278701.
Gutin, G., T. Mansour, and S. Severini (2011), A characterization of horizontal visibility graphs and combinatorics on words, Physica A 390, 2421-2428, DOI: 10.1016/j.physa.2011.02.031.
Holme, P., B.J. Kim, C.N. Yoon, and S.K. Han (2002), Attack vulnerability of complex networks, Phys. Rev. E 65, 056109, DOI: 10.1103/PhyRevE.65.056109.
Jimenez, A., K.F. Tiampo, A.M. Posadas, F. Luzon, and R. Donner (2009), Analysis of complex networks associated to seismic clusters near the Itoiz reservoir dam, Eur. Phys. J. ST 174, 181-195, DOI: 10.1140/epjst/e2009-01099-1.
Kitsak, M., S. Havlin, G. Paul, M. Riccaboni, F. Pammolli, and H.E. Stanley (2007), Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks, Phys. Rev. E 75, 056115, DOI: 10.1103/PhysRevLett.87.278701.
Lacasa, L., and R. Toral (2010), Description of stochastic and chaotic series using visibility graphs, Phys. Rev. E 82, 036120, DOI: 10.1103/PhysRevE.82.036120.
Lacasa, L., B. Luque, F. Ballesteros, J. Luque, and J.C. Nuno (2008), From time series to complex networks: The visibility graph, Proc. Natl. Acad. Sci. USA 105, 4972-4975, DOI: 10.1073_pnas.0709247105.
Lacasa, L., B. Luque, J. Luque, and J.C. Nuno (2009), The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion, Europhys. Lett. 86, 30001, DOI: 10.1209/0295-5075/86/30001.
Lacasa, L., A. Núñez, E. Roldán, J.M.R. Parrondo, and B. Luque (2011), Time series irreversibility: a visibility graph approach, arXiv:1108.1691v1 physics.data-an.
Liu, C., W.-X. Zhou, and W.-K. Yuan (2010), Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence, Physica A 389, 2675-2681, DOI: 10.1016/j.physa.2010.02.043.
Lozano-Perez, T., and M.A. Wesley (1979), An algorithm for planning collision-free paths among polyhedral obstacles, Comm. ACM 22, 560-570, DOI: 10.1145/359156.359164.
Lukas, R., S.P. Hayes, and K. Wyrtki (1984), Equatorial sea level response during the 1982-1983 El Nino, J. Geophys. Res. 89, C6, 10425-10430, DOI: 10.1029/JC089iC06p10425.
Luque, B., L. Lacasa, F. Ballesteros, and J. Luque (2009), Horizontal visibility graphs: Exact results for random time series, Phys. Rev. E 80, 046103, DOI: 10.1103/PhysRevE.80.046103.
Luque, B., L. Lacasa, F.J. Ballesteros, and A. Robledo (2011), Feigenbaum graphs: A complex network perspective to chaos, PLoS One 6, e22411, DOI: 10.1371/journal.pone.0022411.
Luque, B., L. Lacasa, F.J. Ballesteros, and A. Robledo (2012), Analytical properties of horizontal visibility graphs in the Feigenbaum scenario, Chaos 22, 013109, DOI: 10.1063/1.3676686.
Nagy, G. (1994), Terrain visibility, Comp. Graph. 18, 763-773, DOI: 10.1016/0097-8493(94)90002-7.
Newman, M. (2003), The structure and function of complex networks, SIAM Rev. 45, 167-256, DOI: 10.1137/S003614450342480.
Ni, X.-H., Z.-Q. Jiang, and W.-X. Zhou (2009), Degree distributions of the visibility graphs mapped from fractional Brownian motions and multifractal random walks, Phys. Lett. A 373, 3822-3826, DOI: 10.1016/j.physleta.2009.08.041.
Núñez, A., L. Lacasa, E. Valero, J.P. Gómez, and B. Luque (2011), Detecting series periodicity with horizontal visibility graphs, arXiv:1108.1693v1 physics.data-an.
Núñez, A.M., L. Lacasa, J.P. Gomez, and B. Luque (2012), Visibility algorithms: A short review. In: Y. Zhang (ed.), New Frontiers in Graph Theory, InTech, Rijeka, 119-152.
Qian, M.-C., Z.-Q. Jiang, and W.-X. Zhou (2010), Universal and nonuniversal allometric scaling behaviors in the visibility graphs of world stock market indices, J. Phys. A 43, 335002, DOI: 10.1088/1751-8113/43/33/335002.
Ravasz, E., and A.-L. Barabasi (2003), Hierarchical organization in complex networks, Phys. Rev. E 67, 026112, DOI:10.1103/PhysRevE.67.026112.
Santiago, A., J.P. Cardenas, J.C. Losada, R.M. Benito, A.M. Tarquis, and F. Borondo (2008), Multiscaling of porous soils as heterogeneous complex networks, Nonlin. Proc. Geophys. 15, 893-902, DOI: 10.5194/npg-15-893-2008.
Shao, Z.-G. (2010), Network analysis of human heartbeat dynamics, Appl. Phys. Lett. 96, 073703, DOI: 10.1063/1.3308505.
Song, C., S. Havlin, and H.A. Makse (2006), Origins of fractality in the growth of complex networks, Nature Phys. 2, 275-281, DOI: 10.1038/nphys266.
Tang, Q., J. Liu, and H. Liu (2010), Comparison of different daily streamflow series in US and China, under a viewpoint of complex networks, Mod. Phys. Lett. B 24, 1541-1547, DOI: 10.1142/S0217984910023335.
Telesca, L., and M. Lovallo (2012), Analysis of seismic sequences by using the method of visibility graph, Europhys. Lett. 97, 50002, DOI: 10.1209/0295-5075/97/50002.
Telford, R.J., E. Heegaard, and H.J.B. Birks (2004), All age-depth models are wrong: but how badly?, Quat. Sci. Rev. 23, 1-5, DOI: 10.1016/j.quascirev.2003.11.003.
Theiler, J. (1990), Estimating fractal dimensions, J. Opt. Soc. Am. A 7, 1055-1073, DOI: 10.1364/JOSAA.7.001055.
Tsonis, A.A., and P.J. Roebber (2004), The architecture of the climate network, Physica A 333, 497-504, DOI: 10.1016/j.physa.2003.10.045.
Turner, A., M. Doxa, D. O’Sullivan, and A. Penn (2001), From isovists to visibility graphs: A methodology for the analysis of architectural space, Env. Plann. B 28, 103-121, DOI: 10.1068/b2684.
Watts, D.J., and S.H. Strogatz (1998), Collective dynamics of ‘small-world’ networks, Nature 393, 409-410, DOI: 10.1038/30918.
Xie, W.-J., and W.-X. Zhou (2011), Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index, Physica A 390, 3592-3601, DOI: 10.1016/j.physa.2011.04.020.
Yang, Y., J. Wang, H. Yang, and J. Mang (2009), Visibility graph approach to exchange rate series, Physica A 388, 4431-4437, DOI: 10.1016/j.physa.2009.07.016.
Zaliapin, I., E. Foufoula-Georgiou, and M. Ghil (2010), Transport on river networks: A dynamic tree approach, J. Geophys. Res. 115, F00A15, DOI: 10.1029/2009JF001281.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. , Visibility graph analysis of geophysical time series: Potentials and possible pitfalls. Acta Geophysica Vol. 60, no. 3/2012
[Top]

On the testing of seismicity models

Czasopismo : Acta Geophysica
Tytuł artykułu : On the testing of seismicity models

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Abstrakty : Recently a likelihood-based methodology has been developed by the Collaboratory for the Study of Earthquake Predictability (CSEP) with a view to testing and ranking seismicity models. We analyze this approach from the standpoint of possible applications to hazard analysis. We arrive at the conclusion that model testing can be made more efficient by focusing on some integral characteristics of the seismicity distribution. This can be achieved either in the likelihood framework but with economical and physically reasonable coarsening of the phase space or by choosing a suitable measure of closeness between empirical and model seismicity rate in this space.

Słowa kluczowe : statistical seismology, earthquake forecasting, earthquake likelihood models,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 624 – 637
Bibliografia : Bolshev, L.N., and N.V. Smirnov (1983), Mathematical Statistical Tables, Nauka, Moscow (in Russian).
Borovkov, A.A. (1984), Mathematical Statistics: Estimation of Parameters, Testing Hypotheses, Nauka, Moscow (in Russian).
Cox, D.R., and D.V. Hinkley (1974), Theoretical Statistics, Chapman and Hall, London.
Field, E.H. (2007), Overview of the Working Group for the development of Regional Earthquake Likelihood Models (RELM), Seismol. Res. Lett. 78, 1, 7-16, DOI: 10.1785/gssrl.78.1.7.
Gerstenberger, M.C., D.A. Rhoades, M.W. Stirling, R. Brownrigg, and A. Christophersen (2009), Continued development of the New Zealand Earthquake Forecast Testing Centre, GNS Science Consultancy Report 2009/182, GNS Science, Lower Hutt.
Giardini, D. (1999), The Global Seismic Hazard Assessment Program (GSHAP) – 1992/1999, Ann. Geophys. 42, 6, 957-974.
Harte, D., and D. Vere-Jones (2005), The entropy score and its uses in earthquake forecasting, Pure Appl. Geophys. 162, 6-7, 1229-1253, DOI: 10.1007/s00024-004-2667-2.
Kagan, Y.Y. (2010), Statistical distributions of earthquake numbers: consequence of branching process, Geophys. J. Inter. 180, 3, 1313-1328, DOI: 10.1111/j.1365-246X.2009.04487.x.
Lombardi, A.M., and W. Marzocchi (2010), The assumption of Poisson seismic-rate variability in CSEP/RELM experiments, Bull. Seismol. Soc. Am. 100, 5A, 2293-2300, DOI: 10.1785/0120100012.
Molchan, G.M. (1997), Earthquake prediction as a decision-making problem, Pure Appl. Geophys. 149, 1, 233-247, DOI: 10.1007/BF00945169.
Molchan, G.M., and V.M. Podgaetskaya (1973), Parameters of global seismicity, Comput. Seismol. 6, 44-66 (in Russian).
Molchan, G., T. Kronrod, and G.F. Panza (1997), Multi-scale seismicity model for seismic risk, Bull. Seismol. Soc. Am. 87, 5, 1220-1229.
Ogata, Y. (1998), Space-time point-process models for earthquake occurrences, Ann. Inst. Statist. Math. 50, 2, 379-402, DOI: 10.1023/A:1003403601725.
Rhoades, D.A., D. Schorlemmer, M.C. Gerstenberger, A. Christophersen, J.D. Zechar, and M. Imoto (2011), Efficient testing of earthquake forecasting models, Acta Geophys. 59, 4, 728-747, DOI: 10.2478/s11600-011-0013-5.
Schorlemmer, D., M.C. Gerstenberger, S. Wiemer, D.D. Jeckson, and D.A. Rhoades (2007), Earthquake likelihood model testing, Seismol. Res. Lett. 78, 17-29, DOI: 10.1785/gssrl.78.1.17.
Schorlemmer, D., J.D. Zechar, M.J. Werner, E.H. Field, D.D. Jackson, T.H. Jordan, and the RELM Working Group (2010), First results of the regional earthquake likelihood models experiment, Pure Appl. Geophys. 167, 8-9, DOI: 10.1007/s0024-010-0081-5.
Werner, M.J., and D. Sornette (2008), Magnitude uncertainties impact seismic rate estimates, forecasts, and predictability experiments, J. Geophys. Res. 113, B08302, DOI: 10.1029/2007JB005427.
Werner, M.J, J.D. Zechar, W. Marzocchi, S. Wiemer, and the CSEP-Italy Working Group (2010), Retrospective evaluation of the five-year and ten-year CSEP-Italy earthquake forecasts, Ann. Geophys. 53, 3, 11-30, DOI: 10.4401/ag-4840.
Werner, M.J., A. Helmstetter, D.D. Jackson, and Y.Y. Kagan (2011), High resolution long-term and short-term earthquake forecasts for California, Bull. Seismol. Soc. Am. 101, 4, 1630-1648, DOI: 10.1785/0120090340.
Zechar, J.D., and T.H. Jordan (2010a), The area skill score statistic for evaluating earthquake predictability experiments, Pure Appl. Geophys. 167, 8-9, 893-906, DOI: 10.1007/ s00024-010-0086-0.
Zechar, J.D., and T.H. Jordan (2010b), Simple smoothed seismicity earthquake forecasts for Italy, Ann. Geophys. 53, 3, 99-105, DOI: 10.4401/ag-4845.
Zechar, J.D., M.C. Gerstenberger, and D.A. Rhoades (2010), Likelihood-based tests for evaluating space-rate-magnitude earthquake forecasts, Bull. Seismol. Soc. Am. 100, 3, 1184-1195, DOI: 10.1785/0120090192.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. , On the testing of seismicity models. Acta Geophysica Vol. 60, no. 3/2012
[Top]

A statistical damage model with implications for precursory seismicity

Czasopismo : Acta Geophysica
Tytuł artykułu : A statistical damage model with implications for precursory seismicity

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Abstrakty : Acoustic emissions prior to rupture indicate precursory damage. Laboratory studies of frictional sliding on model faults feature accelerating rates of acoustic emissions prior to rupture. Precursory seismic emissions are not generally observed prior to earthquakes. To address the problem of precursory damage, we consider failure in a fiber-bundle model. We observe a clearly defined nucleation phase followed by a catastrophic rupture. The fibers are hypothesized to represent asperities on a fault. Two limiting behaviors are the equal load sharing p = 0 (stress from a failed fiber is transferred equally to all surviving fibers) and the local load sharing p = 1 (stress from a failed fiber is transferred to adjacent fibers). We show that precursory damage in the nucleation phase is greatly reduced in the local-load sharing limit. The local transfer of stress from an asperity concentrates nucleation, restricting precursory acoustic emissions (seismic activity).

Słowa kluczowe : earthquake precursors, acoustic emission, fiber-bundle model, rupture, nucleation,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 638 – 663
Bibliografia : Abramowitz, M., and I.A. Stegun (eds.) (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed., Dover Publications Inc., New York, 260 pp.
Alava, M.J., P.K.V.V. Nukala, and S. Zapperi (2006), Statistical models of fracture, Adv. Phys. 55, 3-4, 349-476, DOI: 10.1080/00018730300741518.
Agnew, D.C., and L.M. Jones (1991), Prediction probabilities from foreshocks, J. Geophys. Res. 96, B7, 11959-11971, DOI: 10.1029/91JB00191.
Bakun, W.H., B. Aagaard, B. Dost, W.L. Ellsworth, J.L. Hardebeck, R.A. Harris, C. Ji, M.J.S. Johnston, J. Langbein, J.J. Lienkaemper, A.J. Michael, J.R. Murray, R.M. Nadeau, P.A. Reasenberg, M.S. Reichle, E.A. Roeloffs, A. Shakal, R.W. Simpson, and F. Waldhauser (2005), Implications for prediction and hazard assessment from the 2004 Parkfield earthquake, Nature 437, 969-974, DOI: 10.1038/nature04067.
Bowman, D.D., G. Ouillon, C.G. Sammis, A. Sornette, and D. Sornette (1998), An observational test of the critical earthquake concept, J. Geophys. Res. 103, B10, 24359-24372, DOI: 10.1029/98JB00792.
Carlson, J.M., and J.S. Langer (1989), Mechanical model of an earthquake fault, Phys. Rev. A 40, 11, 6470-6484, DOI: 10.1103/PhysRevA.40.6470.
Ciliberto, S., A. Guarino, and R. Scorretti (2001), The effect of disorder on the fracture nucleation process, Physica D 158, 1-4, 83-104, DOI: 10.1016/S0167-2789(01)00306-2.
Coleman, B.D. (1958), Statistics and time dependence of mechanical breakdown in fibers, J. Appl. Phys. 29, 6, 968-983, DOI: 10.1063/1.1723343.
Daniels, H.E. (1945), The statistical theory of the strength of bundles of threads, Proc. Roy. Soc. A 183, 995, 405-435, DOI: 10.1098/rspa.1945.0011.
Garcimartin, A., A. Guarino, L. Bellon, and S. Ciliberto (1997), Statistical properties of fracture precursors, Phys. Rev. Lett. 79, 17, 3202-3205, DOI; 10.1103/PhysRevLett.79.3202.
Guarino, A., A. Garcimartin, and S. Ciliberto (1998), An experimental test of the critical behavior of fracture precursors, Eur. Phys. J. B 6, 13-24, DOI: 10.1007/s100510050521.
Guarino, A., S. Ciliberto, and A. Garcimartin (1999), Failure time and microcrack nucleation, Europhys. Lett. 47, 4, 456-461, DOI: 10.1209/epl/i1999-00409-9.
Guarino, A., S. Ciliberto, A. Garcimartin, M. Zei, and R. Scorretti (2002), Failure time and critical behaviour of fracture precursors in heterogeneous materials, Eur. Phys. J. B 26, 2, 141-151, DOI: 10.1140/epjb/e20020075.
Helmstetter, A., and D. Sornette (2003), Foreshocks explained by cascades of triggered seismicity, J. Geophys. Res. 108, B10, 2457-2466, DOI: 10.1029/2003JB002409.
Hemmer, P.C., and A. Hansen (1992), The distribution of simultaneous fiber failures in fiber bundles, J. Appl. Mech. 59, 4, 909-914, DOI: 10.1115/1.2894060.
Krajcinovic, D. (1996), Damage Mechanics, 2nd ed., Elsevier, Amsterdam, 761 pp.
Kun, F., S. Zapperi, and H.J. Herrmann (2000), Damage in fiber bundle models, Eur. Phys. J. B 17, 2, 269-279, DOI: 10.1007/PL00011084.
Marone, C. (1998), Laboratory-derived friction laws and their application to seismic faulting, Ann. Rev. Earth Planet. Sci. 26, 643-696, DOI: 10.1146/annurev.earth.26.1.643.
Meeker, W.Q., and L.A. Escobar (1998), Statistical Methods for Reliability Data, John Wiley and Sons, New York, 680 pp.
Phoenix, S.L., and W.I. Newman (2009), Time-dependent fiber bundles with local load sharing. II. General Weibull fibers, Phys. Rev. E 80, 6, 066115, DOI: 10.1103/PhysRevE.80.066115.
Pradhan, S., A. Hansen, and B.K. Chakrabarti (2010), Failure processes in elastic fiber bundles, Rev. Mod. Phys. 82, 1, 499-555, DOI: 10.1103/RevModPhys.82.499.
Pride, S.R., and R. Toussaint (2002), Thermodynamics of fiber bundles, Physica A 312, 1-2, 159-171, DOI: 10.1016/S0378-4371(02)00816-6.
Reasenberg, P.A. (1999), Foreshock occurrence before large earthquakes, J. Geophys. Res. 104, B3, 4755-4768, DOI: 10.1029/1998JB900089.
Savage, M.K., and D.M. dePolo (1993), Foreshock probabilities in the western Great-Basin eastern Sierra Nevada, Bull. Seismol. Soc. Am. 83, 6, 1910-1938.
Scorretti, R., S. Ciliberto, and A. Guarino (2001), Disorder enhances the effects of thermal noise in the fiber bundle model, Europhys. Lett. 55, 5, 626-632, DOI: 10.1209/epl/i2001-00462-x.
Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, 2nd ed., Cambridge University Press, Cambridge, 398 pp.
Turcotte, D.L. (1999), Self-organized criticality, Rep. Prog. Phys. 62, 10, 1377-1429, DOI: 10.1088/0034-4885/62/10/201.
Turcotte, D.L., S.G. Abaimov, R. Shcherbakov, and J.B. Rundle (2007), Nonlinear dynamics of nature hazards. In: A.A. Tsonis and J.B. Elsner (eds.), Nonlinear Dynamics in Geosciences, Springer, New York, 557-580, DOI: 10.1007/978-0-387-34918-3_30.
Weeks, J., D. Lockner, and J. Byerlee (1978), Change in b-values during movement on cut surfaces in granite, Bull. Seismol. Soc. Am. 68, 2, 333-341.
Weibull, W. (1951), A statistical distribution function of wide applicability, J. Appl. Mech. 18, 293-297.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. , A statistical damage model with implications for precursory seismicity. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Dynamical parameter analysis of continuous seismic signals of Popocatépetl volcano (Central Mexico): A case of tectonic earthquakes influencing volcanic activity

Czasopismo : Acta Geophysica
Tytuł artykułu : Dynamical parameter analysis of continuous seismic signals of Popocatépetl volcano (Central Mexico): A case of tectonic earthquakes influencing volcanic activity

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Abstrakty : The continuous background seismic activity contains information on the internal state of a volcanic system. Here, we report the influence of major regional tectonic earthquakes (M > 5 in most cases) on such state, reflected as changes in the spectral and dynamical parameters of the volcano continuous seismic data. Although changes do not always occur, analysis of five cases of earthquake-induced variations in the signals recorded at Popocatepetl volcano in central Mexico reveal significant fluctuations following the tectonic earthquakes. External visible volcanic activity, such as small to moderate explosions and ash emissions, were related to those fluctuations. We briefly discuss possible causes of the variations. We conclude that recognition of fluctuations in the dynamical parameters in volcano monitoring seismic signals after tectonic earthquakes, even those located in the far field, hundreds of kilometers away, may provide an additional criterion for eruption forecasting, and for decision making in the definition of volcanic alert levels.

Słowa kluczowe : dynamical parameters, continuous seismic signal, volcanic activity, Popocatepetl volcano, tectonic earthquakes,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 664 – 681
Bibliografia : Boudal, C., and C. Robin (1989), Volcán Popocatépetl: recent eruptive history, and potential hazards and risks in future eruptions. In: J.H. Latter (ed.), IAVCEI Proc. in Volcanology “Volcanic hazards”, Springer-Verlag, Berlin, 110-128.
Box, G.E.P., G.M. Jenkins, and G.C. Reinsel (1994), Time Series Analysis: Forecasting and Control, 3rd ed., Prentice Hall, Englewood Clifs, NJ.
Bozzo, E., R. Carniel, and D. Fasino (2010), Relationship between singular spectrum analysis and Fourier analysis: Theory and application to the monitoring of volcanic activity, Comput. Math. Appl. 60, 3, 812-820, DOI: 10.1016/j.camwa.2010.05.028.
Carniel, R., and M. Di Cecca (1999), Dynamical tools for the analysis of long term evolution of volcanic tremor at Stromboli, Ann. Geofis. 42, 3, 483-495.
Carniel, R., and M. Tárraga (2006), Can tectonic events change volcanic tremor at Stromboli?, Geophys. Res. Lett. 33, L20321, DOI: 10.1029/2006GL027690.
Carniel, R., M. Di Cecca, and D. Rouland (2003), Ambrym, Vanuatu (July-August 2000): Spectral and dynamical transitions on the hours-to-days timescale, J. Volcanol. Geoth. Res. 128, 1-3, 1-13, DOI: 10.1016/S0377-0273(03)00243-9.
Carniel, R., F. Barazza, M. Tárraga, and R. Ortiz (2006), On the singular values decoupling in the Singular Spectrum Analysis of volcanic tremor at Stromboli, Nat. Hazards Earth Syst. Sci. 6, 6, 903-909, DOI: 10.5194/nhess-6-903-2006.
Carniel, R., M. Tárraga, F. Barazza, and A. García (2008), Possible interaction between tectonic events and seismic noise at Las Cañadas Volcanic Caldera, Tenerife, Spain, Bull. Volcanol. 70, 9, 1113-1121, DOI: 10.1007/s00445-007-0193-7.
Chouet, B. (2003), Volcano seismology, Pure Appl. Geophys. 160, 3-4, 739-788, DOI: 10.1007/PL00012556.
Chouet, B., P. Dawson, and A. Arciniega-Ceballos (2005), Source mechanism of Vulcanian degassing at Popocatépetl Volcano, Mexico, determined from waveform inversions of very long period signals, J. Geophys. Res. 110, B07301, DOI: 10.1029/2004JB003524.
De la Cruz-Reyna, S., and R.I. Tilling (2008), Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system, J. Volcanol. Geoth. Res. 170, 1-2, 121-134, DOI: 10.1016/j.jvolgeores.2007.09.002.
De la Cruz-Reyna, S., I. Yokoyama, A. Martinez-Bringas, and E. Ramos (2008), Precursory seismicity of the 1994 eruption of Popocatépetl Volcano, Central Mexico, Bull. Volcanol. 70, 6, 753-767, DOI: 10.1007/s00445-008-0195-0.
De la Cruz-Reyna, S., M. Tárraga, R. Ortiz, and A. Martinez-Bringas (2010), Tectonic earthquakes triggering volcanic seismicity and eruptions. Case studies at Tungurahua and Popocatépetl volcanoes, J. Volcanol. Geoth. Res. 193, 1-2, 37-48, DOI:10.1016/j.jvolgeores.2010.03.005.
Endo, E.T., and T. Murray (1991), Real-time Seismic Amplitude Measurement (RSAM): A volcano monitoring and prediction tool, Bull. Volcanol. 53, 7, 533-545, DOI: 10.1007/BF00298154.
Hellweg, M. (1999), Seismic signals from Lascar Volcano, J. South Am. Earth Sci. 12, 2, 123-133, DOI: 10.1016/S0895-9811(99)00010-3.
Ichihara, M., and T. Nishimura (2009), Pressure impulses generated by bubbles interacting with ambient perturbation. In: R.A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, Vol. 7, Springer, New York, 6955-6977.
Jaquet, O., and R. Carniel (2001), Stochastic modelling at Stromboli: a volcano with remarkable memory, J. Volcanol. Geoth. Res. 105, 3, 249-262, DOI: 10.1016/ S0377-0273(00)00254-7.
Manga, M., and E. Brodsky (2006), Seismic triggering of eruptions in the Far Field: Volcanoes and geysers, Ann. Rev. Earth Planet. Sci. 34, 263-291, DOI: 10.1146/annurev.earth.34.031405.125125.
Minakami, T. (1974), Seismology of volcanoes in Japan. In: L. Civetta, P. Gasparini, G. Luongo, and A. Rapolla (eds.), Physical Volcanology, Elsevier, Amsterdam, 1-27.
Ortiz, R., H. Moreno, A. García, G. Fuentealba, M. Astiz, P. Peña, N. Sánchez, and M. Tárraga (2003), Villarrica volcano (Chile): characteristics of the volcanic tremor and forecasting of small explosions by means of a material failure method, J. Volcanol. Geoth. Res. 128, 1-3, 247-259, DOI: 10.1016/S0377-0273(03)00258-0.
Packard, N.H., J.P. Crutchfield, J.D. Farmer, and R.S. Shaw (1980), Geometry from a time series, Phys. Rev. Lett. 45, 9, 712-716, DOI: 10.1103/PhysRevLett. 45.712.
Privitera, E., T. Sgroi, and S. Gresta (2003), Statistical analysis of intermittent volcanic tremor associated with the September 1989 summit explosive eruptions at Mount Etna, Sicily, J. Volcanol. Geoth. Res. 120, 3-4, 235-247, DOI: 10.1016/S0377-0273(02)00400-6.
Rogers, J.A., and J.A. Stephens (1995), SSAM: Real-time seismic spectral amplitude measurement on a PC and its application to volcano monitoring, Bull. Seismol. Soc. Am. 85, 2, 632-639.
Schick, R. (1988), Volcanic tremor-source mechanisms and correlation with eruptive activity, Nat. Hazards 1, 2, 125-144, DOI: 10.1007/BF00126610.
Singh, S.K., M. Ordaz, J.F. Pacheco, R. Quaas, L. Alcántara, S. Alcocer, C. Gutiérrez, R. Meli, and E. Ovando (1999), A preliminary report on the Tehuacan, Mexico earthquake of June 15, 1999 (Mw = 7.0), Seismol. Res. Lett. 70, 5, 489-504, DOI: 10.1785/gssrl.70.5.489.
Tárraga, M., R. Carniel, R. Ortiz, J.M. Marrero, and A. García (2006), On the predictability of volcano-tectonic events by low frequency seismic noiseanalysis at Teide–Pico Viejo volcanic complex, Canary Islands, Nat. Hazards Earth Syst. Sci. 6, 3, 365-376, DOI: 10.5194/nhess-6-365-2006.
Tárraga, M., R. Carniel, R. Ortiz, A. García, and H. Moreno (2008), A dynamical analysis of the seismic activity of Villarrica volcano (Chile) during September–October 2000, Chaos Solitons Fract. 37, 5, 1292-1299, DOI: 10.1016/j.chaos.2006.10.062.
Van Loan, C. (1992), Computational Frameworks for the fast Fourier Transform, SIAM, Philadelphia.
Vila, J., R. Macià, D. Kumar., R. Ortiz, H. Moreno, and A.M. Correig (2006), Analysis of the unrest of active volcanoes using variations of the base level noise seismic spectrum, J. Volcanol. Geoth. Res. 153, 1-2, 11-20, DOI: 10.1016/j.jvolgeores.2005.10.011.
Walter, T.R., and F. Amelung (2007), Volcanic eruptions following M > 9 megathrust earthquakes: Implications for the Sumatra–Andaman volcanoes, Geology 35, 6, 539-542, DOI: 10.1130/G23429A.1.
Walter, T.R., R. Wang, V. Acocella, M. Neri, H. Grosser, and J. Zschau (2009), Simultaneous magma and gas eruptions at three volcanoes in southern Italy: An earthquake trigger?, Geology 37, 3, 251-254, DOI: 10.1130/G25396A.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. , Dynamical parameter analysis of continuous seismic signals of Popocatépetl volcano (Central Mexico): A case of tectonic earthquakes influencing volcanic activity. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Fractal analysis of experimentally generated pyroclasts. A tool for volcanic hazard assessment

Czasopismo : Acta Geophysica
Tytuł artykułu : Fractal analysis of experimentally generated pyroclasts. A tool for volcanic hazard assessment

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Abstrakty : Rapid decompression experiments on natural volcanic rocks mimick explosive eruptions. Fragment size distributions (FSD) of such experimentally generated pyroclasts are investigated using fractal geometry. The fractal dimension of fragmentation, D, of FSD is measured for samples from Unzen (Japan) and Popocatepetl (Mexico) volcanoes. Results show that: (i) FSD are fractal and can be quantified by measuring D values; (ii) D increases linearly with potential energy for fragmentation (PEF) and, thus, with increasing applied pressure; (iii) the rate of increase of D with PEF depends on open porosity: the higher the open porosity, the lower the increase of D with PEF; (iv) at comparable open porosity, samples display a similar behavior for any rock composition. The method proposed here has the potential to become a standard routine to estimate eruptive energy of past and recent eruptions using values of D and open porosity, providing an important step towards volcanic hazard assessment.

Słowa kluczowe : experimental volcanology, rapid decompression experiment, fragment size distributions, fractals, eruptive energy,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 682 – 698
Bibliografia : Alatorre-Ibargüengoitia, M.A., B. Scheu, and D.B. Dingwell (2011), Influence of the fragmentation process on the dynamics of Vulcanian eruptions: An experimental approach, Earth Planet. Sci. Lett. 302, 1-2, 51-59, DOI: 10.1016/j.epsl.2010.11.045.
Alidibirov, M., and D.B. Dingwell (1996), An experimental facility for the investigation of magma fragmentation by rapid decompression, Bull. Volcanol. 58, 5, 411-416, DOI: 10.1007/s004450050149.
Barnett, W. (2004), Subsidence breccias in kimberlite pipes – an application of fractal analysis, Lithos 76, 1-4, 299-316, DOI: 10.1016/j.lithos.2004.03.019.
Barton, C.C. (1995), Fractal analysis of scaling and spatial clustering of fractures. In: C.C. Barton, and P.R. La Pointe (eds.), Fractal in the Earth Sciences, Plenum Press, NY, 141-178.
Cas, R.A.F., and J.V. Wright (1987), Volcanic Successions, Modern and Ancient, Chapman & Hall, London.
Dellino, P., and G. Liotino (2002), The fractal and multifractal dimension of volcanic ash particles contour: a test study on the utility and volcanological relevance, J. Volcanol. Geotherm. Res. 113, 1-2, 1-18, DOI: 10.1016/S0377-0273(01)00247-5.
Dingwell, D.B. (1996), Volcanic dilemma – flow or blow? Science 273, 5278, 1054-1055, DOI: 10.1126/science.273.5278.1054.
Holtz, F., S. Lenne, G. Ventura, F. Vetere, and P. Wolf (2004), Non-linear deformation and break up of enclaves in a rhyolitic magma: A case study from Lipari Island (Southern Italy), Geophys. Res. Lett. 31, L24611, DOI: 10.1029/2004GL021590.
Korvin, G. (1992), Fractal Models in the Earth Sciences, Elsevier, Amsterdam.
Kueppers, U., B. Scheu, O. Spieler, and D.B. Dingwell (2006a), Fragmentation efficiency of explosive volcanic eruptions: A study of experimentally generated pyroclasts, J. Volcanol. Geotherm. Res. 153, 1-2, 125-135, DOI: 10.1016/j.jvolgeores.2005.08.006.
Kueppers, U., D. Perugini, and D.B. Dingwell (2006b), “Explosive energy” during volcanic eruptions from fractal analysis of pyroclasts, Earth Planet. Sci. Lett. 248, 3-4, 800-807, DOI: 10.1016/j.epsl.2006.06.033.
Mandelbrot, B.B. (1982), The Fractal Geometry of Nature, Freeman, San Francisco.
Maria, A., and S. Carey (2002), Using fractal analysis to quantitatively characterize the shapes of volcanic particles, J. Geophys. Res. 107, B11, 2283, DOI: 10.1029/2001JB000822.
Maria, A., and S. Carey (2007), Quantitative discrimination of magma fragmentation and pyroclastic transport processes using the fractal spectrum technique, J. Volcanol. Geotherm. Res. 161, 3, 234-246, DOI: 10.1016/j.jvolgeores.2006.12.006.
Matsushita, M. (1985), Fractal viewpoint of fracture and accretion, J. Phys. Soc. Japan 54, 857-860, DOI: 10.1143/JPSJ.54.857.
Pepe, S., G. Solaro, G.P. Ricciardi, and P. Tizzani (2008), On the fractal dimension of the fallout deposits: A case study of the 79 A.D. Plinian eruption at Mt. Vesuvius, J. Volcanol. Geotherm. Res. 177, 1, 288-299, DOI: 10.1016/j.jvolgeores.2008.01.023.
Perugini, D., and G. Poli (2005), Viscous fingering during replenishment of felsic magma chambers by continuous inputs of mafic magmas: Field evidence and fluid-mechanics experiments, Geology 33, 1, 5-8, DOI: 10.1130/G21075.1.
Perugini, D., M. Petrelli, and G. Poli (2006), Diffusive fractionation of trace elements by chaotic mixing of magmas, Earth Planet. Sci. Lett. 243, 3-4, 669-680, DOI: 10.1016/j.epsl.2006.01.026.
Perugini, D., L. Valentini, and G. Poli (2007), Insights into magma chamber processes from the analysis of size distribution of enclaves in lava flows: A case study from Vulcano Island (Southern Italy), J. Volcanol. Geotherm. Res. 166, 3-4, 193-203, DOI: 10.1016/j.jvolgeores.2007.07.017.
Perugini, D., A. Speziali, L. Caricchi, and U. Kueppers (2011), Application of fractal fragmentation theory to natural pyroclastic deposits: insights into volcanic explosivity of the Valentano scoria cone (Italy), J. Volcanol. Geotherm. Res. 202, 200-210, DOI: 10.1016/j.jvolgeores.2011.02.008.
Sammis, C.G., R.H. Osborne, J.L. Anderson, M. Banerdt, and P. White (1986), Selfsimilar cataclasis in the formation of fault gouge, Pure Appl. Geophys. 124, 1-2, 53-78, DOI: 10.1007/BF00875719.
Sornette, A., P. Davy, and D. Sornette (1990), Growth of fractal fault patterns, Phys. Rev. Lett. 65, 18, 2266-2269, DOI: 10.1103/PhysRevLett.65.2266.
Spieler, O., B. Kennedy, U. Kueppers, D.B. Dingwell, B. Scheu, and J. Taddeucci (2004), The fragmentation threshold of pyroclastic rocks, Earth Planet. Sci. Lett. 226, 1-2, 139-148, DOI: 10.1016/j.epsl.2004.07.016.
Storti, F., A. Billi, and F. Salvini (2003), Particle size distributions in natural carbonate fault rocks: insights for non-self-similar cataclasis, Earth Planet. Sci. Lett. 206, 1-2, 173-186, DOI: 10.1016/S0012-821X(02)01077-4.
Suzuki-Kamata, K., T. Kusano, and K. Yamasaki (2009), Fractal analysis of the fracture strength of lava dome material based on the grain size distribution of block-and-ash flow deposits at Unzen Volcano, Japan, Sedim. Geol. 220, 3-4, 162-168, DOI: 10.1016/j.sedgeo.2009.04.026.
Taddeucci, J., M. Pompilio, and P. Scarlato (2004), Conduit processes during the July-August 2001 explosive activity of Mt. Etna (Italy): inferences from glass chemistry and crystal size distribution of ash particles, J. Volcanol. Geotherm. Res. 137, 1-3, 33-54, DOI: 10.1016/j.jvolgeores.2004.05.011.
Turcotte, D.L. (1986), Fractals and fragmentation, J. Geophys. Res. 91, B2, 1921-1926, DOI: 10.1029/JB091iB02p01921.
Turcotte, D.L. (1992), Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge.
Tyler, S.W., S.W. Wheatcraft (1992), Fractal scaling of soil particle-size distributions: analysis and limitations, Soil Sci. Soc. Am. J. 56, 2, 362-369.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. , Fractal analysis of experimentally generated pyroclasts. A tool for volcanic hazard assessment. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Emulation of simulated earthquake catalogues

Czasopismo : Acta Geophysica
Tytuł artykułu : Emulation of simulated earthquake catalogues

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Gallucci, M.
Dipartimento di Statistica “G. Parenti”, Universita di Firenze, Firenze, Italy, gallucci@ds.unifi.it,
Abstrakty : In earthquake occurrence studies, the so-called q value can be considered both as one of the parameters describing the distribution of inter-event times and as an index of non-extensivity. Using simulated datasets, we compare four kinds of estimators, based on principle of maximum entropy (POME), method of moments (MOM), maximum likelihood (MLE), and probability weighted moments (PWM) of the parameters (q and τ0) of the distribution of inter-events times, assumed to be a generalized Pareto distribution (GPD), as defined by Tsallis (1988) in the frame of non-extensive statistical physics. We then propose to use the unbiased version of PWM estimators to compute the q value for the distribution of inter-event times in a realistic earthquake catalogue simulated according to the epidemic type aftershock sequence (ETAS) model. Finally, we use these findings to build a statistical emulator of the q values of ETAS model. We employ treed Gaussian processes to obtain partitions of the parameter space so that the resulting model respects sharp changes in physical behaviour. The emulator is used to understand the joint effects of input parameters on the q value, exploring the relationship between ETAS model formulation and distribution of inter-event times.

Słowa kluczowe : probability weighted moments, q-statistics, inter-event times, ETAS model, emulator,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 699 – 718
Bibliografia : Abe, S., and N. Suzuki (2003), Law for the distance between successive earthquakes, J. Geophys. Res. 108, B2, 2113-2116, DOI: 10.1029/2002JB 002220.
Abe, S., and N. Suzuki (2005), Scale-free statistics of time interval between successive earthquakes, Physica A 350, 2-4, 588-596, DOI: 10.1016/j.physa.2004.10.040.
Gramacy, R.B. (2007), tgp: An R package for Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian process models, J. Stat. Softw. 19, 9, 1-46.
Gramacy, R.B., and H.K.H. Lee (2008), Bayesian treed Gaussian process models with an application to computer modeling, J. Am. Stat. Assoc. 103, 483, 1119-1130, DOI: 10.1198/016214508000000689.
Gramacy, R.B., and M. Taddy (2010), Categorical inputs, sensitivity analysis, optimization and importance tempering with tgp version 2, an R package for treed Gaussian process models, J. Stat. Softw. 33, 6, 1-48.
Greenwood, J.A., J.M. Landwehr, N.C. Matalas, and J.R. Wallis (1979), Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form, Water Resour. Res. 15, 5, 1049-1054, DOI: 10.1029/WR015i005p01049.
Harte, D. (2010), PtProcess: An R package for modelling marked point processes indexed by time, J. Stat. Softw. 35, 8, 1-32.
Hosking, J.R.M., and J.R. Wallis (1987), Parameter and quantile estimation for the generalized Pareto distribution, Technometrics 29, 3, 339-349, DOI: 10.2307/1269343.
Kagan, Y.Y., and F. Shoenberg (2001), Estimation of the upper cutoff parameter for the tapered Pareto distribution, J. Appl. Probab. 38A, 158-175, DOI: 10.1239/jap/1085496599.
McKay, M.D., R.J. Beckman, and W.J. Conover (1979), A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21, 2, 239-245, DOI: 10.2307/1268522.
Naylor, M., I.G. Main, and S. Touati (2009), Quantifying uncertainty in mean earthquake interevent times for a finite sample, J. Geophys. Res. 114, B01316, DOI: 10.1029/2008JB005870.
O’Hagan, A. (2006), Bayesian analysis of computer code outputs: A tutorial, Reliab. Eng. Syst. Safe. 91, 10-11, 1290-1300, DOI: 10.1016/j.ress.2005.11.025.
Ogata, Y. (1988), Statistical models for earthquake occurrences and residual analysis for point processes, J. Am. Stat. Assoc. 83, 401, 9-27, DOI: 10.2307/2288914.
Ogata, Y. (1998), Space-time point-process models for earthquake occurrences, Ann. Inst. Statist. Math. 50, 2, 379-402, DOI: 10.1023/A:1003403601725.
Ogata, Y., and J. Zhuang (2006), Space-time ETAS models and an improved extension, Tectonophysics 413, 1-2, 13-23, DOI: 10.1016/j.tecto.2005.10.016.
Pisarenko, V.F., D. Sornette, and M.V. Rodkin (2010), Distribution of maximum earthquake magnitudes in future time intervals: application to the seismicity of Japan (1923-2007), Earth Planets Space 62, 7, 567-578, DOI: 10.5047/eps.2010.06.003.
Rougier, J., S. Guillas, A. Maute, and A.D. Richmond (2009), Expert knowledge and multivariate emulation: The thermosphere-ionosphere electrodynamics general circulation model (TIE-GCM), Technometrics 51, 4, 414-424, DOI: 10.1198/TECH.2009.07123.
Sacks, J., W.J. Welch, T.J. Mitchell, and H.P. Wynn (1989), Design and analysis of computer experiments, Stat. Sci. 4, 4, 409-423, DOI: 10.1214/ss/1177012413.
Shalizi, C.R. (2007), Maximum likelihood estimation for q-exponential (Tsallis) distributions, arXiv:math/0701854v2 math.ST.
Singh, V.P., and H. Guo (1997), Parameter estimation for 2-parameter generalized pareto distribution by POME, Stoch. Hydrol. Hydraul. 11, 3, 211-227, DOI: 10.1007/BF02427916.
Telesca, L. (2010a), Nonextensive analysis of seismic sequences, Physica A 389, 9, 1911-1914, DOI: 10.1016/j.physa.2010.01.012.
Telesca, L. (2010b), A non-extensive approach in investigating the seismicity of L’Aquila area (central Italy), struck by the 6 April 2009 earthquake (ML = 5.8), Terra Nova 22, 2, 87-93, DOI: 10.1111/j.1365-3121.2009. 00920.x.
Touati, S., M. Naylor, and I.G. Main (2009), Origin and nonuniversality of the earthquake interevent time distribution, Phys. Rev. Lett. 102, 16, 168501, DOI: 10.1103/PhysRevLett.102.168501.
Touati, S., M. Naylor, I.G. Main, and M. Christie (2011), Masking of earthquake triggering behavior by a high background rate and implications for epidemic-type aftershock sequence inversions, J. Geophys. Res. 116, B03304, DOI: 10.1029/2010JB007544.
Tsallis, C. (1988), Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys. 52, 1-2, 479-487, DOI: 10.1007/BF01016429.
Tsallis, C. (1999), Nonextensive statistics: theoretical, experimental and computanional evidences and connections, Braz. J. Phys. 29, 1, DOI: 10.1590/S0103-97331999000100002.
Tsallis, C. (2009), Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World, Springer, New York, DOI: 10.1007/978-0-387-85359-8.
Vallianatos, F. (2009), A non-extensive approach to risk assessment, Nat. Hazards Earth Syst. Sci. 9, 1, 211-216, DOI: 10.5194/nhess-9-211-2009.
Vallianatos, F. (2011), A non extensive statistical physics approach to the polarity reversals of the geomagnetic field, Physica A 390, 10, 1773-1778, DOI: 10.1016/j.physa.2010.12.040.
Vallianatos, F., and P. Sammonds (2010), Is plate tectonics a case of non-extensive thermodynamics?, Physica A 389, 21, 4989-4993, DOI:10.1016/j.physa.2010.06.056.
Vallianatos, F., and P. Sammonds (2011), A non-extensive statistics of the faultpopulation at the Valles Marineris extensional province, Mars, Tectonophysics 509, 1-2, 50-54, DOI: 10.1016/j.tecto.2011.06.001.
Vallianatos, F., E. Kokinou, and P. Sammonds (2011a), Non-extensive statistical physics approach to fault population distribution. A case study from the Southern Hellenic Arc (Central Crete), Acta Geophys. 59, 4, 770-784, DOI: 10.2478/s11600-011-0015-3.
Vallianatos, F., D. Triantis, and P. Sammonds (2011b), Non-extensivity of the isothermal depolarization relaxation currents in uniaxial compressed rocks, Europhys. Lett. 94, 6, 68008, DOI: 10.1209/0295-5075/94/68008.
Wang, Q., D.D. Jackson, and J. Zhuang (2010a), Missing links in earthquake clustering models, Geophys. Res. Lett. 37, L21307, DOI: 10.1029/2010GL044858.
Wang, Q, F.P. Schoenberg, and D.D. Jackson (2010b), Standard errors of parameter estimates in the ETAS model, Bull. Seismol. Soc. Am. 100, 5A, 1989-2001, DOI: 10.1785/0120100001.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. ,Gallucci, M. , Emulation of simulated earthquake catalogues. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Hierarchy of non-extensive mechanical processes in fracturing sea ice

Czasopismo : Acta Geophysica
Tytuł artykułu : Hierarchy of non-extensive mechanical processes in fracturing sea ice

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Gallucci, M.
Dipartimento di Statistica “G. Parenti”, Universita di Firenze, Firenze, Italy, gallucci@ds.unifi.it,
Chmel, A.
Fracture Physics Department, Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia, chmel@mail.ioffe.ru,
Abstrakty : The fracture-induced oscillations in sea ice were detected by seismographs and seismic tiltmeters established on the Arctic ice pack. Field observations were supplemented with a laboratory experiment. The energy distributions in elastic waves generated during: (i) large-scale ice pack fragmentation over area of about 10⁵ km2, (ii) local crack propagation in ice floe, and (iii) laboratory ice crashing were constructed and analyzed using principles of the Tsallis statistics. The energy release regimes at different stages of fracturing were characterized by the parameter of nonextensivity q. In terms of the non-extensive statistical mechanics, q > 1 evidences the correlated (non-extensive) dynamics of the process in nonequilibrium system, q = 1 responds to the additivity of events occurring in equilibrium system, and q < 1 takes place when the energy release is additive and limited by an upper cut-off. All these scenarios were revealed in fracture processes occurring at three hierarchic levels. The variation of the q-value demonstrates high thermodynamic changeability of the fracture process driven by irregular external source. The role of energy conservation in fracturing sea ice is discussed in connection with the observed reversible transitions between extensive and non-extensive modes of fracture.
Słowa kluczowe : dynamic fracture, Tsallis statistics,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 719 – 739
Bibliografia : Balasco, M., V. Lapenna, and L. Telesca (2002), 1/fα fluctuations in geoelectrical signals observed in a seismic area of Southern Italy, Tectonophysics 347, 4, 253-268, DOI: 10.1016/S0040-1951(02)00062-8.
Bowman, D.D., G. Ouillon, C.G. Sammis, A. Sornette, and D. Sornette (1998), An observational test of the critical earthquake concept, J. Geophys. Res. 103, B10, 24359-24372, DOI: 10.1029/98JB00792.
Chmel, A., and V.N. Smirnov (2008), Self-organized dynamics of the sea ice cover. In: K.B. Tewles (ed.), The Pacific and Arctic Oceans – New Oceanographic Researches, Nova Science, New York, 131-156.
Chmel, A., and V.N. Smirnov (2011), Correlated energy exchange in drifting sea ice, Int. J. Oceanography, DOI: 10.1155/2011/316289.
Chmel, A., V.N. Smirnov, and L.V. Panov (2007), Scaling aspects of the sea-icedrift dynamics and pack fracture, Ocean Sci. 3, 2, 291-298, DOI: 10.5194/os-3-291-2007.
Chmel, A., V. Smirnov, and O. Golovanov (2010a), Variability of scaling para meters in non-conservative systems: Geophysical aspect, Physica A, 389, 13, 2617-2627, DOI: 10.1016/j.physa.2010.02.055.
Chmel, A., V.N. Smirnov, and I.B. Sheikin (2010b), Variability of scaling time series in the Arctic sea-ice drift dynamics, Ocean Sci. 6, 1, 211-217, DOI: 10.5194/os-6-211-2010.
Contoyiannis, Y.F., C. Nomicos, J. Kopanas, G. Antonopoulos, L. Contoyianni, and K. Eftaxias (2010), Critical features in electromagnetic anomalies detected prior to the L’Aquila earthquake, Physica A 389, 3, 499-508, DOI: 10.1016/j.physa.2009.09.046.
Ferri, G.L., M.F.Reynoso Savio, and A. Plastino (2010), Tsallis’ q-triplet and the ozone layer, Physica A 389, 9, 1829-1833, DOI: 10.1016/j.physa.2009.12.020.
Genshaft, Yu.S. (2009), The Earth as an open system: Geological and geophysical consequences, Izv. – Phys. Solid Earth 45, 8, 624-632, DOI: 10.1134/S1069351309080023.
Kalimeri, M., C. Papadimitriou, G. Balasis, and K. Eftaxias (2008), Dynamical complexity detection in pre-seismic emissions using nonadditive Tsallis entropy, Physica A 387, 5-6, 1161-1172, DOI: 10.1016/j.physa.2007. 10.053.
Kapiris, P.G., K.A. Eftaxias, K.D. Nomikos, J. Polygiannakis, E. Dologlou, G.T. Balasis, N.G. Bogris, A.S. Peratzakis, and V.E. Hadjicontis (2003), Evolving towards a critical point: A possible electromagnetic way in which the critical regime is reached as the rupture approaches, Nonlin. Processes Geophys. 10, 6, 511-524, DOI: 10.5194/npg-10-511-2003.
Keylock, C.J. (2005), Describing the recurrence interval of extreme floods using nonextensive thermodynamics and Tsallis statistics, Adv. Water Resour. 28, 8, 773-778, DOI: 10.1016/j.advwatres.2005.02.011.
Martin, S., and R. Drucker (1991), Observations of short-period ice floe accelerations during leg II of the Polarbjørn drift, J. Geophys. Res. 96, C6, 10567-10580, DOI: 10.1029/91JC00785.
McNutt, S.L., and J.E. Overland (2003), Spatial hierarchy in Arctic sea ice dynamics, Tellus A 55, 2, 181-191, DOI: 10.1034/j.1600-0870.2003. 00012.x.
Milovanov, A.V., and L.M. Zelenyi (2000), Functional background of the Tsallis entropy: “coarse-grained” systems and “kappa” distribution functions, Nonlin. Processes Geophys. 7, 3/4, 211-221, DOI: 10.5194/npg-7-211-2000.
Overland, J.E., B.A. Walter, T.B. Curtin, and P. Turet (1995) Hierarchy and sea ice mechanics: A case study from the Beaufort Sea, J. Geophys. Res. 100, C3, 4559-4571, DOI: 10.1029/94JC02502.
Rabinovitch, A., V. Frid, and D. Bahat (2001), Gutenberg–Richter-type relation for laboratory fracture-induced electromagnetic radiation, Phys. Rev. E 65, 1, 011401, DOI:10.1103/PhysRevE.65.011401.
Shcherbakov, I.P., V.S. Kuksenko, and A.E. Chmel (2011), Nonextensive statistical analysis of the data on the high-speed impact fracture of solids, JEPT Lett. 94, 5, 378-381, DOI: 10.1134/S0021364011170152.
Shi, B., B. Vidakovic, G.G. Katul, and J.D. Albertson (2005), Assessing the effects of atmospheric stability on the fine structure of surface layer turbulence using local and global multiscale approaches, Phys. Fluids 17, 5, 055104, DOI: 10.1063/1.1897008.
Silva, R., G.S. França, C.S. Vilar, and J.S. Alcaniz (2006), Nonextensive models for earthquakes, Phys. Rev. E 73, 2, 026102, DOI: 10.1103/PhysRevE.73.026102.
Smirnov, V.N. (1996), Dynamic Processes in Sea Ice, Gidrometeoizdat, St. Petersburg (in Russian).
Sotolongo-Costa, O., and A. Posadas (2004), Fragment-asperity interaction model for earthquakes, Phys. Rev. Lett. 92, 4, 048501, DOI: 10.1103/PhysRevLett.92.048501.
Sotolongo-Costa, O., A.H. Rodrigez, and G.J. Rodgers (2000), Tsallis entropy and the transition to scaling in fragmentation, Entropy 2, 4, 172-177, DOI: 10.3390/e2040172.
Telesca, L. (2010a), Nonextensive analysis of seismic sequences, Physica A 389, 9, 1911-1914, DOI: 10.1016/j.physa.2010.01.012.
Telesca, L. (2010b), A non-extensive approach in investigating the seismity of L’Aquila area (central Italy), struck by the 6 April 2009 earthquake, Terra Nova, 22, 2, 87-93, DOI: 10.1111/j.1365-3121.2009.00920.x.
Telesca, L. (2010c), Analysis of Italian seismicity by using a nonextensive approach, Tectonophysics 494, 1-2, 155-162, DOI: 10.1016/j.tecto.2010. 09.012.
Telesca, L., and C.-C. Chen (2010), Nonextensive analysis of crustal seismicity in Taiwan, Nat. Hazards Earth Syst. Sci. 10, 1293-1297, DOI: 10.5194/nhess-10-1293-2010.
Tsallis, C. (1988), Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys. 52, 1-2, 479-487, DOI: 10.1007/BF01016429.
Tsallis, C. (2009), Introduction to Nonextensive Statistical Mechanics. Approaching a Complex World, Springer, New York, 382 pp.
Tsallis, C. (2011), The nonadditive entropy Sq and its applications in physics and elsewhere: Some remarks, Entropy 13, 10, 1765-1804, DOI: 10.3390/e13101765.
Vallianatos, F. (2009), A non-extensive approach to risk assessment, Nat. Hazards Earth Syst. Sci. 9, 1, 211-216, DOI: 10.5194/nhess-9-211-2009.
Vallianatos, F., and P. Sammonds (2010), Is plate tectonics a case of non-extensive thermodynamics? Physica A 389, 21, 4989-4993, DOI: 10.1016/j.physa.2010.06.056.
Vallianatos, F., and P. Sammonds (2011), Non-extensive thermodynamics applied to global seismicity before and after the Sumatran mega-earthquake, Geophys. Res. Abstr. 13, EGU2011-10723.
Vallianatos, F., and D. Triantis (2008), Scaling in pressure stimulated currents related with rock fracture, Physica A 387, 19-20, 4940-4946, DOI: 10.1016/j.physa.2008.03.028.
Vallianatos, F., D. Triantis, and P. Sammonds (2011), Non-extensivity of the isothermal depolarization relaxation currents in uniaxial compressed rocks, Europhys. Lett. 94, 6, 68008, DOI: 10.1209/0295-5075/94/68008.
Varotsos, P.A., N.V. Sarlis, E.S. Scordas, H.K. Tanaka, and M.S. Lazaridou (2006), Attempt to distinguish long-range temporal correlations from the statistics of the increments by natural time analysis, Phys. Rev. E 74, 2, 021123, DOI: 10.1103/PhysRevE.74.021123.
Vettegren’, V.I., V.S. Kuksenko, and I.P. Shcherbakov (2011), Emission kinetics of light, sound, and radio waves from single-crystalline quartz after impact on its surface, Tech. Phys. 56, 4, 577-580, DOI: 10.1134/S1063784211040311.
Weiss, J. (2003), Scaling of fracture and faulting of ice on Earth, Surv. Geophys. 24, 2, 185-227, DOI: 10.1023/A:1023293117309.
Weiss, J., and D. Marsan (2004) Scale properties of sea ice deformation and fracturing, C. R. Phys. 5, 7, 735-751, DOI: 10.1016/j.crhy.2004.09.005.
Weiss, J., J.-R. Grasso, M.-C. Miguel, A. Vespignani, and S. Zapperi (2001), Complexity in dislocation dynamics: experiments, Mater. Sci. Eng. A 309-310, 360-364, DOI: 10.1016/S0921-5093(00)01633-6.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. ,Gallucci, M. ,Chmel, A. , Hierarchy of non-extensive mechanical processes in fracturing sea ice. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Simulation and properties of a non-homogeneous spring-block earthquake model with asperities

Czasopismo : Acta Geophysica
Tytuł artykułu : Simulation and properties of a non-homogeneous spring-block earthquake model with asperities

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Gallucci, M.
Dipartimento di Statistica “G. Parenti”, Universita di Firenze, Firenze, Italy, gallucci@ds.unifi.it,
Chmel, A.
Fracture Physics Department, Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia, chmel@mail.ioffe.ru,
Munoz-Diosdado, A.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F, Mexico, amunoz@avantel.net,
Abstrakty : The spring-block model proposed by Olami, Feder and Christensen (OFC) has several properties that are similar to those observed in real seismicity. In this paper we propose a modification of the original model in order to take into account that in a real fault there are several regions with different properties (non-homogeneity). We define regions in the network that is reminiscent of the real seismic fault, with different sizes and elastic parameter values. We obtain the Gutenberg-Richter law for the synthetic earthquake distributions of magnitude and the stair-shaped plots for the cumulative seismicity. Again, as in the OFC-homogeneous case, we obtain the stability for the cumulative seismicity stair-shaped graphs in the long-term situation; this means that the straight line slopes that are superior bounds of the staircases have a behavior akin to the homogeneous case. We show that with this non-homogeneous OFC model it is possible to include the asperity concept to describe high-stress zones in the fault.

Słowa kluczowe : earthquake, faulting, cellular automata, OFC model,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 740 – 757
Bibliografia : Angulo-Brown, F., and A. Muñoz-Diosdado (1999), Further seismic properties of a spring-block earthquake model, Geophys. J. Int. 139, 2, 410-418, DOI: 10.1046/j.1365-246x.1999.00946.x.
Bach, M., F. Wissel, and B. Drossel (2008), Olami–Feder–Christensen model with quenched disorder, Phys. Rev. E 77, 067101, DOI: 10.1103/PhysRevE.77.067101.
Bak, P. (1996), How Nature Works, Springer, New York.
Bak, P., and C. Tang (1989), Earthquakes as a self-organized critical phenomenon, J. Geophys. Res. 94, B11, 15635-15637, DOI: 10.1029/JB094iB11p15635.
Bak, P., C. Tang, and K. Weisenfeld (1987), Self organized criticality: An explanation of 1/f noise, Phys. Rev. Lett. 59, 381-384, DOI: 10.1103/PhysRevLett.59.381.
Bak, P., C. Tang, and K. Weisenfeld (1988), Self-organized criticality, Phys. Rev. A 38, 1, 364-374, DOI: 10.1103/PhysRevA.38.364.
Barriere, B., and D.L. Turcotte (1994), Seismicity and self-organized criticality, Phys. Rev. E 49, 2, 1151-1160, DOI: 10.1103/PhysRevE.49.1151.
Brown, S.R., C.H. Scholz, and J.B. Rundle (1991), A simplified spring block model of earthquakes, Geophys. Res. Lett. 18, 215-218, DOI: 10.1029/91GL00210.
Burridge, R., and L. Knopoff (1967), Model and theoretical seismicity, Bull. Seismol. Soc. Am. 57, 341-371.
Byerlee, J. D. (1970), Static and kinetic friction under high stress, Int. J. Rock Mech. Min. Sci. 7, 577-582, DOI: 10.1016/0148-9062(70)90018-5.
Carlson, J.M., and J.S. Langer (1989), Mechanical model of an earthquake fault, Phys. Rev. A 40, 6470-6484, DOI: 10.1103/PhysRevA.40.6470.
Caruso, F., and H. Kantz (2011), Prediction of extreme events in the OFC model on a small world network, Eur. Phys. J. B 79, 7-11, DOI: 10.1140/epjb/e2010-10635-5.
Caruso, F., V. Latora, A. Pluchino, A. Rapisarda, and B. Tadic (2006), Olami–Feder–Christensen model in different networks, Eur. Phys. J. B 50, 243-247, DOI: 10.1140/epjb/e2006-00110-5.
Ceva, H. (1995), Influence of defects in a coupled map lattice modeling earthquakes, Phys. Rev. E 52, 1, 154-158, DOI: 10.1103/PhysRevE.52.154.
Christensen, K., and Z. Olami (1992), Scaling, phase transitions, and nonuniversality in a self organized critical cellular automaton model, Phys. Rev. A 46, 1829-1838, DOI: 10.1103/PhysRevA.46.1829.
Corbi, F., F. Funiciello, C. Facenna, G. Ranalli, and A. Heuret (2011), Seismic variability of subduction thrust faults: Insigths from laboratory models, J. Geophys. Res. 116, B06304, DOI: 10.1029/2010JB007993.
Ferguson, C.D., W. Klein, and J.B. Rundle (1999), Long-range earthquake fault models, Comput. Phys. 12, 34-40.
Geller, R.J., D.D. Jackson, Y. Kagan, and F. Mulargia (1997), Earthquakes cannot be predicted, Science 275, 1616-1617, DOI: 10.1126/science.275.5306.1616.
Gutenberg, B., and C.F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34, 185-188.
Hainzl, S., G. Zöller, and J. Kurths (1999), Similar power laws for foreshock and aftershock sequences in a spring-block model for earthquakes, J. Geophys. Res. 104, B4, 7243-7253, DOI: 10.1029/1998JB900122.
Helmstetter, A., S. Hergarten, and D. Sornette (2004). Properties of foreshocks and aftershocks of the nonconservative self-organized Olami-Feder-Christensen model, Phys. Rev. E 70, 046120, DOI: 10.1103/PhysRevE.70.046120.
Hergarten, S., and H.J. Neugebauer (2002), Foreshocks and aftershocks in the Olami–Feder–Christensen model, Phys. Rev. Lett. 88, 23, 238501, DOI: 10.1103/PhysRevLett.88.238501.
Ito, K., and M. Matsuzaki (1990), Earthquakes as a self organized critical phenomena, J. Geophys. Res. 95, B5, 6853-6860, DOI: 10.1029/JB095iB05p06853.
Kanamori, H. (1981), The nature of seismicity patterns before large earthquakes. In: D.W. Simpson, and P.G. Richard (eds.), Earthquake Prediction, an International Review, American Geophysical Union, Washington D.C., 1-19.
Kawamura, H., T. Yamamoto, T. Kotani, and H. Yoshino (2010), Asperity characteristics of the Olami–Feder–Christensen model of earthquakes, Phys. Rev. E 81, 0311119, DOI: 10.1103/PhysRevE.81.031119.
Kotani, T., H. Yoshino, and H. Kawamura (2008), Periodicity and criticality in the Olami–Feder–Christensen model of earthquakes, Phys. Rev. E 77, R010102, DOI: 10.1103/PhysRevE.77.010102.
Lay, T., and H. Kanamori (1981), An asperity model of large earthquake sequences. In: D.W. Simpson, and P.G. Richard (eds.), Earthquake Prediction, an International Review, American Geophysical Union, Washington D.C., 579-592.
Lomnitz-Addler, J. (1993), Automaton models of seismic fracture: Constraints imposed by the magnitude-frequency relation, J. Geophys. Res. 98, B10, 17745-17756, DOI: 10.1029/93JB01390.
Main, I.G., and M. Naylor (2009), Entropy production and self-organized (sub)criticality in earthquake dynamics, Philos. Trans. Roy. Soc. A 368, 131-144, DOI: 10.1098/rsta.2009.0206.
Muñoz-Diosdado, A., and F. Angulo-Brown (1999), Patterns of synthetic seismicity and recurrence times in a spring-block earthquake model, Rev. Mex. Fís. 45, 4, 393-400.
Nakanishi, H. (1990), Cellular automaton model of earthquakes with deterministic dynamics, Phys. Rev. A 41, 7086-7089, DOI: 10.1103/PhysRevA.41.7086.
Naylor, M., and I.G. Main (2008), Cell scale self-organization in the OFC model for earthquake dynamics, Eur. Phys. J. B 64, 139-146, DOI: 10.1140/epjb/e2008-00279-5.
Olami, Z., H.J.S. Feder, and K. Christensen (1992), Self organized criticality in a continuous, nonconservative cellular automaton model, Phys. Rev. Lett. 68, 1244-1247, DOI: 10.1103/PhysRevLett.68.1244.
Pacheco, J.F., C.H. Scholz, and L.R. Sykes (1992), Changes in frequency size relationship from small to large earthquakes, Nature 355, 71-73, DOI: 10.1038/355071a0.
Rudolf-Navarro, A.H., A. Muñoz-Diosdado, and F. Angulo-Brown (2010), Seismic quiescence patterns as possible precursors of great earthquakes in Mexico, Int. J. Phys. Sci. 5, 6, 651-670.
Ruff, L.R. (1992), Asperity distributions and large earthquake occurrence in subduction zones, Tectonophysics 211, 61-83, DOI: 10.1016/0040-1951(92)90051-7.
Scholz, C.H., and J.T. Engelder (1976), The role of asperity indentation and ploughing in rock friction, I. Asperity creep and stick slip, Int. J. Rock Mech. Min. Sci. 13, 149-154, DOI: 10.1016/0148-9062(76)90819-6.
Suárez, G., T. Monfret, G. Wittlinger, and C. David (1990), Geometry of subduction and depth of the seismogenic zone in the Guerrero gap, Mexico, Nature 345, 336-338, DOI: 10.1038/345336a0.
Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge.
Yamamoto, T., H. Yoshino, and H. Kawamura (2010), Simulation study of the inhomogeneous Olami–Feder–Christensen model of earthquakes, Eur. Phys. J. B 77, 559-564, DOI: 10.1140/epjb/e2010-10503-4.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. ,Gallucci, M. ,Chmel, A. ,Munoz-Diosdado, A. , Simulation and properties of a non-homogeneous spring-block earthquake model with asperities. Acta Geophysica Vol. 60, no. 3/2012
[Top]

A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece)

Czasopismo : Acta Geophysica
Tytuł artykułu : A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece)

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Gallucci, M.
Dipartimento di Statistica “G. Parenti”, Universita di Firenze, Firenze, Italy, gallucci@ds.unifi.it,
Chmel, A.
Fracture Physics Department, Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia, chmel@mail.ioffe.ru,
Munoz-Diosdado, A.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F, Mexico, amunoz@avantel.net,
Vallianatos, F.
Earth Sciences Department, University College London, London, United Kingdom, georgios.michas.10@ucl.ac.uk,
Abstrakty : In the present study, the spatiotemporal properties of the Aigion earthquake (15 June 1995) aftershock sequence are being studied using the concept of non-extensive statistical physics (NESP). The cumulative distribution functions of the inter-event times and the inter-event distances are being estimated for the data set which is assumed to be complete and the analysis yielded the thermodynamic q parameter to be qT = 1.58 and qr = 0.53 for the two distributions, respectively. The results fit rather well to the inter-event distances and times distributions, implying the complexity of the spatiotemporal properties of seismicity and the usefulness of NESP in investigating such phenomena. The temporal structure is also being discussed using the complementary to NESP approach of superstatistics, which is based on a superposition of ordinary local equilibrium statistical mechanics. The result indicates that very low degrees of freedom describe the temporal evolution of the Aigion earthquake aftershock seismicity.

Słowa kluczowe : aftershocks sequences, complexity, non-extensive statistical physics, Aigion earthquake, Gulf of Corinth rift,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 758 – 768
Bibliografia : Abe, S., and N. Suzuki (2003), Law for the distance between successive earthquakes, J. Geophys. Res. 108, B2, 2113, DOI: 10.1029/2002JB002220.
Abe, S., and N. Suzuki (2005), Scale-free statistics of time interval between successive earthquakes, Physica A 350, 2-4, 588-596, DOI: 10.1016/j.physa.2004.10.040.
Aki, K. (1965), Maximum likelihood estimate of b in the formula log N = a – bM and its confidence limits, Bull. Earthq. Res. Inst. Tokyo Univ. 43, 2, 237-239.
Ambraseys, N.N., and J.A. Jackson (1990), Seismicity and associated strain of central Greece between 1890 and 1988, Geophys. J. Int. 101, 3, 663-708, DOI: 10.1111/j.1365-246X.1990.tb05577.x.
Beck, C. (2009), Recent developments in superstatistics, Brazilian J. Physics 39, 2A, 357-363, DOI: 10.1590/S0103-97332009000400003.
Beck, C., and E.G.D. Cohen (2003), Superstatistics, Physica A 322, 267-275, DOI: 10.1016/S0378-4371(03)00019-0.
Bernard, P., P. Briole, B. Meyer, H. Lyon-Caen, J.-M. Gomez, C. Tiberi, C. Berge, R. Cattin, D. Hatzfeld, C. Lachet, B. Lebrun, A. Deschamps, F. Courboulex, C. Larroque, A. Rigo, D. Massonnet, P. Papadimitriou, J. Kassaras, D. Diagourtas, K. Makropoulos, G. Veis, E. Papazisi, C. Mitsakaki, V. Karakostas, E. Papadimitriou, D. Papanastassiou, M. Chouliaras, and G. Stavrakakis (1997), The Ms = 6.2, June 15, 1995 Aigion earthquake (Greece): evidence for low angle normal faulting in the Corinth rift, J. Seismol. 1, 2, 131-150, DOI: 10.1023/A:1009795618839.
Chernick, M.R. (1999), Bootstrap Methods: A Practitioner’s Guide,Wiley Series in Probability and Statistics, W.A. Shewhart (ed.), Wiley and Sons Inc., New York, 288 pp.
Clarke, P.J., R.R. Davies, P.C. England, B.E. Parsons, H. Billiris, D. Paradissis, G. Veis, P.H. Denys, P.A. Cross, V. Ashkenazi, and R. Bingley (1997), Geodetic estimate of seismic hazard in the Gulf of Korinthos, Geophys. Res. Lett. 24, 11, 1303-1306, DOI: 10.1029/97GL01042.
Darooneh, A.H., and C. Dadashinia (2008), Analysis of the spatial and temporal distributions between successive earthquakes: Nonextensive statistical mechanics viewpoint, Physica A 387, 14, 3647-3654, DOI: 10.1016/j.physa.2008.02.050.
Gutenberg, B., and C.F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34, 4, 185-188.
Lyra, M.L., and C. Tsallis (1998), Nonextensivity and multifractality in lowdimensional dissipative systems, Phys. Rev. Lett. 80, 1, 53-56, DOI: 10.1103/PhysRevLett.80.53.
Ogata, Y. (1983), Estimation of the parameters in the modified Omori formula for aftershock frequencies by the maximum likelihood procedure, J. Phys. Earth 31, 2, 115-124, DOI: 10.4294/jpe1952.31.115.
Omori, F. (1894), On the aftershocks of earthquakes, J. Coll. Sci. Imp. Univ. Tokyo 7, 111-200.
Telesca, L. (2010a), A non-extensive approach in investigating the seismicity of L’Aquila area (central Italy), struck by the 6 April 2009 earthquake (ML = 5.8), Terra Nova 22, 2, 87-93, DOI: 10.1111/j.1365-3121.2009.00920.x.
Telesca, L. (2010b), Analysis of Italian seismicity by using a nonextensive approach, Tectonophysics 494, 155-162, DOI: 10.1016/j.tecto.2010.09.012.
Telesca, L. (2011), Tsallis-based nonextensive analysis of the Southern California seismicity, Entropy 13, 7, 1267-1280, DOI: 10.3390/e13071267.
Tsallis, C. (1988), Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys. 52, 1-2, 479-487, DOI: 10.1007/BF01016429.
Tsallis, C. (1999), Nonextensive statistics: theoretical, experimental and computational evidences and connections, Braz. J. Phys. 29, 1, 1-35, DOI: 10.1590/S0103-97331999000100002.
Tsallis, C. (2009), Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World, Springer, New York, DOI: 10.1007/978-0-387-85359-8.
Tsallis, C., R.S. Mendes, and A.R. Plastino (1998), The role of constraints within generalized nonextensive statistics, Physica A 261, 3-4, 534-554, DOI: 10.1016/S0378-4371(98)00437-3.
Utsu, T., Y. Ogata, and R.S. Matsura (1995), The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth 43, 1, 1-33, DOI: 10.4294/jpe1952.43.1.
Vallianatos, F. (2009), A non-extensive approach to risk assessment, Nat. Hazards Earth Syst. Sci. 9, 1, 211-216, DOI: 10.5194/nhess-9-211-2009.
Vallianatos, F. (2011), A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field, Physica A 390, 10, 1773-1778, DOI: 10.1016/j.physa.2010.12.040.
Vallianatos, F., and P. Sammonds (2010), Is plate tectonics a case of non-extensive thermodynamics?, Physica A 389, 21, 4989-4993, DOI: 10.1016/j.physa.2010.06.056.
Vallianatos, F., and P. Sammonds (2011), A non-extensive statistics of the faultpopulation at the Valles Marineris extensional province, Mars, Tectonophysics 509, 1-2, 50-54, DOI: 10.1016/j.tecto.2011.06.001.
Vallianatos, F., E. Kokinou, and P. Sammonds (2011a), Non-extensive statistical physics approach to fault population distribution. A case study from the Southern Hellenic Arc (Central Crete), Acta Geophys. 59, 4, 770-784, DOI: 10.2478/s11600-011-0015-3.
Vallianatos, F., D. Triantis, and P. Sammonds (2011b), Non-extensivity of the isothermal depolarization relaxation currents in uniaxial compressed rocks, EPL 94, 6, 68008, DOI: 10.1209/0295-5075/94/68008.
Woessner, J., and S. Wiemer (2005), Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty, Bull. Seismol. Soc. Am. 95, 2, 684-698, DOI: 10.1785/0120040007.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. ,Gallucci, M. ,Chmel, A. ,Munoz-Diosdado, A. ,Vallianatos, F. , A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece). Acta Geophysica Vol. 60, no. 3/2012
[Top]

Ergodicity examined by the Thirumalai-Mountain metric for Taiwanese seismicity

Czasopismo : Acta Geophysica
Tytuł artykułu : Ergodicity examined by the Thirumalai-Mountain metric for Taiwanese seismicity

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Gallucci, M.
Dipartimento di Statistica “G. Parenti”, Universita di Firenze, Firenze, Italy, gallucci@ds.unifi.it,
Chmel, A.
Fracture Physics Department, Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia, chmel@mail.ioffe.ru,
Munoz-Diosdado, A.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F, Mexico, amunoz@avantel.net,
Vallianatos, F.
Earth Sciences Department, University College London, London, United Kingdom, georgios.michas.10@ucl.ac.uk,
Li, H.-C.
Department of Earth Sciences and Institute of Geophysics, National Central University, Jhongli, Taiwan, chencc@earth.ncu.edu.tw,
Abstrakty : Ergodicity is a behavior generally limited to equilibrium states and is here defined as the equivalence of ensemble and temporal averages. In recent years, effective ergodicity is identified in simulated earthquakes generated by numerical fault models and in real seismicity of natural fault networks by using the Thirumalai-Mountain metric. Although the effective ergodicity is already reported for Taiwanese seismicity, an immediate doubt is the unrealistic gridded sizes for discretizing the seismic data. In this study, we re-examined the effective ergodicity in Taiwanese seismicity by using reasonable gridded sizes which corresponded with the location errors in the real earthquake catalogue. Initial time and magnitude cut-off were examined for the validity of ergodic behavior. We found that several subsets extracted from Taiwanese seismicity possessed effectively ergodic intervals and all terminations of these ergodic intervals temporally coincided with the occurrences of large earthquakes (ML < 6.5). We thus confirm the ergodicity in the crustal seismicity by using the Thirumalai-Mountain metric.
Słowa kluczowe : ergodicity, Thirumalai–Mountain metric, seismicity, Taiwan,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 769 – 793
Bibliografia : Bak, P., C. Tang, and K. Weisenfield (1987), Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett. 59, 4, 381-384, DOI: 10.1103/PhysRevLett.59.381.
Chen, C.-C., J.B. Rundle, J.R. Holliday, K.Z. Nanjo, D.L. Turcotte, S.C. Li, and K.F. Tiampo (2005), The 1999 Chi-Chi, Taiwan, earthquake as a typical example of seismic activation and quiescence, Geophys. Res. Lett. 32, L22315, DOI: 10.1029/2005GL023991.
Chen, C.-C., J.B. Rundle, H.C. Li, J.R. Holliday, K.Z. Nanjo, D.L. Turcotte, and K.F. Tiampo (2006), From tornadoes to earthquakes: Forecast verification for binary events applied to the 1999 Chi-Chi, Taiwan, earthquake, Terr. Atmos. Ocean. Sci. 17, 503-516.
Chen, C.-C., Y.-T. Lee, and L.-Y. Chiao (2008), Intermittent criticality in the longrange connective sandpile (LRCS) model, Phys. Lett. A 372, 24, 4340-4343, DOI: 10.1016/j.physleta.2008.04.043.
Cohen, J., P. Cohen, S.G. West, and L.S. Aiken (2003), Applied Multiple Regression Correlation Analysis for the Behavioral Sciences, Lawrence Erlbaum Associates Inc., New Jersey.
Dawson, B., and R.G. Trapp (2004), Basic and Clinical Biostatistics, 4th ed., Lange Medical Books, McGraw-Hill, New York.
Ferguson, C.D., W. Klein, and J.B. Rundle (1999), Spinodals, scaling and ergodicity in a model of an earthquake fault with long-range stress transfer, Phys. Rev. E 60, 1359-1373, DOI: 10.1103/PhysRevE.60.1359.
Fisher, D.S. (1985), Sliding charge-density waves as a dynamic critical phenomenon, Phys. Rev. B 31, 3, 1396-1427, DOI: 10.1103/PhysRevB.31.1396.
Fisher, D.S., K. Dahmen, S. Ramanathan, and Y. Ben-Zion (1997), Statistics of earthquakes in simple models of heterogeneous faults, Phys. Rev. Lett. 78, 25, 4885-4888, DOI: 10.1103/PhysRevLett.78.4885.
Gopal, A.D., and D.J. Durian (1995), Nonlinear bubble dynamics in a slowly driven foam, Phys. Rev. Lett. 75, 2610-2613, DOI: 10.1103/PhysRevLett.75.2610.
Gutenberg, B., and C.F. Richter (1954), Seismicity of the Earth and Associated Phenomena, 2nd ed., Princeton University Press, New Jersey.
Habermann, R.E. (1987), Man-made changes of seismicity rates, Bull. Seismol. Soc. Am. 77, 141-159.
Hertz, J., A. Korgh, and R.G. Palmer (1991), Introduction to the Theory of Neural Computation, Addison Wesley, Reading, MA.
Herz, A.V.M., and J.J. Hopfield (1995), Earthquake cycles and neural reverberations: Collective oscillations in systems with pulse-coupled threshold elements, Phys. Rev. Lett. 75, 1222-1225, DOI: 10.1103/PhysRevLett.75.1222.
Hoel, P.G. (1966), Introduction to Mathematical Statistics, Wiley Series in Probability and Statistics, John Wiley & Sons, New York.
Klein, W., J.B. Rundle, and C.D. Ferguson (1997), Scaling and nucleation in models of earthquake faults, Phys. Rev. Lett. 78, 19, 3793-3796, DOI: 10.1103/PhysRevLett.78.3793.
Kvam, P.H., and B. Vidakovic (2007), Nonparametric Statistics with Applications to Science and Engineering, John Wiley & Sons, New Jersey.
Lee, Y.-T., C.-C. Chen, Y.-F. Chang, and L.-Y. Chiao (2008), Precursory phenomena associated with large avalanches in long-range connective sandpile (LRCS) model, Physica A 387, 21, 5263-5270, DOI: 10.1016/j.physa.2008.05.004.
Mignan, A., M.J. Werner, S. Wiemer, C.-C. Chen, and Y.-M. Wu (2011), Bayesian estimation of the spatially varying completeness magnitude of earthquake catalogs, Bull. Seismol. Soc. Am. 101, 3, 1371-1385, DOI: 10.1785/0120100223.
Ogata, Y., and K. Katsura (1993), Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues, Geophys. J. Int. 113, 727-738, DOI: 10.1111/j.1365-246X.1993.tb04663.x.
Royston, P. (1995), A remark on algorithm AS 181: the W-test for normality, J. Roy. Stat. Soc., Ser. C 44, 4, 547-551.
Rundle, J.B., and W. Klein (1995), New ideas about the physics of earthquakes, Rev. Geophys. 33, S1, 283-286, DOI: 10.1029/95RG00106.
Rundle, J.B., K.F. Tiampo, W. Klein, and J.S. Sá Martins (2002), Self-organization in leaky threshold systems: The influence of near-mean field dynamics and its implications for earthquakes, neurobiology, and forecasting, Proc. Nat. Acad. Sci. USA 99, Suppl. 1, 2514-2521, DOI: 10.1073/pnas.012581899.
Scholz, C.H. (1990), The Mechanics of Earthquakes and Faulting, Cambridge University Press, Cambridge, UK.
Shapiro, S.S., and M.B. Wilk (1965), An analysis of variance test for normality (complete samples), Biometrika 52, 3-4, 591-611.
Telesca, L., C.-C. Chen, and Y.-T. Lee (2009), Scaling behaviour in temporal fluctuations of crustal seismicity in Taiwan, Nat. Hazards Earth Syst. Sci. 9, 2067-2071, DOI: 10.5194/nhess-9-2067-2009.
Thirumalai, D., R.D. Mountain, and T.R. Kirkpatrick (1989), Ergodic behavior in supercooled liquids and in glasses, Phys. Rev. A 39, 7, 3563-3574, DOI: 10.1103/PhysRevA.39.3563.
Tiampo, K.F., J.B. Rundle, S. McGinnis, S.J. Gross, and W. Klein (2002), Meanfield threshold systems and phase dynamics: An application to earthquake fault systems, Europhys. Lett. 60, 3, 481-487, DOI: 10.1209/epl/i2002-00289-y.
Tiampo, K.F., J.B. Rundle, W. Klein, J.S. Sá Martins, and C.D. Ferguson (2003), Ergodic dynamics in a natural threshold system, Phys. Rev. Lett. 91, 238501, DOI: 10.1103/PhysRevLett.91.238501.
Tiampo, K.F., J.B. Rundle, W. Klein, J. Holliday, J.S. Sá Martins, and C.D. Ferguson (2007), Ergodicity in natural earthquake fault networks, Phys. Rev. E 75, DOI: 10.1103/PhysRevE.75.066107.
Tiampo, K.F., W. Klein, H.-C. Li, A. Mignan, Y. Toya, S.Z.L. Kohen-Kadosh, J.B. Rundle, and C.-C. Chen (2010), Ergodicity and earthquake catalogs: Forecast testing and resulting implications, Pure Appl. Geophys. 167, 6-7, 763-782, DOI: 10.1007/s00024-010-0076-2.
Tsai, C.-Y., G. Ouillon, and D. Sornette (2011), New empirical tests of the multifractal Omori law for Taiwan, arXiv:1109.5017v1.
Urbach, J.S., R.C. Madison, and J.T. Markert (1995), Interface depinning, selforganized criticality, and the Barkhausen effect, Phys. Rev. Lett. 75, 2, 276-279, DOI: 10.1103/PhysRevLett.75.276.
Wiemer, S. (2001), A software package to analyze seismicity: ZMAP, Seismol. Res. Lett. 72, 3, 373-382, DOI: 10.1785/gssrl.72.3.373.
Wiemer, S., and M. Wyss (2000), Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan, Bull. Seismol. Soc. Am. 90, 4, 859-869, DOI: 10.1785/0119990114.
Wu, Y.-M., C.-C. Chen, L. Zhao, and C.-H. Chang (2008), Seismicity characteristics before the 2003 Chengkung, Taiwan, earthquake, Tectonophysics 457, 177-182, DOI: /10.1016/j.tecto.2008.06.007.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. ,Gallucci, M. ,Chmel, A. ,Munoz-Diosdado, A. ,Vallianatos, F. ,Li, H.-C. , Ergodicity examined by the Thirumalai-Mountain metric for Taiwanese seismicity. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Testing fractal coefficients sensitivity on real and simulated earthquake data

Czasopismo : Acta Geophysica
Tytuł artykułu : Testing fractal coefficients sensitivity on real and simulated earthquake data

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Gallucci, M.
Dipartimento di Statistica “G. Parenti”, Universita di Firenze, Firenze, Italy, gallucci@ds.unifi.it,
Chmel, A.
Fracture Physics Department, Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia, chmel@mail.ioffe.ru,
Munoz-Diosdado, A.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F, Mexico, amunoz@avantel.net,
Vallianatos, F.
Earth Sciences Department, University College London, London, United Kingdom, georgios.michas.10@ucl.ac.uk,
Li, H.-C.
Department of Earth Sciences and Institute of Geophysics, National Central University, Jhongli, Taiwan, chencc@earth.ncu.edu.tw,
Gospodinov, D.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, drago@uni-plovdiv.bg,
Abstrakty : We examined the behavior of different fractal dimensions when applied to study features of earthquake spatial distribution on different types of data. We first examined simulated spatial fields of points of different clustering level, following the so called Soneira-Peebles model. The model was chosen because it displays some similarity to the real clustering structure of earthquakes occurring on hierarchically ordered faults. The analysis of the capacity, clustering and correlation dimensions revealed that their behavior did not completely correlate with the clustering level of the simulated data sets. We also studied temporal variations of the fractal coefficients, characterizing the spatial distribution of the 1999 Izmit-Düzce aftershock sequence. The calculated coefficient values demonstrated analogous behavior like for the simulated data. They exposed different variability in time, but for all of them a systematic fluctuation was observed before the occurrence of the Düzce earthquake. Our analysis revealed that although fractal coefficients could be applied to measure earthquake clustering, they should be used with caution, trying to figure out the best coefficient for a certain data set.

Słowa kluczowe : fractals, Monte Carlo simulation, Izmit earthquake, correlation integral, capacity dimension,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 794 – 808
Bibliografia : Ben-Zion, Y., and C.G. Sammis (2003), Characterization of fault zones, Pure Appl. Geophys. 160, 3-4, 677-715, DOI: 10.1007/PL00012554.
Daniel, G., D. Marsan, and M. Bouchon (2006), Perturbation of the İzmit earthquake aftershock decaying activity following the 1999 Mw 7.2 Düzce, Turkey, earthquake, J. Geophys. Res. 111, B05310, DOI: 10.1029/2005JB003978.
Delsanto, P.P., D. Iordache, and Ş. Puşcă (2003), Study of the correlations between different effective fractal dimensions used for fracture parameters descriptions. In: Proc. First South-East European Symp. Interdisciplinary Approaches in Fractal Analysis, 7-10 May 2003, Bucharest, Romania.
Feder, J. (1989), Fractals, Physics Today 42, 9, 90, DOI: 10.1063/1.2811154.
Grassberger, P., and I. Procaccia (1983), Characterization of strange attractors, Phys. Rev. Lett. 50, 5, 346-349, DOI: 10.1103/PhysRevLett.50.346.
Hubert-Ferrari, A., A. Barka, E. Jacques, S.S. Nalbant, B. Meyer, R. Armijo, P. Tapponnier, and G.C.P. King (2000), Seismic hazard in the Marmara Sea region following the 17 August 1999 Izmit earthquake, Nature 404, 269-273, DOI: 10.1038/35005054.
Kagan, Y.Y. (1981a), Spatial distribution of earthquakes: the three-point moment function, Geophys. J. Roy. Astron. Soc. 67, 3, 697-717, DOI: 10.1111/j.1365-246X.1981.tb06948.x.
Kagan, Y.Y. (1981b), Spatial distribution of earthquakes: the four-point moment function, Geophys. J. Roy. Astron. Soc. 67, 3, 719-733, DOI: 10.1111/j.1365-246X.1981.tb06949.x.
Kagan, Y.Y. (2007), Earthquake spatial distribution: the correlation dimension, Geophys. J. Int. 168, 1175-1194, DOI: 10.1111/j.1365-246X.2006.03251.x.
Kagan, Y.Y., and L. Knopoff (1980), Spatial distribution of earthquakes: the twopoint correlation function, Geophys. J. Roy. Astron. Soc. 62, 2, 303-320, DOI: 10.1111/j.1365-246X.1980.tb04857.
Karakostas, V.G., and E.E. Papadimitriou (2010), Fault complexity associated with the 14 August 2003 Mw6.2 Lefkada, Greece, aftershock sequence, Acta Geophys. 58, 5, 838-854, DOI: 10.2478/s11600-010-0009-6.
Lasocki, S., and L. De Luca (1998), Monte Carlo studies of relations between fractal dimensions in monofractal data sets, Pure Appl. Geophys. 152, 2, 213-220, DOI: 10.1007/s000240050151.
Makropoulos, K.C., and P.W. Burton (1984), Greek tectonics and seismicity, Tectonophysics 106, 3-4, 275-304, DOI: 10.1016/0040-1951(84)90181-1.
Mandelbrot, B. (1977), Fractals: Form, Chance and Dimension, Freeman and Co., San Francisco.
Mandelbrot, B. (1982), The Fractal Geometry of Nature, Freeman and Co., New York.
Murdzek, R. (2007), The box-counting method in the large scale structure of the universe, Rom. J. Phys. 52, 1-2, 149-154.
Ogata, Y. (1998), Space-time point-process models for earthquake occurrences, Ann. Inst. Statist. Math. 50, 2, 379-402, DOI: 10.1023/A:1003403601725.
Öncel, A.O., and T. Wilson (2007), Anomalous seismicity preceding the 1999 Izmit event, NW Turkey, Geophys. J. Int. 169, 1, 259-270, DOI: 10.1111/j.1365-246X.2006.03298.x.
Öncel, A.O., Ö. Alptekin, and I. Main (1995), Temporal variations of the fractal properties of seismicity in the western part of the north Anatolian fault zone: possible artefacts due to improvements in station coverage, Nonlin. Processes Geophys. 2, 3/4, 147-157, DOI: 10.5194/npg-2-147-1995.
Paredes, S., B.J.T. Jones, and V.J. Martínez (1995), The clustering of galaxy clusters: synthetic distributions and the correlation function amplitude, Mon. Not. R. Astron. Soc. 276, 1116-1130.
Pons-Bordería, M.J., V. Martínez, B. López-Martí, and S. Paredes (2003), Correlations at large scale. In: E.D. Feigelson and G. Jogesh Babu (eds.), Statistical Challenges in Astronomy, Springer-Verlag, New York, 475-476.
Seeber, L., J.G. Armbruster, N. Ozer, M. Aktar, S. Baris, D. Okaya, Y. Ben-Zion, and N. Field (2000), The 1999 earthquake sequence along the North Anatolian transform fault at the juncture between the two main ruptures. In: A. Barka, O. Kozaci, S. Akyuz, and E. Altunel (eds.), The 1999 Izmit and Düzce Earthquakes: Preliminary Results, Istanbul Technical University, Istanbul.
Soneira, R.M., and P.J.E. Peebles (1978), A computer model universe – Simulation of the nature of the galaxy distribution in the Lick catalog, Astron. J. 83, 845-857, DOI: 10.1086/112268.
Sornette, A., and D. Sornette (1989), Self-organized criticality and earthquakes, Europhys. Lett. 9, 3, 197-202, DOI: 10.1209/0295-5075/9/3/002.
Telesca, L., V. Lapenna, and M. Macchiato (2004), Mono- and multi-fractal investigation of scaling properties in temporal patterns of seismic sequences, Chaos Solitons Fract. 19, 1, 1-15, DOI: 10.1016/S0960-0779(03)00188-7.
Todorovska, M.I., I.D. Gupta, V.K. Gupta, V.W. Lee, and M.D. Trifunac (1995), Selected topics in probabilistic seismic hazard analysis, Report No. CE 95-08, Dept. of Civil Eng., University of Southern California, Los Angeles, U.S.A.
Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, 2nd ed., Cambridge University Press, Cambridge.
Wiemer, S. (2001), A software package to analyze seismicity: ZMAP, Seismol. Res. Lett. 72, 3, 373-382, DOI: 10.1785/gssrl.72.3.373.
Xie, H. (1993), Fractals in Rock Mechanics, Balkema Publishers, Rotterdam.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. ,Gallucci, M. ,Chmel, A. ,Munoz-Diosdado, A. ,Vallianatos, F. ,Li, H.-C. ,Gospodinov, D. , Testing fractal coefficients sensitivity on real and simulated earthquake data. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Scaling features of ambient noise at different levels of local seismic activity. A case study for the Oni seismic station

Czasopismo : Acta Geophysica
Tytuł artykułu : Scaling features of ambient noise at different levels of local seismic activity. A case study for the Oni seismic station

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Gallucci, M.
Dipartimento di Statistica “G. Parenti”, Universita di Firenze, Firenze, Italy, gallucci@ds.unifi.it,
Chmel, A.
Fracture Physics Department, Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia, chmel@mail.ioffe.ru,
Munoz-Diosdado, A.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F, Mexico, amunoz@avantel.net,
Vallianatos, F.
Earth Sciences Department, University College London, London, United Kingdom, georgios.michas.10@ucl.ac.uk,
Li, H.-C.
Department of Earth Sciences and Institute of Geophysics, National Central University, Jhongli, Taiwan, chencc@earth.ncu.edu.tw,
Gospodinov, D.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, drago@uni-plovdiv.bg,
Matcharashvili, T.
M. Nodia Institute of Geophysics, Tbilisi, Georgia, Matcharashvili@gtu.ge,
Abstrakty : Investigation of dynamical features of ambient seismic noise is one of the important scientific and practical research challenges. We investigated scaling features of the ambient noises at the Oni seismic station, Georgia, using detrended fluctuation analysis method. Data from this seismic station, located in the epicentral zone of Oni M6.0, 2009, earthquake, were selected to include time periods with different levels of local seismic activity. It was shown that the investigated ambient noise is persistent longrange correlated at calm seismic conditions in the absence of earthquakes. Fluctuation features of the analyzed ambient noises were affected by local earthquakes, while remote seismic activity caused just slight quantitative changes. Processes related to the preparation of a strong local earthquake may cause quantifiable changes in fluctuation features of ambient noises. Fluctuation features of seismic noise for periods of increased local seismic activity cease to be long-range correlated and appear to become a complicated mixture of random and correlated behaviours.

Słowa kluczowe : ambient noise, earthquake, dynamics, scaling,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 809 – 832
Bibliografia : Alvarez-Ramirez, J., G. Espinosa-Paredes, and A. Vazquez (2005), Detrended fluctuation analysis of the neutronic power from a nuclear reactor, Physica A 351, 2-4, 227-240, DOI: 10.1016/j.physa.2004.08.087.
Bunde, A., J. Kropp, and H.J. Schellnhuber (eds.) (2002), The Science of Disasters: Climate Disruptions, Heart Attacks, and Market Crashes, Springer, Berlin.
Caserta, A., G. Consolini, and P. De Michelis (2007), Statistical features of the seismic noise-field, Stud. Geophys. Geod. 51, 2, 255-266, DOI: 10.1007/s11200-007-0013-8.
Chelidze, T., and T. Matcharashvili (2007), Complexity of seismic process; measuring and applications – A review, Tectonophysics 431, 1-4, 49-60, DOI: 10.1016/j.tecto.2006.05.029.
Chelidze, T., O. Lursmanashvili, T. Matcharashvili, and M. Devidze (2006), Triggering and synchronization of stick slip: Waiting times and frequencyenergy distribution, Tectonophysics 424, 3-4, 139-155, DOI: 10.1016/j.tecto.2006.03.031.
Correig, A.M., M. Urquizu, J. Vila, and R. Macià (2007), Microseism activity and equilibrium fluctuations. In: A. Tsonis and J. Elsner (eds.), Nonlinear Dynamics in Geosciences, Springer, Berlin, 69-85, DOI: 10.1007/978-0-387-34918-3_5.
Goltz, C. (1997), Fractal and chaotic properties of earthquakes, Lect. Notes Earth Sci. 77, 3-164, DOI: 10.1007/BFb0028315.
Hu, K., P.Ch. Ivanov, Z. Chen, P. Carpena, and H.E. Stanley (2001), Effect of trends on detrended fluctuation analysis, Phys. Rev. E 64, 1, 011114, DOI: 10.1103/PhysRevE.64.011114.
Ivanov, P.Ch., A.L. Goldberger, and H.E. Stanley (2002), Fractal and multifractal approaches in physiology. In: A. Bunde, J. Kropp, and H.J. Schellnhuber (eds.), The Science of Disasters: Climate Disruptions, Heart Attacks, and Market Crashes, Springer-Verlag, Berlin, 219-257.
Kanamori, H., and E.E. Brodsky (2001), The physics of earthquakes, Phys. Today 54, 6, 34-40, DOI: 10.1063/1.1387590.
Kantelhardt, J.W., S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H.E. Stanley (2002), Multifractal detrended fluctuation analysis of nonstationary time series, Physica A 316, 1-4, 87-114, DOI: 10.1016/ S0378-4371(02)01383-3.
Kapiris, P.G., K.A. Eftaxias, K.D. Nomikos, J. Polygiannakis, E. Dologlou, G.T. Balasis, N.G. Bogris, A.S. Peratzakis, and V.E. Hadjicontis (2003), Evolving towards a critical point: A possible electromagnetic way in which the critical regime is reached as the rupture approaches, Nonlin. Processes Geophys. 10, 6, 511-524, DOI: 10.5194/npg-10-511-2003.
Karamanos, K., D. Dakopoulos, K. Aloupis, A. Peratzakis, L. Athanasopoulou, S. Nikolopoulos, P. Kapiris, and K. Eftaxias (2006), Preseismic electromagnetic signals in terms of complexity, Phys. Rev. E 74, 1, 016104, DOI: 10.1103/PhysRevE.74.016104.
Keilis-Borok, V.I., and A.A. Soloviev (eds.) (2003), Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, Springer-Verlag, Berlin.
Lapenna, V., M. Macchiato, and L. Telesca (1998), 1/fβ Fluctuations and selfsimilarity in earthquake dynamics: observational evidences in southern Italy, Phys. Earth Planet. Inter. 106, 1-2, 115-127, DOI: 10.1016/S0031-9201(97)00080-0.
Lyubushin, A. (2010), Multifractal parameters of low-frequency microseisms. In: V. de Rubeis, Z. Czechowski, and R. Teisseyre (eds.), Synchronization and Triggering: from Fracture to Earthquake Processess, GeoPlanet: Earth and Planetary Sciences, Vol. 1, Springer-Verlag, Berlin, 253-272, DOI: 10.1007/978-3-642-12300-9_15.
Manshour, P., S. Saberi, M. Sahimi, J. Peinke, A.F. Pacheco, and M.R.R. Tabar (2009),Turbulencelike behavior of seismic time series, Phys. Rev. Lett. 102, 1, 014101, DOI: 10.1103/PhysRevLett.102.014101.
Manshour, P., F. Ghasemi, T. Matsumoto, J. Gómez, M. Sahimi, J. Peinke, A.F. Pacheco, and M.R.R. Tabar (2010), Anomalous fluctuations of vertical velocity of Earth and their possible implications for earthquakes, Phys. Rev. E 82, 3, 036105, DOI: 10.1103/PhysRevE.82.036105.
Matcharashvili, T., and T. Chelidze (2010), Nonlinear dynamics as a tool for revealing synchronization and ordering in geophysical time series: Application to caucasus seismicity. In: V. de Rubeis, Z. Czechowski, and R. Teisseyre (eds.), Synchronization and Triggering: from Fracture to Earthquake Processess, GeoPlanet: Earth and Planetary Sciences, Vol. 1, Springer, Berlin, 3-21, DOI: 10.1007/978-3-642-12300-9_1.
Matcharashvili, T., T. Chelidze, and Z. Javakhishvili (2000), Nonlinear analysis of magnitude and interevent time interval sequences for earthquakes of Caucasian region, Nonlin. Processes Geophys. 7, 1/2, 9-20, DOI: 10.5194/npg-7-9-2000.
Padhy, S. (2004), Rescaled range fractal analysis of a seismogram for identification of signals from an earthquake, Curr. Sci. 87, 5, 637-641.
Peng, C.-K., S.V. Buldyrev, A.L. Goldberger, S. Havlin, M. Simons, and H.E. Stanley (1993a), Finite-size effects on long-range correlations: Implications for analyzing DNA sequences, Phys. Rev. E 47, 5, 3730-3733, DOI: 10.1103/PhysRevE.47.3730.
Peng, C.-K., J. Mietus, J. Hausdorff, S. Havlin, H.E. Stanley, and A.L. Goldberger (1993b), Long-range anticorrelations and non-Gaussian behavior of the heartbeat, Phys. Rev. Lett. 70, 9, 1343-1346, DOI: 10.1103/PhysRevLett.70.1343.
Peng, C.-K., S. Havlin, H.E. Stanley, and A.L. Goldberger (1995), Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series, Chaos 5, 1, 82-87, DOI: 10.1063/1.166141.
Rodriguez, E., J.C. Echeverria, and J. Alvarez-Ramirez (2007), Detrended fluctuation analysis of heart intrabeat dynamics, Physica A 384, 2, 429-438, DOI: 10.1016/j.physa.2007.05.022.
Rundle, J.B., D.L. Turcotte, and W. Klein (eds.) (2000), GeoComplexity and the Physics of Earthquakes, AGU Monograph 120, American Geophysical Union, Washington, DC, 284 pp.
Ryabov, V.B., A.M. Correig, M. Urquizú, and A.A. Zaikin (2003), Microseism oscillations: from deterministic to noise-driven models, Chaos Soliton. Fract. 16, 2, 195-210, DOI: 10.1016/S0960-0779(02)00165-0.
Scholz, C.H. (1990), The Mechanics of Earthquakes and Faulting, Cambridge University Press, Cambridge.
SESAME (2004), Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations. Measurements, processing and interpretation, WP12 European Commission – Research General Directorate, Project No. EVG1-CT-2000-0026 SESAME, report D23.
Sobolev, G.A., and A.A. Lyubushin (2006), Microseismic impulses as earthquake precursors, Izv. – Phys. Solid Earth 42, 9, 721-733, DOI: 10.1134/S1069351306090023.
Sobolev, G.A., A.A. Lyubushin, and N.A. Zakrzhevskaya (2010), Synchronizations of microseismic oscillations as the indicators of the instability of a seismically active region. In: V. de Rubeis, Z. Czechowski, and R. Teisseyre (eds.), Synchronization and Triggering: from Fracture to Earthquake Processess, GeoPlanet: Earth and Planetary Sciences, Vol. 1, Springer, Berlin, 243-252, DOI: 10.1007/978-3-642-12300-9_14.
Tabar, M.R.R., M. Sahimi, F. Ghasemi, K. Kaviani, M. Allamehzadeh, J. Peinke, M. Mokhtari, M. Vesaghi, M.D. Niry, A. Bahraminasab, S. Tabatabai, S. Fayazbakhsh, and M. Akbari (2006), Short-term prediction of mediumand large-size earthquakes based on Markov and extended self-similarity analysis of seismic data, Lect. Notes Phys. 705, 281-301, DOI: 10.1007/3-540-35375-5_11.
Telesca, L., and V. Lapenna (2006), Measuring multifractality in seismic sequences, Tectonophysics 423, 1-4, 115-123, DOI: 10.1016/j.tecto.2006.03.023.
Telesca, L., V. Lapenna, and M. Macchiato (2005), Multifractal fluctuations in seismic interspike series, Physica A 354, 629-640, DOI: 10.1016/j.physa.2005.02.053.
Telesca, L., M. Lovallo, V. Lapenna, and M. Macchiato (2008), Space-magnitude dependent scaling behaviour in seismic interevent series revealed by detrended fluctuation analysis, Physica A 387, 14, 3655-3659, DOI: 10.1016/j.physa.2008.02.035.
Theiler, J., S. Eubank, A. Longtin, B. Galdrikian, and J.D. Farmer (1992), Testing for nonlinearity in time series: the method of surrogate data, Physica D 58, 1-4, 77-94, DOI: 10.1016/0167-2789(92)90102-S.
Webb, S.C. (1998), Broadband seismology and noise under the ocean, Rev. Geophys. 36, 1, 105-142, DOI: 10.1029/97RG02287.
Yulmetyev, R., F. Gafarov, P. Hänggi, R. Nigmatullin, and S. Kayumov (2001), Possibility between earthquake and explosion seismogram differentiation by discrete stochastic non-Markov processes and local Hurst exponent analysis, Phys. Rev. E 64, 6, 066132, DOI: 10.1103/PhysRevE.64.066132.
Yulmetyev, R., P. Hänggi, F. Gafarov, and D.G. Yulmetyeva (2003), Non-stationary time correlation in discrete complex systems: Applications in cardiology and seismology, Nonlin. Phen. Compl. Systems 6, 3, 791-799.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. ,Gallucci, M. ,Chmel, A. ,Munoz-Diosdado, A. ,Vallianatos, F. ,Li, H.-C. ,Gospodinov, D. ,Matcharashvili, T. , Scaling features of ambient noise at different levels of local seismic activity. A case study for the Oni seismic station. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Non-extensivity analysis of seismicity within four subduction regions in Mexico

Czasopismo : Acta Geophysica
Tytuł artykułu : Non-extensivity analysis of seismicity within four subduction regions in Mexico

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Gallucci, M.
Dipartimento di Statistica “G. Parenti”, Universita di Firenze, Firenze, Italy, gallucci@ds.unifi.it,
Chmel, A.
Fracture Physics Department, Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia, chmel@mail.ioffe.ru,
Munoz-Diosdado, A.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F, Mexico, amunoz@avantel.net,
Vallianatos, F.
Earth Sciences Department, University College London, London, United Kingdom, georgios.michas.10@ucl.ac.uk,
Li, H.-C.
Department of Earth Sciences and Institute of Geophysics, National Central University, Jhongli, Taiwan, chencc@earth.ncu.edu.tw,
Gospodinov, D.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, drago@uni-plovdiv.bg,
Matcharashvili, T.
M. Nodia Institute of Geophysics, Tbilisi, Georgia, Matcharashvili@gtu.ge,
Valverde-Esparza, S.
Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Azcapotzalco, Mexico D.F., Mexico, arr@correo.azc.uam.mx,
Abstrakty : The non-extensivity approach based on the Tsallis entropy has been applied to seismicity that occurred from 1988 to 2010 along the Mexican South Pacific coast. We analyzed four different regions, characterized by different subduction patterns. Our results indicate a possible correlation between the non-extensive parameters and the seismicity pattern associated with the inclination angle of each subduction region.

Słowa kluczowe : non-extensivity, subduction, Tsallis entropy, Mexico,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 833 – 845
Bibliografia : Abe, S. (2003), Geometry of escort distributions, Phys. Rev. E 68, 3, 031101, DOI: 10.1103/PhysRevE.68.031101.
Anderson, R.S., A.L. Densmore, and M.A. Ellis (1999), The generation and degradation of marine terraces, Basin Res. 11, 1, 7-19, DOI: 10.1046/j.1365-2117.1999.00085.x.
Bak, P., C. Tang, and K. Wiesenfeld (1988), Self-organized criticality, Phys. Rev. A 38, 1, 364-374, DOI: 10.1103/PhysRevA.38.364.
Burridge, R., and L. Knopoff (1967), Model and theoretical seismicity, Bull. Seismol. Soc. Am. 57, 3, 341-371.
Carlson, J.M., and J.S. Langer (1989), Mechanical model of an earthquake fault, Phys. Rev. A 40, 11, 6470-6484, DOI: 10.1103/PhysRevA.40.6470.
Darooneh, A.H., and A. Mehri (2010), A nonextensive modification of the Gutenberg–Richter law: q-stretched exponential form, Physica A 389, 3, 509-514, DOI: 10.1016/j.physa.2009.10.006.
De Santis, A., G. Cianchini, P. Favali, L. Beranzoli, and E. Boschi (2011), The Gutenberg–Richter law and entropy of earthquakes: two case studies in Central Italy, Bull. Seismol. Soc. Am. 101, 3, 1386-1395, DOI: 10.1785/0120090390.
Gutenberg, B., and C.F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34, 4, 185-188.
Hasumi, T. (2009), Hypocenter interval statistics between successive earthquakes in the two-dimensional Burridge–Knopoff model, Physica A 388, 4, 477-482, DOI: 10.1016/j.physa.2008.10.017.
Iglesias, A., S.K. Singh, A.R. Lowry, M. Santoyo, V. Kostoglodov, K.M. Larson and S.I. Franco-Sánchez (2004), The silent earthquake of 2002 in the Guerrero seismic gap, Mexico (Mw = 7.6): Inversion of slip on the plate interface and some implications, Geof. Int. 43, 309-317.
Kagan, Y.Y., and L. Knopoff (1981), Stochastic synthesis of earthquake catalogs, J. Geophys. Res. 86, B4, 2853-2862, DOI: 10.1029/JB086iB04p02853.
King, G. (1983), The accommodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: the geometrical origin of b-value, Pure Appl. Geophys. 121, 5-6, 761-815, DOI: 10.1007/BF02590182.
Kostoglodov, V., and L. Ponce (1994), Relationship between subduction and seismicity in the Mexican part of the Middle America trench, J. Geophys. Res. 99, B1, 729-742, DOI: 10.1029/93JB01556.
Larson, K.M., A.R. Lowry, V. Kostoglodov, W. Hutton, O. Sánchez, K. Hudnut and G. Suarez (2004), Crustal deformation measurements in Guerrero, Mexico, J. Geophys. Res. 109, B4, 1-19, DOI: 10.1029/2003JB002843.
Lay, T., and T.C. Wallace (1995), Modern Global Seismology, Academic Press, New York.
Levenberg, K. (1944), A method for the solution of certain non-linear problems in least squares, Quart. Appl. Math. 2, 164-168.
Marquardt, D.W. (1963), An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math. 11, 2, 431-441, DOI: 10.1137/0111030.
Moré, J.J. (1978), The Levenberg–Marquardt algorithm: Implementation and theory, Lect. Notes Math. 630/1978, DOI: 10.1007/BFb0067700.
Ohtake, M., T. Matumoto, and G.V. Latham (1981), Evaluation of the forescast of the 1978 Oaxaca, Southern Mexico earthquake based on a precursory seismic quiescence. In: D.W. Simpson and P.G. Richards (eds.), Earthquake Prediction, Maurice Ewing Series, AGU, United States, 53-62.
Olami, Z., H.J.S. Feder, and K. Christensen (1992), Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett. 68, 8, 1244-1247, DOI: 10.1103/PhysRevLett.68.1244.
Pardo, M., and G. Suarez (1995), Shape of the subducted Rivera and Cocos plates in southern Mexico: Seismic and tectonic implications, J. Geophys. Res. 100, B7, 12357-12373, DOI: 10.1029/95JB00919.
Ramírez-Herrera, M.T., V. Kostoglodov, and J. Urrutia-Fucugauchi (2011), Overview of recent coastal tectonic deformation in the Mexican subduction zone, Pure Appl. Geophys. 168, 8-9, 1415-1433, DOI: 10.1007/s00024-010-0205-y.
Sarlis, N.V., E.S. Skordas, and P.A. Varotsos (2010), Nonextensivity and natural time: The case of seismicity, Phys. Rev. E 82, 2, 021110, DOI: 10.1103/PhysRevE.82.021110.
Silva, R., G.S. França, C.S. Vilar, and J.S. Alcaniz (2006), Nonextensive models for eartquakes, Phys. Rev. E 73, 026102, DOI: 10.1103/PhysRevE.73.026102.
Singh, S.K., M. Rodriguez, and L. Esteva (1983), Statistics of small earthquakes and frequency of occurrence of large earthquakes along the Mexican subduction zone, Bull. Seismol. Soc. Am. 73, 6A, 1779-1796.
Singh, S.K., L. Ponce, and S.P. Nishenko (1985), The great Jalisco, Mexico, earthquakes of 1932: Subduction of the Rivera plate, Bull. Seismol. Soc. Am. 75, 5, 1301-1313.
Song, T.-R.A., D.V. Helmberger, M.R. Brudzinski, R.W. Clayton, P. Davis, X. Pérez-Campos, and S.K. Singh (2009), Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico, Science 324, 5926, 502-506, DOI: 10.1126/science.1167595.
Sotolongo-Costa, O., and A. Posadas (2002), Tsallis entropy: A non-extensive frequency-magnitude distribution of earthquakes, arXiv:cond-mat/0211160v1cond-mat.soft.
Sotolongo-Costa, O., and A. Posadas (2004), Fragment-asperity interaction model for earthquakes, Phys. Rev. Lett. 92, 4, 048501, DOI: 10.1103/PhysRevLett.92.048501.
Telesca, L. (2010), Nonextensive analysis of seismic sequences, Physica A 389, 9, 1911-1914, DOI: 10.1016/j.physa.2010.01.012.
Telesca, L., and C.-C. Chen (2010), Nonextensive analysis of crustal seismicity in Taiwan, Nat. Hazards Earth Syst. Sci. 10, 1293-1297, DOI: 10.5194/nhess-10-1293-2010.
Tsallis, C. (1988), Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys. 52, 1-2, 479-487, DOI: 10.1007/BF01016429.
Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, 2nd ed., Cambridge University Press, Cambridge.
Vargas, C.A., E. Basurto, L. Guzmán-Vargas, and F. Angulo-Brown (2008), Sliding size distribution in a simple spring-block system with asperities, Physica A 387, 13, 3137-3144, DOI: 10.1016/j.physa.2008.01.108.
Varotsos, P.A., N.V. Sarlis, E.S. Skordas, H.K. Tanaka, and M.S. Lazaridou (2006), Entropy of seismic electric signals: Analysis in natural time under time reversal, Phys. Rev. E 73, 3, 031114, DOI: 10.1103/PhysRevE.73.031114.
Wesnousky, S.G. (1999), Crustal deformation processes and the stability of the Gutenberg–Richter relationship, Bull. Seismol. Soc. Am. 89, 4, 1131-1137.
Zúñiga, F.R., and S. Wiemer (1999), Seismic patterns: are they always related to natural causes?, Pure Appl. Geophys. 155, 2-4, 713-726, DOI: 10.1007/s000240050285.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. ,Gallucci, M. ,Chmel, A. ,Munoz-Diosdado, A. ,Vallianatos, F. ,Li, H.-C. ,Gospodinov, D. ,Matcharashvili, T. ,Valverde-Esparza, S. , Non-extensivity analysis of seismicity within four subduction regions in Mexico. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Ito equations out of domino cellular automaton with efficiency parameters

Czasopismo : Acta Geophysica
Tytuł artykułu : Ito equations out of domino cellular automaton with efficiency parameters

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Gallucci, M.
Dipartimento di Statistica “G. Parenti”, Universita di Firenze, Firenze, Italy, gallucci@ds.unifi.it,
Chmel, A.
Fracture Physics Department, Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia, chmel@mail.ioffe.ru,
Munoz-Diosdado, A.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F, Mexico, amunoz@avantel.net,
Vallianatos, F.
Earth Sciences Department, University College London, London, United Kingdom, georgios.michas.10@ucl.ac.uk,
Li, H.-C.
Department of Earth Sciences and Institute of Geophysics, National Central University, Jhongli, Taiwan, chencc@earth.ncu.edu.tw,
Gospodinov, D.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, drago@uni-plovdiv.bg,
Matcharashvili, T.
M. Nodia Institute of Geophysics, Tbilisi, Georgia, Matcharashvili@gtu.ge,
Valverde-Esparza, S.
Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Azcapotzalco, Mexico D.F., Mexico, arr@correo.azc.uam.mx,
Czechowski, Z.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, zczech@igf.edu.pl,
Abstrakty : Ito equations are derived for simple stochastic cellular automaton with parameters describing efficiencies for avalanche triggering and cell occupation. Analytical results are compared with the numerical one obtained from the histogram method. Good agreement for various parameters supports the wide applicability of the Ito equation as a macroscopic model of some cellular automata and complex natural phenomena which manifest random energy release. Also, the paper is an example of effectiveness of histogram procedure as an adequate method of nonlinear modeling of time series.

Słowa kluczowe : stochastic processes, cellular automata, avalanches, discreet solvable model, time series,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 846 – 857
Bibliografia : Białecki, M., and Z. Czechowski (2010a), Analytic approach to stochastic cellular automata: exponential and inverse power distributions out of Random Domino Automaton, arXiv:1009.4609 nlin.CG.
Białecki, M., and Z. Czechowski (2010b), On a simple stochastic cellular automaton with avalanches: simulation and analytical results. In: V. de Rubeis, Z. Czechowski, and R. Teisseyre (eds.), Synchronization and Triggering: from Fracture to Earthquake Processess, GeoPlanet: Earth and Planetary Sciences, Vol. 1, Springer, Berlin, 63-75, DOI: 10.1007/978-3-642-12300-9-5.
Bollerslev, T. (1986), Generalized autoregressive conditional heteroskedasticity, J. Econometrics 31, 307-327.
Borland, L. (1999), Simultaneous modelling of nonlinear deterministic and stochastic dynamics, Physica D 90, 2-3, 175-190, DOI: 10.1016/S0167-2789(96)00143-1.
Borland, L., and H. Haken (1992a), Unbiased determination of forces causing observed processes. The case of additive and weak multiplicative noise, Z. Phys. B 88, 95-103, DOI: 10.1007/BF01573843.
Borland, L., and H. Haken (1992b), Unbiased estimate of forces from measured correlation functions, including the case of strong multiplicative noise, Ann. Physik 504, 6, 452-459, DOI: 10.1002/andp.19925040607.
Borland, L., and H. Haken (1993), On the constraints necessary for macroscopic prediction of time-dependent stochastic processes, Rep. Math. Phys. 33, 1-2, 35-42, DOI: 10.1016/0034-4877(93)90038-G.
Cryer, J.D., and K.S. Chan (2008), Time Series Analysis: With Applications in R, Springer, New York.
Czechowski, Z., and M. Białecki (2010), Ito equations as macroscopic stochastic models of geophysical phenomena – construction of the models on the basis of time series. In: V. de Rubeis, Z. Czechowski, and R. Teisseyre (eds.), Synchronization and Triggering: from Fracture to Earthquake Processess, Geo-Planet: Earth and Planetary Sciences, Vol. 1, Springer, Berlin, 77-96, DOI: 10.1007/978-3-642-12300-9-6.
Czechowski, Z., and M. Białecki (2012), Three-level description of the domino cellular automaton, J. Phys. A: Math. Theor. 45, 155101, DOI:10.1088/1751-8113/45/15/155101.
Engle, R. (1982), Autoregressive conditional heteroscedasticity with estimates of variance of United Kingdom inflation, Econometrica 50, 4, 987-1008.
Fan, J., and Q. Yao (2005), Nonlinear Time Series: Nonparametric and Parametric Methods, Springer, New York.
Granger, C.W.J., and A.P. Andersen (1978), Introduction to Bilinear Time Series Models, Vandenhoeck and Puprecht, Gottingen.
Haken, H. (1988), Information and Self-Organization: A Macroscopic Approach to Complex Systems, Springer, Berlin.
Racca, E., F. Laio, D. Poggi, and L. Ridolfi (2007), Test to determine the Markov order of time series, Phys. Rev. E 75, 1, 011126, DOI: 10.1103/PhysRevE.75.011126.
Risken, H. (1996), The Fokker–Planck Equation, Springer, Berlin.
Rozmarynowska, A. (2009), On the reconstruction of Ito models on the base of time series with long-tail distributions, Acta Geophys. 57, 2, 311-329, DOI: 10.2478/s11600-008-0074-2.
Siegert, S., R. Friedrich, and J. Peinke (1998), Analysis of data sets of stochastic systems, Phys. Lett. A 243, 5-6, 275-280, DOI: 10.1016/S0375-9601(98)00283-7.
Takens, F. (1981), Detecting strange attractors in turbulence. In: D.A. Rand and L.S. Young (eds.), Dynamical Systems and Turbulence, Lecture Notes in Mathematics Vol. 898, Springer, New York.
Tong, H. (1983), Threshold Models in Nonlinear Time Series Analysis, Lecture Notes in Statistics, Springer, New York.
Tong, H. (1990), Nonlinear Time Series Analysis: A Dynamical Systems Approach, Oxford University Press, Oxford.
Tong, H. (2011), Threshold models in time series analysis¶30 years on (with discussions by P. Whittle, M. Rosenblatt, B.E. Hansen, P. Brockwell, N.I. Samia and F. Battaglia), Statistics and Its Interface 4, 107-136.
Tong, H., and K.S. Lim (1980), Threshold autoregression, limit cycles and cyclical data, J. Roy. Statist. Soc. B 42, 3, 245-292.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. ,Gallucci, M. ,Chmel, A. ,Munoz-Diosdado, A. ,Vallianatos, F. ,Li, H.-C. ,Gospodinov, D. ,Matcharashvili, T. ,Valverde-Esparza, S. ,Czechowski, Z. , Ito equations out of domino cellular automaton with efficiency parameters. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Testing a scaling law for the earthquake recurrence time distributions

Czasopismo : Acta Geophysica
Tytuł artykułu : Testing a scaling law for the earthquake recurrence time distributions

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Gallucci, M.
Dipartimento di Statistica “G. Parenti”, Universita di Firenze, Firenze, Italy, gallucci@ds.unifi.it,
Chmel, A.
Fracture Physics Department, Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia, chmel@mail.ioffe.ru,
Munoz-Diosdado, A.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F, Mexico, amunoz@avantel.net,
Vallianatos, F.
Earth Sciences Department, University College London, London, United Kingdom, georgios.michas.10@ucl.ac.uk,
Li, H.-C.
Department of Earth Sciences and Institute of Geophysics, National Central University, Jhongli, Taiwan, chencc@earth.ncu.edu.tw,
Gospodinov, D.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, drago@uni-plovdiv.bg,
Matcharashvili, T.
M. Nodia Institute of Geophysics, Tbilisi, Georgia, Matcharashvili@gtu.ge,
Valverde-Esparza, S.
Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Azcapotzalco, Mexico D.F., Mexico, arr@correo.azc.uam.mx,
Czechowski, Z.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, zczech@igf.edu.pl,
Marekova, E.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, eligeo@uni-plovdiv.bg,
Abstrakty : The earthquake recurrence time distribution in a given space-time window is being studied, using earthquake catalogues from different seismic regions (Southern California, Canada, and Central Asia). The quality of the available catalogues, taking into account the completeness of the magnitude, is examined. Based on the analysis of the catalogues, it was determined that the probability densities of the earthquake recurrence times can be described by a universal gamma distribution, in which the time is normalized with the mean rate of occurrence. The results show a deviation from the gamma distribution at the short interevent times, suggesting the existence of clustering. This holds from worldwide to local scales and for quite different tectonic environments.

Słowa kluczowe : recurrence times, scaling law, universality, power law, earthquake catalogues,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 858 – 873
Bibliografia : Bak, P., K. Christensen, L. Danon, and T. Scanlon (2002), Unified scaling law for earthquakes, Phys. Rev. Lett. 88, 17, 178501, DOI: 10.1103/PhysRevLet.88.178501.
Bottiglieri, M., L. de Arcangelis, C. Godano, and E. Lippiello (2010), Multiple-time scaling and universal behavior of the earthquake interevent time distribution, Phys. Rev. Lett. 104, 15, 158501, DOI: 10.1103/PhysRevLett. 104.158501.
Christoskov, L., and R. Lazarov (1981), A method for estimating the seismological catalogues representativeness and its application to the central part of the Balkan region, Bulg. Geophys. J. 8, 3, 66-76 (in Bulgarian).
Corral, A. (2003), Local distributions and rate fluctuations in a unified scaling law for earthquakes, Phys. Rev. E 68, 3, 035102(R), DOI: 10.1103/PhysRevE.68.035102.
Corral, A. (2004a), Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett. 92, 10, 108501, DOI: 10.1103/PhysRevLett.92.108501.
Corral, A. (2004b), Universal local versus unified global scaling laws in the statistics of seismicity, Physica A 340, 590-597, DOI: 10.1016/j.physa.2004.05.010.
Corral, A. (2005a), Mixing of rescaled data and Bayesian inference for earthquake recurrence times, Nonlin. Processes Geophys. 12, 1, 89-100, DOI: 10.5194/npg-12-89-2005.
Corral, A. (2005b), Time-decreasing hazard and increasing time until the next earthquake, Phys. Rev. E 71, 1, 017101, DOI: 10.1103/PhysRevE.71. 017101.
Corral, A. (2005c), Renormalization-group transformations and correlations of seismicity, Phys. Rev. Lett. 95, 2, 028501; DOI: 10.1103/PhysRevLett.95.028501.
Corral, A. (2006), Statistical features of earthquake temporal occurrence, Lect. Notes Phys. 705, 191-221, DOI: 10.1007/3-540-35375-5_8.
Corral, A. (2009), Statistical tests for scaling in the inter-event times of earthquakes in California, Int. J. Mod. Phys. B 23, 28-29, 5570-5582, DOI: 10.1142/S0217979209063869.
Davidsen, J., and C. Goltz (2004), Are seismic waiting time distributions universal?, Geophys. Res. Lett. 31, L21612, DOI: 10.1029/2004GL020892.
Ellsworth, W.L., M.V. Matthews, R.M. Nadeau, S.P. Nishenko, P.A. Reasenberg, and R.W. Simpson (1999), A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities, U.S. Geological Survey Open-File Report 99-522.
Gardner, J.K., and L. Knopoff (1974), Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?, Bull. Seimol. Soc. Am. 64, 5, 1363-1367.
Gutenberg, B., and C.F. Richter (1965), Seismicity of the Earth, Hafner Pub., New York.
Hainzl, S., F. Scherbaum, and C. Beauval (2006), Estimating background activity based on interevent-time distribution, Bull. Seismol. Soc. Am. 96, 1, 313-320, DOI: 10.1785/0120050053.
Kagan, Y.Y. (1994), Observational evidence for earthquakes as a nonlinear dynamic process, Physica D 77, 1-3, 160-192, DOI: 10.1016/0167-2789(94)90132-5.
Kagan, Y.Y. (1997), Statistical aspects of Parkfield earthquake sequence and Parkfield prediction experiment, Tectonophysics 270, 3-4, 207-219, DOI: 10.1016/S0040-1951(96)00210-7.
Kagan, Y.Y., and D.D. Jackson (1995), New seismic gap hypothesis: Five years after, J. Geophys. Res. 100, B3, 3943-3959, DOI: 10.1029/94JB03014.
Knopoff, L. (1997), Scale invariance of earthquakes. In: B. Dubrulle, F. Graner, and D. Sornette (eds.), Scale Invariance and Beyond, Springer-Verlag, Berlin, 159-172.
Molchan, G. (2005), Interevent time distribution in seismicity: A theoretical approach, Pure Appl. Geophys. 162, 6-7, 1135-1150, DOI: 10.1007/s00024-004-2664-5.
Murray, J., and P. Segall (2002), Testing time-predictable earthquake recurrence by direct measurement of strain accumulation and release, Nature 419, 287-291, DOI: 10.1038/nature00984.
Prozorov, A.G., and A.M. Dziewonski (1982), A method of studying variations in the clustering property of earthquakes: Application to the analysis of global seismicity, J. Geophys. Res. 87, B4, 2829-2839, DOI: 10.1029/JB087iB04p02829.
Reasenberg, P. (1985), Second-order moment of Central California seismicity, 1969-1982, J. Geophys. Res. 90, B7, 5479-5495, DOI: 10.1029/JB090iB07p05479.
Reasenberg, P.A., and L.M. Jones (1989), Earthquake hazard after a mainshock in California, Science 243, 4895, 1173-1176, DOI: 10.1126/science.243.4895.1173.
Saichev, A., and D. Sornette (2006), “Universal” distribution of interearthquake times explained, Phys. Rev. Lett. 97, 7, 078501, DOI: 10.1103/PhysRevLett.97.078501.
Saichev, A., and D. Sornette (2007), Theory of earthquake recurrence times, J. Geophys. Res. 112, B04313, DOI: 10.1029/2006JB004536.
Schwartz, D.P., and K.J. Coppersmith (1984), Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones, J. Geophys. Res. 89, B7, 5681-5698, DOI: 10.1029/JB089iB07p05681.
Shcherbakov, R., G. Yakovlev, D.L. Turcotte, and J.B. Rundle (2005), Model for the distribution of aftershock interoccurrence times, Phys. Rev. Lett. 95, 21, 218501, DOI: 10.1103/PhysRevLett.95.218501.
Shearer, P., E. Hauksson, and G. Lin (2005), Southern California hypocenter relocation with waveform cross-correlation, Part 2: Results using source-specific station terms and cluster analysis, Bull. Seismol. Soc. Am. 95, 3, 904-915, DOI: 10.1785/0120040168.
Sieh, K. (1996), The repetition of large-earthquake ruptures, Proc. Natl. Acad. Sci. USA 93, 9, 3764-3771, DOI: 10.1073/pnas.93.9.3764.
Sornette, D., S. Utkin, and A. Saichev (2008), Solution of the nonlinear theory and tests of earthquake recurrence times, Phys. Rev. E 77, 6, 066109, DOI: 10.1103/PhysRevE.77.066109.
Stein, R.S. (2002), Parkfield’s unfulfilled promise, Nature 419, 257-258, DOI: 10.1038/419257a.
Touati, S., M. Naylor, and I.G. Main (2009), Origin and nonuniversality of the earthquake interevent time distribution, Phys. Rev. Lett. 102, 16, 168501, DOI: 10.1103/PhysRevLett.102.168501.
Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, 2nd ed., Cambridge University Press, Cambridge, 398 pp.
Udias, A., and J. Rice (1975), Statistical analysis of microearthquake activity near San Andreas geophysical observatory, Hollister, California, Bull. Seismol. Soc. Am. 65, 4, 809-827.
Utsu, T. (1984), Estimation of parameters for recurrence models of earthquakes, Bull. Earthq. Res. Inst. Univ. Tokyo 59, 53-66.
Utsu, T. (2002), Statistical features of seismicity. In: W.H.K. Lee, H. Kanamori, P.C. Jennings, and C. Kisslinger (eds.), International Handbook of Earthquake and Engineering Seismology, Part A, Elsevier, New York, 719-732, DOI: 10.1016/S0074-6142(02)80246-7.
Utsu, T., Y. Ogata, and R.S. Matsu’ura (1995), The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth 43, 1, 1-33, DOI: 10.4294/jpe1952.43.1.
Wang, J.-H., and C.-H. Kuo (1998), On the frequency distribution of interoccurrence times of earthquakes, J. Seismol. 2, 4, 351-358, DOI: 10.1023/A:1009774819512.
Wiemer, S. (2001), A software package to analyze seismicity: ZMAP, Seismol. Res. Lett. 72, 3, 373-382, DOI: 10.1785/gssrl.72.3.373.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. ,Gallucci, M. ,Chmel, A. ,Munoz-Diosdado, A. ,Vallianatos, F. ,Li, H.-C. ,Gospodinov, D. ,Matcharashvili, T. ,Valverde-Esparza, S. ,Czechowski, Z. ,Marekova, E. , Testing a scaling law for the earthquake recurrence time distributions. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Cross-correlation earthquake precursors in the hydrogeochemical and geoacoustic signals for the Kamchatka peninsula

Czasopismo : Acta Geophysica
Tytuł artykułu : Cross-correlation earthquake precursors in the hydrogeochemical and geoacoustic signals for the Kamchatka peninsula

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Gallucci, M.
Dipartimento di Statistica “G. Parenti”, Universita di Firenze, Firenze, Italy, gallucci@ds.unifi.it,
Chmel, A.
Fracture Physics Department, Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia, chmel@mail.ioffe.ru,
Munoz-Diosdado, A.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F, Mexico, amunoz@avantel.net,
Vallianatos, F.
Earth Sciences Department, University College London, London, United Kingdom, georgios.michas.10@ucl.ac.uk,
Li, H.-C.
Department of Earth Sciences and Institute of Geophysics, National Central University, Jhongli, Taiwan, chencc@earth.ncu.edu.tw,
Gospodinov, D.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, drago@uni-plovdiv.bg,
Matcharashvili, T.
M. Nodia Institute of Geophysics, Tbilisi, Georgia, Matcharashvili@gtu.ge,
Valverde-Esparza, S.
Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Azcapotzalco, Mexico D.F., Mexico, arr@correo.azc.uam.mx,
Czechowski, Z.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, zczech@igf.edu.pl,
Marekova, E.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, eligeo@uni-plovdiv.bg,
Ryabinin, G.
Kamchatka Branch, Geophysical Survey of Russian Academy of Sciences, Petropavlovsk-Kamchatsky, gena@emsd.iks.ru,
Abstrakty : We propose a new type of earthquake precursor based on the analysis of correlation dynamics between geophysical signals of different nature. The precursor is found using a two-parameter cross-correlation function introduced within the framework of flicker-noise spectroscopy, a general statistical physics approach to the analysis of time series. We consider an example of cross-correlation analysis for water salinity time series, an integral characteristic of the chemical composition of groundwater, and geoacoustic emissions recorded at the G-1 borehole on the Kamchatka peninsula in the time frame from 2001 to 2003, which is characterized by a sequence of three groups of significant seismic events. We found that cross-correlation precursors took place 27, 31, and 35 days ahead of the strongest earthquakes for each group of seismic events, respectively. At the same time, precursory anomalies in the signals themselves were observed only in the geoacoustic emissions for one group of earthquakes.

Słowa kluczowe : earthquake precursor, flicker-noise spectroscopy, cross-correlation analysis, hydrogeochemical time series, geoacoutic time series,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 874 – 893
Bibliografia : Bella, F., P.F. Biagi, M. Caputo, E. Cozzi, G. Della Monica, A. Ermini, E.I. Gordeev, Y.M. Khatkevich, G. Martinelli, W. Plastino, R. Scandone, V. Sgrigna, and D. Zilpimiani (1998), Hydrogeochemical anomalies in Kamchatka (Russia), Phys. Chem. Earth 23, 9-10, 921-925, DOI: 10.1016/S0079-1946(98)00120-7.
Belyakov, A.S. (2000), Magnetoelastic acoustic geophones for geophysical research and earthquake prediction, Seismicheskie Pribory 33, 27-45 (in Russian).
Biagi, P.F., A. Ermini, E. Cozzi, Y.M. Khatkevich, and E.I. Gordeev (2000), Hydrogeochemical precursors in Kamchatka (Russia) related to the strongest earthquakes in 1988-1997, Nat. Hazards 21, 2-3, 263-276, DOI: 10.1023/A:1008178104003.
Biagi, P.F., L. Castellana, R. Piccolo, A. Minafra, G. Maggipinto, A. Ermini, V. Capozzi, G. Perna, Y.M. Khatkevich, and E.I. Gordeev (2004), Disturbances in groundwater chemical parameters related to seismic and volcanic activity in Kamchatka (Russia), Nat. Hazards Earth Syst. Sci. 4, 4, 535-539, DOI: 10.5194/nhess-4-535-2004.
Biagi, P.F., L. Castellana, A. Minafra, G. Maggipinto, T. Maggipinto, A. Ermini, O. Molchanov, Y.M. Khatkevich, and E.I. Gordeev (2006), Groundwater chemical anomalies connected with the Kamchatka earthquake (M = 7.1) on March 1992, Nat. Hazards Earth Syst. Sci. 6, 5, 853-859, DOI: 10.5194/nhess-6-853-2006.
Cicerone, R.D., J.E. Ebel, and J. Britton (2009), A systematic compilation of earthquake precursors, Tectonophysics 476, 3-4, 371-396, DOI: 10.1016/j.tecto.2009.06.008.
Fedotov, S.A., A.A. Gusev, G.V. Chernysheva, and L.S. Shumilina (1985), Seismic focal zone of Kamchatka: Geometry, earthquake source distribution, and relation to volcanism, Vulc. Seismol. 4, 91-107 (in Russian).
Gavrilov, V., L. Bogomolov, Y. Morozova, and A. Storcheus (2008), Variations in geoacoustic emissions in a deep borehole and its correlation with seismicity, Ann. Geophys. 51, 5-6, 737-753, DOI: 10.4401/ag-3013.
Gavrilov, V.A., L.M. Bogomolov, and A.S. Zakupin (2011), Comparison of the geoacoustic measurements in boreholes with the data of laboratory and in-situ experiments on electromagnetic excitation of rocks, Izv. Phys. Solid Earth 47, 11, 1009-1019, DOI: 10.1134/S1069351311100041.
Geller, R.J. (1997), Earthquake prediction: a critical review, Geophys. J. Int. 131, 3, 425-450, DOI: 10.1111/j.1365-246X.1997.tb06588.x.
Geller, R.J., D.D. Jackson, Y.Y. Kagan, and F. Mulargia (1997), Earthquakes cannot be predicted, Science 275, 5306, 1616-1617, DOI: 10.1126/science.275.5306.1616.
Hartmann, J., and J.K. Levy (2005), Hydrogeological and gasgeochemical earthquake precursors – A review for application, Nat. Hazards 34, 3, 279-304, DOI: 10.1007/s11069-004-2072-2.
ICEFCP (2009), Operational earthquake forecasting: State of knowledge and guidelines for utilization, http://www.iaspei.org/downloads/Ex_Sum_v5_THJ9_A4format.pdf.
Khatkevich, Y., and G. Ryabinin (2006), Geochemical and ground-water studies in Kamchatka in the search for earthquakes precursors, Vulc. Seismol. 4, 34-42 (in Russian).
Kopylova, G., V. Sugrobov, and Y. Khatkevich (1994), Variations in the regime of springs and hydrogeological boreholes in the Petropavlovsk polygon (Kamchatka) related to earthquakes, Vulc. Seismol. 2, 53-70 (in Russian).
Lyubushin, A.A., Jr. (1998), An aggregated signal of low-frequency geophysical monitoring systems, Izv. Phys. Solid Earth 34, 3, 238-243.
Lyubushin, A.A., Jr. (2000), Wavelet-aggregated signal and synchronous peaked fluctuations in problems of geophysical monitoring and earthquake prediction, Izv. Phys. Solid Earth 36, 3, 204-213.
Lyubushin, A.A. (2007), Analiz Dannykh Sistem Geofizicheskogo i Ekologicheskogo Monitoringa (Analysis of Data Acquired by Geophysical and Ecological Monitoring Systems), Nauka, Moscow (in Russian).
Lyubushin, A.A., Jr., G.N. Kopylova, and Yu.M. Khatkevich (1997), Analysis of the spectral matrices of hydrogeological observations at the Petropavlovsk geodynamic research site, Kamchatka, and their comparison with the seismic regime, Izv. Phys. Solid Earth 33, 6, 497-507.
Ryabinin, G.V., Yu.S. Polyakov, V.A. Gavrilov, and S.F. Timashev (2011), Identification of earthquake precursors in the hydrogeochemical and geoacoustic data for the Kamchatka peninsula by flicker-noise spectroscopy, Nat. Hazards Earth Syst. Sci. 11, 2, 541-548, DOI: 10.5194/nhess-11-541-2011.
Telesca, L., M. Lovallo, A. Ramirez-Rojas, and F. Angulo-Brown (2009a), A nonlinear strategy to reveal seismic precursory signatures in earthquakerelated self-potential signals, Physica A 388, 10, 2036-2040, DOI: 10.1016/j.physa.2009.01.035.
Telesca, L., M. Lovallo, A. Ramirez-Rojas, and F. Angulo-Brown (2009b), Scaling instability in self-potential earthquake-related signals, Physica A 388, 7, 1181-1186, DOI: 10.1016/j.physa.2008.12.029.
Timashev, S.F. (1991), Physical Chemistry of Membrane Processes, Ellis Horwood, Chichester.
Timashev, S.F. (2006), Flicker noise spectroscopy and its application: Information hidden in chaotic signals (review), Russ. J. Electrochem. 42, 5, 424-466, DOI: 10.1134/S102319350605003X.
Timashev, S.F. (2007), Fliker-Shumovaya Spektroskopiya: Informatsiya v khaoticheskikh signalakh (Flicker-Noise Spectroscopy: Information in Chaotic Signals), Fizmatlit, Moscow (in Russian).
Timashev, S.F., and Y.S. Polyakov (2007), Review of flicker noise spectroscopy in electrochemistry, Fluct. Noise Lett. 7, 2, R15-R47, DOI: 10.1142/S0219477507003829.
Timashev, S.F., and Y.S. Polyakov (2008), Analysis of discrete signals with stochastic components using flicker noise spectroscopy, Int. J. Bifurcat. Chaos 18, 9, 2793-2797, DOI: 10.1142/S0218127408022020.
Timashev, S.F., Y.S. Polyakov, P.I. Misurkin, and S.G. Lakeev (2010), Anomalous diffusion as a stochastic component in the dynamics of complex processes, Phys. Rev. E 81, 4, 041128, DOI: 10.1103/PhysRevE.81.041128.
Wyss, M., and D.C. Booth (1997), The IASPEI procedure for the evaluation of earthquake precursors, Geophys. J. Int. 131, 3, 423-424, DOI: 10.1111/j.1365-246X.1997.tb06587.x.
Wyss, M., R.L. Aceves, S.K. Park, R.J. Geller, D.D. Jackson, Y.Y. Kagan, and F. Mulargia (1997), Cannot earthquakes be predicted?, Science 278, 5337, 487-490, DOI: 10.1126/science.278.5337.487.
Uyeda, S., T. Nagao, and M. Kamogawa (2009), Short-term earthquake prediction: Current status of seismo-electromagnetics, Tectonophysics 470, 3-4, 205-213, DOI: 10.1016/j.tecto.2008.07.019.
Zeman, L.J., and A.L. Zydney (1996), Microfiltration and Ultrafiltration: Principles and Applications, Marcel Dekker, New York.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. ,Gallucci, M. ,Chmel, A. ,Munoz-Diosdado, A. ,Vallianatos, F. ,Li, H.-C. ,Gospodinov, D. ,Matcharashvili, T. ,Valverde-Esparza, S. ,Czechowski, Z. ,Marekova, E. ,Ryabinin, G. , Cross-correlation earthquake precursors in the hydrogeochemical and geoacoustic signals for the Kamchatka peninsula. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Experimental evidence of a non-extensive statistical physics behavior of electromagnetic signals emitted from rocks under stress up to fracture. Preliminary results

Czasopismo : Acta Geophysica
Tytuł artykułu : Experimental evidence of a non-extensive statistical physics behavior of electromagnetic signals emitted from rocks under stress up to fracture. Preliminary results

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Gallucci, M.
Dipartimento di Statistica “G. Parenti”, Universita di Firenze, Firenze, Italy, gallucci@ds.unifi.it,
Chmel, A.
Fracture Physics Department, Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia, chmel@mail.ioffe.ru,
Munoz-Diosdado, A.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F, Mexico, amunoz@avantel.net,
Vallianatos, F.
Earth Sciences Department, University College London, London, United Kingdom, georgios.michas.10@ucl.ac.uk,
Li, H.-C.
Department of Earth Sciences and Institute of Geophysics, National Central University, Jhongli, Taiwan, chencc@earth.ncu.edu.tw,
Gospodinov, D.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, drago@uni-plovdiv.bg,
Matcharashvili, T.
M. Nodia Institute of Geophysics, Tbilisi, Georgia, Matcharashvili@gtu.ge,
Valverde-Esparza, S.
Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Azcapotzalco, Mexico D.F., Mexico, arr@correo.azc.uam.mx,
Czechowski, Z.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, zczech@igf.edu.pl,
Marekova, E.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, eligeo@uni-plovdiv.bg,
Ryabinin, G.
Kamchatka Branch, Geophysical Survey of Russian Academy of Sciences, Petropavlovsk-Kamchatsky, gena@emsd.iks.ru,
Vallianatos, F.
Technological Educational Institution of Crete, Laboratory of Geophysics and Seismology, Chania, Crete, Greece, fvallian@chania.teicrete.gr,
Abstrakty : The application of mechanical stress on a rock sample can induce electromagnetic emissions. Such emissions can be detected experimentally and in principle could be used as precursors of the upcoming failure. Using experimental observations of stress-induced electromagnetic emissions (SIEME), we apply the concepts of non-extensive statistical physics (NESP) to the time intervals between consecutive SIEME. The application of NESP is appropriate to systems such as fracture-induced effects, where non-linearity, long-range interactions and scaling are important. We find that the SIEME energy release distribution and the inter-event time distribution reflect a sub-extensive system with thermodynamic q-values of the order of qE = 1.67 and qτ ≈ 1.7, respectively.

Słowa kluczowe : electromagnetic emissions, non-extensive statistical physics, rock,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 894 – 909
Bibliografia : Abe, S., and N. Suzuki (2003), Law for the distance between successive earthquakes, J. Geophys. Res. 108, B2, 2113, DOI: 10.1029/2002JB002220.
Abe, S., and N. Suzuki (2005), Scale-free statistics of time interval between successive earthquakes, Physica A 350, 2-4, 588-596, DOI: 10.1016/j.physa.2004.10.040.
Anastasiadis, C., D. Triantis, I. Stavrakas, F. Vallianatos (2004), Pressure Stimulated Currents (PSC) in marble samples, Ann. Geophys. 47, 1, 21-28.
Benson, P.M., B.D. Thompson, P.G. Meredith, S. Vinciguerra, and R.P. Young (2007), Imaging slow failure in triaxially deformed Etna basalt using 3D acoustic-emission location and X-ray computed tomography, Geophys. Res. Lett. 34, 3, L03303, DOI: 10.1029/2006GL028721.
Benson, P.M., S. Vinciguerra, P.G. Meredith, and R.P. Young (2008), Laboratory simulation of volcano seismicity, Science 322, 5899, 249-252, DOI: 10.1126/science.1161927.
Burridge, R., and L. Knopoff (1967), Model and theoretical seismicity, Bull. Seismol. Soc. Am. 57, 3, 341-371.
Carlson, J.M., J.S. Langer, B.E. Shaw, and C. Tang (1991), Intrinsic properties of a Burridge–Knopoff model of an earthquake fault, Phys. Rev. A 44, 2, 884-897, DOI: 10.1103/PhysRevA.44.884.
Chakrabarti, B.K., and L.G. Benguigui (1997), Statistical Physics of Fracture and Breakdown in Disordered Systems, Oxford University Press, Oxford, 161 pp.
Enomoto, Y., and H. Hashimoto (1990), Emission of charged particles from indentation fracture of rocks, Nature 346, 641-643, DOI: 10.1038/346641a0.
Frid, V., A. Rabinovitch, and D. Bahat (2003), Fracture induced electromagnetic radiation, J. Phys. D: Appl. Phys. 36, 13, 1620-1628, DOI: 10.1088/0022-3727/36/13/330.
Frid, V., A. Rabinovitch, and D. Bahat (2006), Crack velocity measurement by induced electromagnetic radiation, Phys. Lett. A 356, 2, 160-163, DOI: 10.1016/j.physleta.2006.03.024.
Frid, V., J. Goldbaum, A. Rabinovitch, and D. Bahat (2009), Electric polarization induced by mechanical loading of Solnhofen limestone, Phil. Mag. Lett. 89, 7, 453-463, DOI: 10.1080/09500830903022636.
Frid, V., J. Goldbaum, A. Rabinovitch, and D. Bahat (2011), Time-dependent Benioff strain release diagrams, Phil. Mag. 91, 12, 1693-1704, DOI: 10.1080/14786435.2010.544684.
Hasumi, T. (2007), Interoccurrence time statistics in the two-dimensional Burridge–Knopoff earthquake model, Phys. Rev. E 76, 2, 026117, DOI: 10.1103/PhysRevE.76.026117.
Hayakawa, M. (ed.) (1999), Electromagnetic Phenomena Related to Earthquake Prediction, TERRAPUB, Tokyo.
Hayakawa, M., and Y. Fujinawa (eds.) (1994), Electromagnetic Phenomena Related to Earthquake Prediction, TERRAPUB, Tokyo.
Hayakawa, M., and O.A. Molchanov (eds.) (2002), Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo, 478 pp.
Herrmann, H.J., and S. Roux (1990), Statistical Models for the Fracture of Disordered Media, North-Holland, Amsterdam.
Nardi, A. (2001), Emissioni elettromagnetiche in rocce sottoposte a sollecitazione meccanica. Un possibile precursore sismico?, Master thesis, University of Rome “La Sapienza” (in Italian).
Nardi, A., (2005), Emissioni elettromagnetiche naturali come precursori di fenomeni sismici, Ph.D. thesis, University of Rome “La Sapienza” (in Italian).
Nardi, A., and M. Caputo (2006), A perspective electric earthquake precursor observed in the Apennines, Boll. Geofis. Teor. Appl. 47, 1-2, 3-12.
Nardi, A., and M. Caputo (2009), Monitoring the mechanical stress of rocks through the electromagnetic emission produced by fracturing, Int. J. Rock Mech. Min. Sci. 46, 5, 940-945, DOI: 10.1016/j.ijrmms.2009.01.005.
Nardi, A., M. Caputo, and C. Chiarabba (2007), Possible electromagnetic earthquake precursors in two years of ELF-VLF monitoring in the atmosphere, Boll. Geofis. Teor. Appl. 48, 2, 205-212.
O’Keefe, S.G., and D.V. Thiel (1995), A mechanism for the production of electromagnetic radiation during fracture of brittle materials, Phys. Earth Planet. In. 89, 1-2, 127-135, DOI: 10.1016/0031-9201(94)02994-M.
Rundle, J.B., D.L. Turcotte, and W. Klein (eds.) (2000), Geocomplexity and the Physics of Earthquakes, American Geophysical Union, Washington, 284 pp.
Slifkin, L. (1993), Seismic electric signals from displacement of charged dislocations, Tectonophysics 224, 1-3, 149-152, DOI: 10.1016/0040-1951(93)90066-S.
Stavrakas, I., C. Anastasiadis, D. Triantis, and F. Vallianatos (2003), Piezo stimulated currents in marble samples: Precursory and concurrent-with-failure signals, Nat. Hazards Earth Syst. Sci. 3, 3/4, 243-247, DOI: 10.5194/nhess-3-243-20.
Stavrakas, I., D. Triantis, Z. Agioutantis, S. Maurigiannakis, V. Saltas, F. Vallianatos, and M. Clarke (2004), Pressure stimulated currents in rocks and their correlation with mechanical properties, Nat. Hazards Earth Syst. Sci. 4, 563-567, DOI: 10.5194/nhess-4-563-2004.
Takeuchi, A., and H. Nagahama (2001), Voltage changes induced by stick-slip of granites, Geophys. Res. Lett. 28, 17, 3365-3368, DOI: 10.1029/2001GL012981.
Telesca, L. (2010a), Nonextensive analysis of seismic sequences, Physica A 389, 9, 1911-1914, DOI: 10.1016/j.physa.2010.01.012.
Telesca, L. (2010b), A non-extensive approach in investigating the seismicity of L’Aquila area (central Italy), struck by the 6 April 2009 earthquake (ML = 5.8), Terra Nova 22, 2, 87-93, DOI: 10.1111/j.1365-3121.2009.00920.x.
Tsallis, C. (1988), Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys. 52, 1-2, 479-487, DOI: 10.1007/BF01016429.
Tsallis, C. (1999), Nonextensive statistics: theoretical, experimental and computational evidences and connections, Braz. J. Phys. 29, 1, 1-35, DOI: 10.1590/S0103-97331999000100002.
Tsallis, C. (2009), Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World, Springer, New York, DOI: 10.1007/978-0-387-85359-8.
Tsallis, C. (2001), Nonextensive statistical mechanics and thermodynamics: Historical background and present status. In: S. Abe and Y. Okamoto (eds.), Nonextensive Statistical Mechanics and Its Applications, Springer, Berlin, 3-98.
Tzanis, A., and F. Vallianatos (2001), A critical review of ULF electric earthquake precursors, Ann. Geofis. 44, 2, 429-460.
Tzanis, A., and F. Vallianatos (2002), A physical model of Electric Earthquake Precursors due to crack propagation and the motion of charged edge dislocations. In: M. Hayakawa and O.A. Molchanov (eds.), Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo,117-130.
Vallianatos, F. (2009), A non-extensive approach to risk assessment, Nat. Hazards Earth Syst. Sci. 9, 1, 211-216, DOI: 10.5194/nhess-9-211-2009.
Vallianatos, F. (2011), A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field, Physica A 390, 10, 1773-1778, DOI: 10.1016/j.physa.2010.12.040.
Vallianatos, F., and P. Sammonds (2010), Is plate tectonics a case of non-extensive thermodynamics?, Physica A 389, 21, 4989-4993, DOI: 10.1016/j.physa.2010.06.056.
Vallianatos, F., and P. Sammonds (2011), A non-extensive statistics of the faultpopulation at the Valles Marineris extensional province, Mars, Tectonophysics 509, 1-2, 50-54, DOI: 10.1016/j.tecto.2011.06.001.
Vallianatos, F., and D. Triantis (2008), Scaling in Pressure Stimulated Currents related with rock fracture, Physica A 387, 19-20, 4940-4946, DOI: 10.1016/j.physa.2008.03.028.
Vallianatos, F., and A. Tzanis (1998), Electric current generation associated with the deformation rate of a solid: Preseismic and coseismic signals, Phys. Chem. Earth 23, 9-10, 933-939, DOI: 10.1016/S0079-1946(98)00122-0.
Vallianatos, F., and A. Tzanis (1999a), A model for the generation of precursory electric and magnetic fields associated with the deformation rate of the earthquake focus. In: M. Hayakawa (ed.), Atmospheric and Ionospheric electromagnetic phenomena associated with Earthquakes, TERRAPUB, Tokyo, 287-305.
Vallianatos, F., and A. Tzanis (1999b), On possible scaling laws between electric earthquake precursors (EEP) and earthquake magnitude, Geophys. Res. Lett., 26, 13, 2013-2016, DOI: 10.1029/1999GL900406.
Vallianatos, F., and A. Tzanis (2003), On the nature, scaling and spectral properties of pre-seismic ULF signals, Nat. Hazards Earth Syst. Sci. 3, 3/4, 237-242, DOI: 10.5194/nhess-3-237-2003.
Vallianatos, F., D. Triantis, A. Tzanis, C. Anastasiadis, and I. Stavrakas (2004), Electric earthquake precursors: from laboratory results to field observations, Phys. Chem. Earth 29, 4-9, 339-351, DOI: 10.1016/j.pce.2003.12.003.
Vallianatos, F., E. Kokinou, and P. Sammonds (2011a), Non-extensive statistical physics approach to fault population distribution. A case study from the Southern Hellenic Arc (Central Crete), Acta Geophys. 59, 4, 770-784, DOI: 10.2478/s11600-011-0015-3.
Vallianatos, F., D. Triantis, and P. Sammonds (2011b), Non-extensivity of the isothermal depolarization relaxation currents in uniaxial compressed rocks, EPL 94, 6, 68008, DOI: 10.1209/0295-5075/94/68008.
Varotsos, P. (2005), The Physics of Seismic Electric Signals, TERRAPUB, Tokyo.
Yamashita, T. (1976), On the dynamical process of fault motion in the presence of friction and inhomogeneous initial stress. Part I. Rupture propagation, J. Phys. Earth 24, 4, 417-444, DOI: 10.4294/jpe1952.24.417.
Yoshida, S., M. Uyeshima, and M. Nakatani (1997), Electric potential changes associated with slip failure of granite: Preseismic and coseismic signals, J. Geophys. Res. 102, B7, 14883-14897, DOI: 10.1029/97JB00729.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. ,Gallucci, M. ,Chmel, A. ,Munoz-Diosdado, A. ,Vallianatos, F. ,Li, H.-C. ,Gospodinov, D. ,Matcharashvili, T. ,Valverde-Esparza, S. ,Czechowski, Z. ,Marekova, E. ,Ryabinin, G. ,Vallianatos, F. , Experimental evidence of a non-extensive statistical physics behavior of electromagnetic signals emitted from rocks under stress up to fracture. Preliminary results. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Parameters of Higuchi's method to characterize primary waves in some seismograms from the Mexican subduction zone

Czasopismo : Acta Geophysica
Tytuł artykułu : Parameters of Higuchi's method to characterize primary waves in some seismograms from the Mexican subduction zone

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Gallucci, M.
Dipartimento di Statistica “G. Parenti”, Universita di Firenze, Firenze, Italy, gallucci@ds.unifi.it,
Chmel, A.
Fracture Physics Department, Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia, chmel@mail.ioffe.ru,
Munoz-Diosdado, A.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F, Mexico, amunoz@avantel.net,
Vallianatos, F.
Earth Sciences Department, University College London, London, United Kingdom, georgios.michas.10@ucl.ac.uk,
Li, H.-C.
Department of Earth Sciences and Institute of Geophysics, National Central University, Jhongli, Taiwan, chencc@earth.ncu.edu.tw,
Gospodinov, D.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, drago@uni-plovdiv.bg,
Matcharashvili, T.
M. Nodia Institute of Geophysics, Tbilisi, Georgia, Matcharashvili@gtu.ge,
Valverde-Esparza, S.
Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Azcapotzalco, Mexico D.F., Mexico, arr@correo.azc.uam.mx,
Czechowski, Z.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, zczech@igf.edu.pl,
Marekova, E.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, eligeo@uni-plovdiv.bg,
Ryabinin, G.
Kamchatka Branch, Geophysical Survey of Russian Academy of Sciences, Petropavlovsk-Kamchatsky, gena@emsd.iks.ru,
Vallianatos, F.
Technological Educational Institution of Crete, Laboratory of Geophysics and Seismology, Chania, Crete, Greece, fvallian@chania.teicrete.gr,
Galvez-Coyt, G.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F., Mexico, amunoz@avantel.net,
Abstrakty : Higuchi's method is a procedure that, if applied appropriately, can determine in a reliable way the fractal dimension D of time series; this fractal dimension permits to characterize the degree of correlation of the series. However, when analyzing some time series with Higuchi's method, there are oscillations at the right-hand side of the graph, which can cause a mistaken determination of the fractal dimension. In this work, an appropriate explanation is given to this type of behaviour. Using the seismogram as a time series and the properties of the P and S waves, it is possible to use the properties of Higuchi's method to previously detect the arrival of the earthquake shacking stage, some seconds in advance, approximately 30-35 s in the case of Mexico City. Thus, we propose the Higuchi's method to characterize and detect the P waves in order to estimate the strength of the forthcoming S waves.

Słowa kluczowe : Higuchi's method, time series, seismograms, earthquake early warning,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 910 – 927
Bibliografia : Alcik, H., O. Ozel, N. Apaydin, and M. Erdik (2009), A study on warning algorithms for Istanbul earthquake early warning system, Geophys. Res. Lett. 36, L00B05, DOI: 10.1029/2008GL036659.
Allen, R.M., and H. Kanamori (2003), The potential for earthquake early warning in southern California, Science 300, 5620, 786-789, DOI: 10.1126/science.1080912.
Allen, R.M., P. Gasparini, O. Kamigaichi, and M. Böse (2009a), The status of earthquake early warning around the world: An introductory overview, Seismol. Res. Lett. 80, 5, 682-693, DOI: 10.1785/gssrl.80.5.682.
Allen, R.M., H. Brown, M. Hellweg, O. Khainovski, P. Lombard, and D. Neuhauser (2009b), Real-time earthquake detection and hazard assessment by ElarmS across California, Geophys. Res. Lett. 36, L00B08, DOI: 10.1029/2008GL036766.
Böse, M., E. Hauksson, K. Solanki, H. Kanamori, and T.H. Heaton (2009), Realtime testing of the on-site warning algorithm in southern California and its performance during the July 29, 2008 Mw 5.4 Chino Hills earthquake, Geophys. Res. Lett. 36, 3, L00B03, DOI: 10.1029/2008GL036366.
Curto-Risso, P.L., A. Medina, A. Calvo-Hernández, L. Guzmán-Vargas, and F. Angulo-Brown (2010), Monofractal and multifractal analysis of simulated heat release fluctuations in a spark ignition heat engine, Physica A 389, 24, 5662-5670, DOI: 10.1016/j.physa.2010.08.024.
Espinosa-Aranda, J.M., A. Jiménez, G. Ibarrola, F. Alcantar, A. Aguilar, M. Inostroza, and S. Maldonado (1995), Mexico City Seismic Alert System, Seismol. Res. Lett. 66, 6, 42-53, DOI: 10.1785/gssrl.66.6.42.
Gutenberg, B., and C.F. Richter (1956), Earthquake magnitude, intensity, energy, and acceleration, Bull. Seismol. Soc. Am. 46, 2, 105-145.
Guzmán-Vargas, L., A. Ramírez-Rojas, R. Hernández-Pérez, and F. Angulo-Brown (2009), Correlations and variability in electrical signals related to earthquake activity, Physica A 388, 19, 4218-4228, DOI: 10.1016/j.physa.2009.06.019.
Higuchi, T. (1988), Approach to an irregular time series on the basis of the fractal theory, Physica D 31, 2, 277-283, DOI: 10.1016/0167-2789(88)90081-4.
Higuchi, T. (1990), Relationship between the fractal dimension and the power law index for a time series: A numerical investigation, Physica D 46, 2, 254-264, DOI: 10.1016/0167-2789(90)90039-R.
Hsiao, N.-C., Y.-M. Wu, T.-C. Shin, L. Zhao, and T.-L. Teng (2009), Development of earthquake early warning system in Taiwan, Geophys. Res. Lett. 36, L00B02, DOI: 10.1029/2008GL036596.
Lay, T., and T.C. Wallace (1995), Modern Global Seismology, Academic Press, San Diego.
Muñoz-Diosdado, A., H. Reyes-Cruz, D. Bueno-Hernández, G. Gálvez-Coyt, and J. Arellanes-González (2008), New results in magnitude and sign correlations in heartbeat fluctuations for healthy persons and congestive heart failure (CHF) patients, AIP Conf. Proc. 1032, 255-258, DOI: 10.1063/1.2979284.
Muñoz-Diosdado, A., G. Gálvez-Coyt, B.M. Pérez-Uribe, and J. Arellanes-González (2009), Analysis of RR intervals time series of congestive heart failure patients with Higuchi’s fractal dimension. In: Proc. IEEE EMBS Ann. Int. Conf., 3-6 September 2009, 3453-3456.
Muñoz-Diosdado, A., G. Gálvez-Coyt, and B.M. Pérez-Uribe (2010), Oscillations in the evaluation of fractal dimension of RR intervals time series. In: Proc. IEEE EMBS Ann. Int. Conf., 31 August – 4 September 2010, 4570-4573.
Nakamura, Y. (1988), On the urgent earthquake detection and alarm system (UrEDAS). In: Proc. 9th World Conf. Earthquake Engineering, 2-9 August 1988, Tokyo–Kyoto, Vol. 7, 673-678.
Peralta, J.A., A. Muñoz-Diosdado, P. Reyes-López, R. Delgado-Lezama, G. Gálvez-Coyt, and J.L. Del Río-Correa (2006), Criteria based on the index of physical work by unitary distance and multifractal analysis of the slow movement of the forefinger to determinate neurological lesion, AIP Conf. Proc. 854, 218-220, DOI: 10.1063/1.2356453.
Ramírez-Rojas, A., E.L. Flores-Márquez, L. Guzmán-Vargas, J. Márquez-Cruz, C.G. Pavía-Miller, and F. Angulo-Brown (2007), A comparison of ground geoelectrical activity between three regions of different level of seismicity, Nat. Hazards Earth Syst. Sci. 7, 5, 591-598, DOI: 10.5194/nhess-7-591-2007.
Simons, F.J., B.D.E. Dando, and R.M. Allen (2006), Automatic detection and rapid determination of earthquake magnitude by wavelet multiscale analysis of the primary arrival, Earth Planet. Sci. Lett. 250, 1-2, 214-223, DOI: 10.1016/j.epsl.2006.07.039.
Sleeman, R., and T. van Eck (1999), Robust automatic P-phase picking: an on-line implementation in the analysis of broadband seismogram recordings, Phys. Earth Planet. Inter. 113, 1-4, 265-275, DOI: 10.1016/S0031-9201(99)00007-2.
Wu, Y.-M., and H. Kanamori (2005), Rapid assessment of damage potential of earthquakes in Taiwan from the beginning of P waves, Bull. Seismol. Soc. Am. 95, 3, 1181-1185, DOI: 10.1785/0120040193.
Wu, Y.-M., and H. Kanamori (2008), Development of an earthquake early warning system using real-time strong motion signals, Sensors 8, 1-9, DOI: 10.3390/s8010001.
Zhang, H., C. Thurber, and C. Rowe (2003), Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings, Bull. Seismol. Soc. Am. 93, 5, 1904-1912, DOI: 10.1785/0120020241.
Zollo, A., M. Lancieri, and S. Nielsen (2006), Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records, Geophys. Res. Lett. 33, L23312, DOI: 10.1029/2006GL027795.
Zollo, A., G. Iannaccone, M. Lancieri, L. Cantore, V. Convertito, A. Emolo, G. Festa, F. Gallovič, M. Vassallo, C. Martino, C. Satriano, and P. Gasparini (2009), Earthquake early warning system in southern Italy: Methodologies and performance evaluation, Geophys. Res. Lett. 36, L00B07, DOI: 10.1029/2008GL036689.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. ,Gallucci, M. ,Chmel, A. ,Munoz-Diosdado, A. ,Vallianatos, F. ,Li, H.-C. ,Gospodinov, D. ,Matcharashvili, T. ,Valverde-Esparza, S. ,Czechowski, Z. ,Marekova, E. ,Ryabinin, G. ,Vallianatos, F. ,Galvez-Coyt, G. , Parameters of Higuchi's method to characterize primary waves in some seismograms from the Mexican subduction zone. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Fractal characteristics of the ULF emissions along a meridian profile, based on the 210 MM stations data

Czasopismo : Acta Geophysica
Tytuł artykułu : Fractal characteristics of the ULF emissions along a meridian profile, based on the 210 MM stations data

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Gallucci, M.
Dipartimento di Statistica “G. Parenti”, Universita di Firenze, Firenze, Italy, gallucci@ds.unifi.it,
Chmel, A.
Fracture Physics Department, Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia, chmel@mail.ioffe.ru,
Munoz-Diosdado, A.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F, Mexico, amunoz@avantel.net,
Vallianatos, F.
Earth Sciences Department, University College London, London, United Kingdom, georgios.michas.10@ucl.ac.uk,
Li, H.-C.
Department of Earth Sciences and Institute of Geophysics, National Central University, Jhongli, Taiwan, chencc@earth.ncu.edu.tw,
Gospodinov, D.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, drago@uni-plovdiv.bg,
Matcharashvili, T.
M. Nodia Institute of Geophysics, Tbilisi, Georgia, Matcharashvili@gtu.ge,
Valverde-Esparza, S.
Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Azcapotzalco, Mexico D.F., Mexico, arr@correo.azc.uam.mx,
Czechowski, Z.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, zczech@igf.edu.pl,
Marekova, E.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, eligeo@uni-plovdiv.bg,
Ryabinin, G.
Kamchatka Branch, Geophysical Survey of Russian Academy of Sciences, Petropavlovsk-Kamchatsky, gena@emsd.iks.ru,
Vallianatos, F.
Technological Educational Institution of Crete, Laboratory of Geophysics and Seismology, Chania, Crete, Greece, fvallian@chania.teicrete.gr,
Galvez-Coyt, G.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F., Mexico, amunoz@avantel.net,
Varlamov, A.
Institute of Physics, St. Petersburg University, St. Petersburg, Russia, nsmir@geo.phys.spbu.ru,
Abstrakty : Fractal analysis of magnetic records (1 Hz sampling rate) of 5 stations (Guam, Moshiri, Paratunka, Magadan, and Chokurdakh) located along the 210 magnetic meridian (210 MM) has been performed using the Higuchi method. The period of 22 months (October 1992 to July 1994) that embodies the date of the strong Guam earthquake of 8 August 1993 has been considered. A comparison of the ULF emissions scaling parameters (spectral exponents β and fractal dimensions D) obtained at different latitudes has been made. Dependence of β and D on the Kp index of geomagnetic activity has been analyzed for each of the 24 local time intervals. It is revealed that D decreases (β increases) with increasing geomagnetic activity at all stations, but the rates of decrease (increase) are different at different stations and in different time intervals. It is shown that the evening, night and early morning hours are preferable to study magnetospheric effects, whereas the noon hours are the most suitable for the analysis of lithospheric effects. A possibility of using the data of the 210 MM stations as reference materials for the Guam seismically active area is discussed.

Słowa kluczowe : ULF emissions, fractal analysis, 210 MM, SOC dynamics,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 928 – 941
Bibliografia : Bak, P. (1997), How Nature Works, Oxford University Press, Oxford, 210 pp.
Bak, P., C. Tang, and K. Wiesenfeld (1987), Self-organized criticality: An explanation of 1/f noise, Phys. Rev. Lett. 59, 4, 381-384, DOI: 10.1103/PhysRevLett.59.381.
Bak, P., C. Tang, and K. Wiesenfeld (1988), Self-organized criticality, Phys. Rev. A 38, 1, 364-374, DOI: 10.1103/PhysRevA.38.364.
Berry, M.V. (1979), Diffractals, J. Phys. A 12, 6, 781, DOI: 10.1088/0305-4470/12/6/008.
Burlaga, L.F., and L.W. Klein (1986), Fractal structure of the interplanetary magnetic field, J. Geophys. Res. 91, A1, 347-350, DOI: 10.1029/JA091iA01p00347.
Chang, T., S.W.Y. Tam, C.C. Wu, and G. Consolini (2003), Complexity, forced and/or self-organized criticality, and topological phase transitions in space plasmas, Space Sci. Rev. 107, 1-2, 425-445, DOI: 10.1023/A:1025502023494.
Feder, J. (1988), Fractals, Plenum Press, New York, 283 pp.
Gotoh, K., M. Hayakawa, N.A. Smirnova, and K. Hattori (2004), Fractal analysis of seismogenic ULF emissions, Phys. Chem. Earth 29, 4-9, 419-424, DOI: 10.1016/j.pce.2003.11.013.
Hayakawa, M. (ed.) (1999), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Proc. Int. Workshop on Seismo-Electromagnetics of NASDA (IWSE1997), 2-5 March 1997, Chofu Tokyo, TERRAPUB, Tokyo.
Hayakawa, M. (ed.) (2005), Programme and Extended Abstracts of International Workshop on Seismo-Electromagnetics (IWSE2005), 15-17 March 2005, Chofu Tokyo.
Hayakawa, M., and O.A. Molchanov (eds.) (2002), Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, Proc. Int. Workshop on Seismo-Electromagnetics of NASDA (IWSO2000), 19-22 September 2000, Chofu Tokyo, TERRAPUB, Tokyo, 478 pp.
Hayakawa, M., T. Ito, and N. Smirnova (1999), Fractal analysis of ULF geomagnetic data associated with the Guam earthquake on August 8, 1993, Geophys. Res. Lett. 26, 18, 2797-2800, DOI: 10.1029/1999GL005367.
Hayakawa, M., Yu. Kopytenko, N. Smirnova, V. Troyan, and T. Peterson (2000), Monitoring ULF magnetic disturbances and schemes for recognizing earthquake precursors, Phys. Chem. Earth A 25, 3, 263-269, DOI: 10.1016/S1464-1895(00)00042-9.
Hergarten, S. (2002), Self-Organized Criticality in Earth Systems, Springer-Verlag, Berlin Heidelberg, 272 pp.
Higuchi, T. (1988), Approach to an irregular time series on the basis of the fractal theory, Physica D 31, 2, 277-283, DOI: 10.1016/0167-2789(88)90081-4.
Higuchi, T. (1990), Relationship between the fractal dimension and the power law index for a time series: A numerical investigation, Physica D 46, 2, 254-264, DOI: 10.1016/0167-2789(90)90039-R.
Ida, Y., and M. Hayakawa (2006), Fractal analysis for the ULF data during the 1993 Guam earthquake to study prefracture criticality, Nonlin. Processes Geophys. 13, 4, 409-412, DOI: 10.5194/npg-13-409-2006.
Jensen, H.J. (1998), Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems, Cambridge Lecture Notes in Physics, Vol. 10, Cambridge University Press, Cambridge, 153 pp.
Smirnova, N.A., and M. Hayakawa (2007), Fractal characteristics of the groundobserved ULF emissions in relation to geomagnetic and seismic activities, J. Atmos. Sol.-Terr. Phys. 69, 15, 1833-1841, DOI: 10.1016/j.jastp.2007.08.001.
Smirnova, N., M. Hayakawa, K. Gotoh, and D. Volobuev (2001), Scaling characteristics of the ULF geomagnetic fields at the Guam seismoactive area and their dynamics in relation to the earthquake, Nat. Hazards Earth Syst. Sci. 1, 3, 119-126, DOI: 10.5194/nhess-1-119-2001.
Smirnova, N., M. Hayakawa, and K. Gotoh (2004), Precursory behavior of fractal characteristics of the ULF electromagnetic fields in seismic active zones before strong earthquakes, Phys. Chem. Earth 29, 4-9, 445-451, DOI: 10.1016/j.pce.2003.11.016.
Sornette, A., and D. Sornette (1989), Self-organized criticality and earthquakes, Europhys. Lett. 9, 3, 197-202, DOI: 10.1209/0295-5075/9/3/002.
Telesca, L., V. Lapenna, F. Vallianatos, J. Makris, and V. Saltas (2004), Multifractal features in short-term time dynamics of ULF geomagnetic field measured in Crete, Greece, Chaos Soliton. Fract. 21, 2, 273-282, DOI: 10.1016/j.chaos.2003.10.020.
Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, 2nd ed., Cambridge University Press, Cambridge, 398 pp.
Vallianatos, F., and A. Tzanis (1999b), On possible scaling laws between electric earthquake precursors (EEP) and earthquake magnitude, Geophys. Res. Lett., 26, 13, 2013-2016, DOI: 10.1029/1999GL900406.
Vallianatos, F., V. Lapenna, V. Troyan, N. Smirnova, Yu. Kopytenko, V. Korepanov, and T. Matiashvili (2002), Study of the ULF electromagnetic phenomena related to earthquakes: Strategy of the SUPRE project. In: M. Hayakawa and O. Molchanov (eds.), Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, Proc. Int. Workshop on Seismo-Electromagnetics of NASDA 2000, TERRAPUB, Tokyo, 437-442.
Vallianatos, F., J. Makris, V. Saltas, L. Telesca, and V. Lapenna (2004), Monofractal and multifractal analysis in short-term time dynamics of ULF geomagnetic field measured in Crete, Greece, Bull. Geol. Soc. Greece 36, 3, 1298-1307, http://openarchives.gr/visit/105510.
Yumoto, K., Y. Tanaka, T. Oguti, K. Shiokawa, Y. Yoshimura, A. Isono, B.J. Fraser, F.W. Menk, J.W. Lynn, M. Seto, and the 210 MM Magnetic Observation Group (1992), Globally coordinated magnetic observations along 210° magnetic meridian during STEP period: 1. Preliminary results of lowlatitude Pc 3’s, J. Geomag. Geoelectr. 44, 4, 261-276, DOI: 10.5636/jgg.44.261.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. ,Gallucci, M. ,Chmel, A. ,Munoz-Diosdado, A. ,Vallianatos, F. ,Li, H.-C. ,Gospodinov, D. ,Matcharashvili, T. ,Valverde-Esparza, S. ,Czechowski, Z. ,Marekova, E. ,Ryabinin, G. ,Vallianatos, F. ,Galvez-Coyt, G. ,Varlamov, A. , Fractal characteristics of the ULF emissions along a meridian profile, based on the 210 MM stations data. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Evaluation of the feasibility of recovering the magma chamber's parameters by 3D Bayesian statistical inversion of synthetic MT data

Czasopismo : Acta Geophysica
Tytuł artykułu : Evaluation of the feasibility of recovering the magma chamber's parameters by 3D Bayesian statistical inversion of synthetic MT data

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Gallucci, M.
Dipartimento di Statistica “G. Parenti”, Universita di Firenze, Firenze, Italy, gallucci@ds.unifi.it,
Chmel, A.
Fracture Physics Department, Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia, chmel@mail.ioffe.ru,
Munoz-Diosdado, A.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F, Mexico, amunoz@avantel.net,
Vallianatos, F.
Earth Sciences Department, University College London, London, United Kingdom, georgios.michas.10@ucl.ac.uk,
Li, H.-C.
Department of Earth Sciences and Institute of Geophysics, National Central University, Jhongli, Taiwan, chencc@earth.ncu.edu.tw,
Gospodinov, D.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, drago@uni-plovdiv.bg,
Matcharashvili, T.
M. Nodia Institute of Geophysics, Tbilisi, Georgia, Matcharashvili@gtu.ge,
Valverde-Esparza, S.
Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Azcapotzalco, Mexico D.F., Mexico, arr@correo.azc.uam.mx,
Czechowski, Z.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, zczech@igf.edu.pl,
Marekova, E.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, eligeo@uni-plovdiv.bg,
Ryabinin, G.
Kamchatka Branch, Geophysical Survey of Russian Academy of Sciences, Petropavlovsk-Kamchatsky, gena@emsd.iks.ru,
Vallianatos, F.
Technological Educational Institution of Crete, Laboratory of Geophysics and Seismology, Chania, Crete, Greece, fvallian@chania.teicrete.gr,
Galvez-Coyt, G.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F., Mexico, amunoz@avantel.net,
Varlamov, A.
Institute of Physics, St. Petersburg University, St. Petersburg, Russia, nsmir@geo.phys.spbu.ru,
Spichak, V.
Geoelectromagnetic Research Centre IPE RAS, Troitsk, Moscow Region, Russia, v.spichak@mail.ru,
Abstrakty : Feasibility of recovering the magma chamber's parameters by 3D Bayesian statistical inversion of magnetotelluric data is estimated for the simplified conductivity model of the Vesuvios volcano. The results indicate that in the lack of prior information and data, the most efficient approach may consist in successive estimation of the geometry and the depth of the anomaly followed by estimation of the electric conductivity distribution in it. The horizontal boundaries of the target could be outlined by the high gradients of the impedance determinant phase pseudosections determined by the upward analytical continuation of the anomalous electromagnetic fields from the relief surface to the artificial reference plane located above the summit of the volcano. The vertical boundaries and the target extension as well as the electric conductivity could be estimated successively by means of 3D Bayesian statistical inversion of the collected magnetotelluric data carried out in the domain delimited by the estimated horizontal boundaries.

Słowa kluczowe : magma chamber, magnetotelluric, 3D inversion,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 942 – 958
Bibliografia : Backus, G.E. (1988), Bayesian inference in geomagnetism, Geophys. J. 92, 1, 125-142, DOI: 10.1111/j.1365-246X.1988.tb01127.x.
Besag, J., P. Green, D. Higdon, and K. Mengersen (1995), Bayesian computation and stochastic systems, Statist. Sci. 10, 1, 3-66, DOI: 10.1214/ss/1177010123.
De Natale, G., C. Troise, F. Pingue, G. Mastrolorenzo, and L. Pappalardo (2006), The Somma-Vesuvius volcano (Southern Italy): Structure, dynamics and hazard evaluation, Earth-Sci. Rev. 74, 1-2, 73-111, DOI: 10.1016/j.earscirev.2005.08.001.
Di Maio, R., P. Mauriello, D. Patella, Z. Petrillo, S. Piscitelli, and A. Siniscalchi (1998), Electric and electromagnetic outline of the Mount Somma-Vesuvius structural setting, J. Volcanol. Geoth. Res. 82, 1-4, 219-238, DOI: 10.1016/S0377-0273(97)00066-8.
Fitterman, D.V., W.D. Stanley, and R.J. Bisdorf (1988), Electrical structure of Newberry Volcano, Oregon, J. Geophys. Res. 93, B9, 10119-10134, DOI: 10.1029/JB093iB09p10119.
Jackson, D.B., and G.V. Keller (1972), An electromagnetic sounding survey of the summit of Kilauea Volcano, Hawaii, J. Geophys. Res. 77, 26, 4957-4965, DOI: 10.1029/JB077i026p04957.
Manzella, A., G. Volpi, and A. Zaja (2000), New magnetotelluric soundings in the Mt. Somma-Vesuvius volcanic complex: preliminary results, Ann. Geofis. 43, 2, 259-270.
Manzella, A., G. Volpi, A. Zaja, and M. Meju (2004), Combined TEM-MT investigation of shallow-depth resistivity structure of Mt Somma-Vesuvius, J. Volcanol. Geoth. Res. 131, 1-2, 19-32, DOI: 10.1016/S0377-0273(03)00313-5.
Mauriello, P., D. Patella, Z. Petrillo, and A. Siniscalchi (1997), Mount Etna structural exploration by magnetotellurics, Acta Volcanol. 9, 1/2, 141-146.
Mogi, T., and K. Nakama (1990), Three-dimensional geoelectrical structure of geothermal system in Kuju volcano and its interpretation, Geoth. Res. Council Trans. 14, part II, 1513-1515.
Moroz, Y.F., V.I. Kobzova, I.P. Moroz, and A.F. Senchina (1988), Analogue modeling of MT-fields of volcano, Vulkanol. Seismol. 3, 98-104 (in Russian).
Newman, G.A., P.E. Wannamaker, and G.W. Hohmann (1985), On the detectability of crustal magma chambers using the magnetotelluric method, Geophysics 50, 7, 1136-1143, DOI: 10.1190/1.1441987.
Park, S.K., and C. Torres-Verdin (1988), A systematic approach to the interpretation of magnetotelluric data in volcanic environments with applications to the quest for magma in Long Valley, California, J. Geophys. Res. 93, B11, 13265-13283, DOI: 10.1029/JB093iB11p13265.
Press, S.J. (1989), Bayesian Statistics: Principles, Models and Applications, John Wiley and Sons, New York.
Siripunvaraporn, W. (2012), Three-dimensional magnetotelluric inversion: An introductory guide for developers and users, Surv. Geophys. 33, 1, 5-27, DOI: 10.1007/s10712-011-9122-6.
Spichak, V.V. (1999), Imaging of volcanic interior using MT data. In: M. Oristaglio and B. Spies (eds.), 3D Electromagnetics, Geophys. Devel. Ser. 7, Soc. Explor. Geophys. Publ., Tulsa, 418-425.
Spichak, V.V. (2001), Three-dimensional interpretation of MT data in volcanic environments (computer simulation), Ann. Geofis. 44, 2, 273-286.
Spichak, V.V. (2002), Advanced three-dimensional interpretation technologies applied to the MT data in the Minamikayabe thermal area (Hokkaido, Japan), In: Proc. EAGE 64th Conference and Exhibition, 27-30 May 2002, Florence, Italy, 243-246.
Spichak, V.V. (2007), Modeling of magnetotelluric fields in 3-D media. In: V.V. Spichak (ed.), Electromagnetic Sounding of the Earth’s Interior, Elsevier, Amsterdam, 313-350, DOI: 10.1016/S0076-6895(06)40012-3.
Spichak, V.V., and I. Popova (2000), Artificial neural network inversion of magnetotelluric data in terms of three-dimensional earth macroparameters, Geophys. J. Int. 142, 1, 15-26, DOI: 10.1046/j.1365-246x.2000.00065.x.
Spichak, V.V., and M.S. Zhdanov (2007), 3-D EM forward modeling using balance technique. In: V.V. Spichak (ed.), Electromagnetic Sounding of the Earth’s Interior, Elsevier, Amsterdam, 105-142, DOI: 10.1016/S0076-6895(06)40005-6.
Spichak, V.V., M. Menvielle, and M. Roussignol (1999a), Three-dimensional inversion of MT fields using Bayesian statistics. In: M. Oristaglio and B. Spies (eds.), 3D Electromagnetics, Geophys. Devel. Ser. 7, Soc. Explor. Geophys. Publ., Tulsa, 406-417.
Spichak, V.V., M. Menvielle, and M. Roussignol (1999b), Estimation of the effects of quality and volume of a priori information and data on 3-D inversion of magnetotelluric fields, Izv. – Phys. Solid Earth 35, 4, 260-270.
Spichak, V.V., Y. Yamaya, and T. Mogi (2004), ANN modeling of 3D conductivity structure of the Komagatake volcano (Hokkaido, Japan) by MT data. In: Proc. IV Int. Symp. MEEMSV 2004, La Londe Les Maures, France, 121-122.
Spichak, V.V., V.P. Borisova, E.B. Fainberg, A.A. Khalezov, and A.G. Goidina (2007), Electromagnetic 3D tomography of the Elbrus volcanic center according to magnetotelluric and satellite data, J. Volcanol. Seismol. 1, 1, 53-66, DOI: 10.1134/S0742046307010046.
Tarantola, A. (1987), Inverse Problem Theory, Elsevier, New York, 613 pp.
Tarantola, A., and B. Valette (1982), Inverse problems = quest for information, J. Geophys. 50, 159-170.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. ,Gallucci, M. ,Chmel, A. ,Munoz-Diosdado, A. ,Vallianatos, F. ,Li, H.-C. ,Gospodinov, D. ,Matcharashvili, T. ,Valverde-Esparza, S. ,Czechowski, Z. ,Marekova, E. ,Ryabinin, G. ,Vallianatos, F. ,Galvez-Coyt, G. ,Varlamov, A. ,Spichak, V. , Evaluation of the feasibility of recovering the magma chamber's parameters by 3D Bayesian statistical inversion of synthetic MT data. Acta Geophysica Vol. 60, no. 3/2012
[Top]

Optimizing statistical classification accuracy of satellite remotely sensed imagery for supporting fast flood hydrological analysis

Czasopismo : Acta Geophysica
Tytuł artykułu : Optimizing statistical classification accuracy of satellite remotely sensed imagery for supporting fast flood hydrological analysis

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain, roberto.carniel@uniud.it,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy, diegop@unipg.it,
Gallucci, M.
Dipartimento di Statistica “G. Parenti”, Universita di Firenze, Firenze, Italy, gallucci@ds.unifi.it,
Chmel, A.
Fracture Physics Department, Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia, chmel@mail.ioffe.ru,
Munoz-Diosdado, A.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F, Mexico, amunoz@avantel.net,
Vallianatos, F.
Earth Sciences Department, University College London, London, United Kingdom, georgios.michas.10@ucl.ac.uk,
Li, H.-C.
Department of Earth Sciences and Institute of Geophysics, National Central University, Jhongli, Taiwan, chencc@earth.ncu.edu.tw,
Gospodinov, D.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, drago@uni-plovdiv.bg,
Matcharashvili, T.
M. Nodia Institute of Geophysics, Tbilisi, Georgia, Matcharashvili@gtu.ge,
Valverde-Esparza, S.
Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Azcapotzalco, Mexico D.F., Mexico, arr@correo.azc.uam.mx,
Czechowski, Z.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, zczech@igf.edu.pl,
Marekova, E.
Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria, eligeo@uni-plovdiv.bg,
Ryabinin, G.
Kamchatka Branch, Geophysical Survey of Russian Academy of Sciences, Petropavlovsk-Kamchatsky, gena@emsd.iks.ru,
Vallianatos, F.
Technological Educational Institution of Crete, Laboratory of Geophysics and Seismology, Chania, Crete, Greece, fvallian@chania.teicrete.gr,
Galvez-Coyt, G.
Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F., Mexico, amunoz@avantel.net,
Varlamov, A.
Institute of Physics, St. Petersburg University, St. Petersburg, Russia, nsmir@geo.phys.spbu.ru,
Spichak, V.
Geoelectromagnetic Research Centre IPE RAS, Troitsk, Moscow Region, Russia, v.spichak@mail.ru,
Alexakis, D.
Department of Civil Engineering and Geomatics, Remote Sensing Lab., Faculty of Engineering and Technology, Cyprus University of Technology, Limassol, Cyprus, dimitrios.alexakis@cut.ac.cy,
Abstrakty : The aim of this study is to improve classification results of multispectral satellite imagery for supporting flood risk assessment analysis in a catchment area in Cyprus. For this purpose, precipitation and ground spectroradiometric data have been collected and analyzed with innovative statistical analysis methods. Samples of regolith and construction material were in situ collected and examined in the spectroscopy laboratory for their spectral response under consecutive different conditions of humidity. Moreover, reflectance values were extracted from the same targets using Landsat TM/ETM+ images, for drought and humid time periods, using archived meteorological data. The comparison of the results showed that spectral responses for all the specimens were less correlated in cases of substantial humidity, both in laboratory and satellite images. These results were validated with the application of different classification algorithms (ISODATA, maximum likelihood, object based, maximum entropy) to satellite images acquired during time period when precipitation phenomena had been recorded.

Słowa kluczowe : classification, statistics, spectroradiometer, remote sensing, floods,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 959 – 984
Bibliografia : Agapiou, A., D.G. Hadjimitsis , C. Papoutsa, D.D. Alexakis, and G. Papadavid (2011), The importance of accounting for atmospheric effects in the application of NDVI and interpretation of satellite imagery for supporting archaeological research: The case studies of Palaepaphos and Nea Paphos sites in Cyprus, Remote Sens. 3, 12, 2605-2629; DOI: 10.3390/rs3122605.
Alexakis, D.D., D.G. Hadjimitsis, A. Agapiou, K. Themistokleous, and A. Retalis (2011), Contribution of earth observation to flood risk assessment in Cyprus: the Yialias catchment area in Nicosia. In: Proc. VI EWRA Int. Symp. “Water Engineering and Management in a Changing Environment”, 29 June – 2 July 2011 Catania.
Arai, K. (1991), Information extraction of inner pixel contents derived from satellite remote sensing imagery data, J. Jpn. Soc. Photogramm. Remote Sens. 30, 4, 30-34.
Benz, U.C., P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen (2004), Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information, ISPRS J. Photogramm. Remote Sens. 58, 3-4, 239-258, DOI: 10.1016/j.isprsjprs.2003.10.002.
Bhaskaran, S., S. Paramananda, and M. Ramnarayan (2010), Per-pixel and objectoriented classification methods for mapping urban features using Ikonos satellite data, Appl. Geogr. 30, 4, 650-665, DOI: 10.1016/j.apgeog.2010.01.009.
Blaschke, T. (2010), Object based image analysis for remote sensing, ISPRS J. Photogramm. Remote Sens. 65, 1, 2-16, DOI: 10.1016/j.isprsjprs.2009.06.004.
Blumberg, D.G., and G. Zhu (2007), Using a hierarchical multi-resolution mechanism for the classification and semantic extraction of land use maps for Beer-Sheva, Israel, Int. J. Remote Sens. 28, 15, 3273-3289, DOI: 10.1080/01431160600993371.
Brown, D.G., B.C. Pijanowski, and J.D. Duh (2000), Modeling the relationships between land use and land cover on private lands in the Upper Midwest, USA, J. Environ. Manage. 59, 4, 247-263, DOI: 10.1006/jema.2000.0369.
Congalton, R.G. (1991), A review of assessing the accuracy of classifications of remotely sensed data, Remote Sens. Environ. 37, 1, 35-46, DOI: 10.1016/0034-4257(91)90048-B.
Congalton, R.G., and K. Green (1999), Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Lewis Publishers, Boca Raton, 137 pp.
De Kok, R., A. Buck, T. Schneider, and U. Ammer (2000), Analysis of image objects fromVHR imagery for forest GIS updating in the Bavarian Alps. In: XIX Congress Int. Soc. for Photogrammetry and Remote Sensing (ISPRS), 16-23 July 2000, Amsterdam, Holland, 222-229.
Du, P., X. Li, W. Cao, Y. Luo, and H. Zhang (2010), Monitoring urban land cover and vegetation change by multi-temporal remote sensing information, Mining Sci. Technol. 20, 6, 922-932, DOI: 10.1016/S1674-5264.
Eggleton, R.A. (ed.), (2001), The Regolith Glossary: Surficial Geology, Soils and Landscapes, CRC LEME, Canberra, Australia, http://crcleme.org.au/ Pubs/Monographs/BookRegGloss.html.
Eiumnoh, A., and R.P. Shrestha (2000), Application of DEM data to Landsat image classification: Evaluation in a tropical wet-dry landscape of Thailand, Photogramm. Eng. Remote Sens. 66, 3, 297-1304.
Foody, G.M. (2002), Status of land cover classification accuracy assessment, Remote Sens. Environ. 80, 1, 185-201, DOI: 10.1016/S0034-4257(01)00295-4.
Forster, B.C. (1984), Derivation of atmospheric correction procedures for LANDSAT MSS with particular reference to urban data, Int. J. Remote Sens. 5, 5, 799-817, DOI: 10.1080/01431168408948861.
Gamanya, R., P. De Maeyer, and M. De Dapper (2007), An automated satellite image classification design using object-oriented segmentation algorithms: A move towards standardization, Expert Syst. Appl. 32, 2, 616-624, DOI: 10.1016/j.eswa.2006.01.055.
Hadjimitsis, D.G. (2007), The use of satellite remote sensing and GIS for assisting flood risk assessment: a case study of the Agriokalamin Catchment area in Paphos-Cyprus, Proc. SPIE 6742, 67420Z, DOI: 10.1117/12.751855.
Hadjimitsis, D.G. (2010), Determination of urban growth in catchment areas in Cyprus using multi-temporal remotely sensed data: risk assessment study, Nat. Hazards Earth Syst. Sci. 10, 2235-2240, DOI: 10.5194/nhess-10-2235-2010.
Hadjimitsis, D.G., and C.R.I. Clayton (2008), The use of an improved atmospheric correction algorithm for removing atmospheric effects from remotely sensed images using an atmosphere-surface simulation and meteorological data, Meteorol. Appl. 15, 3, 381-387, DOI: 10.1002/met.80.
Hadjimitsis, D.G., and C.R.I. Clayton (2007), The application of the covariance matrix statistical method for removing atmospheric effects from satellite remotely sensed data intended for environmental applications, Proc. SPIE 6749, 674936, DOI: 10.1117/12.751887.
Hadjimitsis, D.G., C.R.I. Clayton, and V.S. Hope (2004a), An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs, Int. J. Remote Sens. 25, 18, 3651-3674, DOI: 10.1080/01431160310001647993.
Hadjimitsis, D.G., C.R.I. Clayton, and A. Retalis (2004b), On the darkest pixel atmospheric correction algorithm: a revised procedure applied over satellite remotely sensed images intended for environmental applications, Proc. SPIE 5239, 464, DOI: 10.1117/12.511520.
Hjuler, M.L., and I.L. Fabricius (2009), Engineering properties of chalk related to diagenetic variations of Upper Cretaceous onshore and offshore chalk in the North Sea area, J. Petrol. Sci. Eng. 68, 3-4, 151-170, DOI: 10.1016/j.petrol.2009.06.005.
Jaynes, E.T. (1957), Information theory and statistical mechanics, Phys. Rev. 106, 4, 620-630, DOI: 10.1103/PhysRev.106.620.
Karl, J.W., and B.A. Maurer (2010), Multivariate correlations between imagery and field measurements across scales: comparing pixel aggregation and image segmentation, Landscape Ecol. 25, 4, 591-605, DOI: 10.1007/s10980-009-9439-4.
Li, W., and Q. Guo (2010), A maximum entropy approach to one-class classification of remote sensing imagery, Int. J. Remote Sens. 31, 8, 2227-2235, DOI: 10.1080/01431161003702245.
Liberti, M., T. Simoniello, M.T. Carone, R. Coppola, M. D’Emilio, and M. Macchiato (2009), Mapping badland areas using LANDSAT TM/ETM satellite imagery and morphological data, Geomorphology 106, 3-4, 333-343, DOI: 10.1016/j.geomorph.2008.11.012.
Matikainen, L., and K. Karila (2011), Segment-based land cover mapping of a suburban area—comparison of high-resolution remotely sensed datasets using classification trees and test field points, Remote Sens. 3, 8, 1777-1804, DOI: 10.3390/rs3081777.
McLachlan, G.J. (1992), Discriminant Analysis and Statistical Pattern Recognition, John Wiley and Sons, New York.
Melgani, F., and S.B. Serpico (2002), A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remotesensing images, Pattern Recogn. Lett. 23, 9, 1053-1061, DOI: 10.1016/S0167-8655(02)00052-1.
Michaelides, S.C., F.S. Tymvios, and T. Michaelidou (2009), Spatial and temporal characteristics of the annual rainfall frequency distribution in Cyprus, Atmos. Res. 94, 4, 606-615, DOI: 10.1016/j.atmosres.2009.04.008.
Mortier, F., S. Robin, S. Lassalvy, C. Baril, and A. Bar-Hen (2006), Prediction of Euclidean distances with discrete and continuous outcomes, J. Multivariate Anal. 97, 8, 1799-1814, DOI: 10.1016/j.jmva.2005.06.010.
Moussa, R., and C. Bocquillon (2009), On the use of the diffusive wave for modelling extreme flood events with overbank flow in the floodplain, J. Hydrol. 374, 1-2, 116-135, DOI: 10.1016/j.jhydrol.2009.06.006.
Peterson, A.T., and J. Shaw (2003), Lutzomyia vectors for cutaneous leishmaniasis in Southern Brazil: ecological niche models, predicted geographic distributions, and climate change effects, Int. J. Parasitol. 33, 9, 919-931, DOI: 10.1016/S0020-7519(03)00094-8.
Phillips, S.J., M. Dudík, and R.E. Schapire (2004), A maximum entropy approach to species distribution modeling. In: Proc. Twenty-First Int. Conf. on Machine Learning, Banff, Alberta, Canada, ACM, New York, 655-662, DOI: 10.1145/1015330.1015412.
Phillips, S.J., R.P. Anderson, and R.E. Schapire (2006), Maximum entropy modeling of species geographic distributions, Ecol. Model. 190, 3-4, 231-259, DOI: 10.1016/j.ecolmodel.2005.03.026.
Risnes, R., H. Haghighi, R.I. Korsnes, and O. Natvik (2003), Chalk-fluid interactions with glycol and brines, Tectonophysics 370, 1-4, 213-226, DOI: 10.1016/S0040-1951(03)00187-2.
Risnes, R., M.V. Madland, M. Hole, and N.K. Kwabiah (2005), Water weakening of chalk – Mechanical effects of water-glycol mixtures, J. Petrol. Sci. Eng. 48, 1-2, 21-36, DOI: 10.1016/j.petrol.2005.04.004.
Roosta, H., R. Farhoudi, and M. Roosta (2007), Multi temporal disaggregation of MODIS images using non-linear analysis. In: Proc. of 5th WSEAS Int. Conf. on Environment, Ecosystems and Development, 14-16 December 2007, Tenerife, Spain, 222-227.
Shafique, M., M. Van der Meijde, and S. Ullah (2011), Regolith modeling and its relation to earthquake induced building damage : A remote sensing approach, J. Asian Earth Sci. 42, 1-2, 65-75, DOI: 10.1016/j.jseaes.2011.04.004.
Shankar, B.U., S.K. Meher, and A. Ghosh (2011), Wavelet-fuzzy hybridization: Feature-extraction and land-cover classification of remote sensing images, Appl. Soft Comput. 11, 3, 2999-3011, DOI: 10.1016/j.asoc.2010.11.024.
Shannon, C.E. (1948), A mathematical theory of communication, Bell Syst. Tech. J. 27, 379-423.
Takagi, T., T. Oguchi, J. Matsumoto, M.J. Grossman, M.H. Sarker, and M.A. Matin (2007), Channel braiding and stability of the Brahmaputra River, Bangladesh, since 1967: GIS and remote sensing analyses, Geomorphology 85, 3-4, 294-305, DOI: 10.1016/j.geomorph.2006.03.028.
Van Vliet, J. (2009), Assessing the accuracy of changes in spatial explicit land use change models. In: 12th Annual AGILE Int. Conf. on Geographic Information Science 2009, Leibniz Universitat Hannover, Germany.
Van Vliet, J., A.K. Bregt, and A. Hagen-Zanker (2011), Revisiting Kappa to account for change in the accuracy assessment of land-use change models, Ecol. Model. 222, 8, 1367-1375, DOI: 10.1016/j.ecolmodel.2011.01.017.
Weng, Q. (2002), Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling, J. Environ. Manage. 64, 3, 273-284, DOI: 10.1006/jema.2001.0509.
Wu, X., J.T. Sullivan, and A.K. Heidinger (2010), Operational calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible and near-infrared channels, Can. J. Remote Sens. 36, 5, 602-616, DOI: 10.5589/m10-080.
Yang, C., J.H. Everitt, and D. Murden (2011), Evaluating high resolution SPOT 5 satellite imagery for crop identification, Comput. Electron. Agr. 75, 2, 347-354, DOI: 10.1016/j.compag.2010.12.012.
Zhang, R., and D. Zhu (2011), Study of land cover classification based on knowledge rules using high-resolution remote sensing images, Expert Syst. Appl. 38, 4, 3647-3652, DOI: 10.1016/j.eswa.2010. 00.019.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. ,Gallucci, M. ,Chmel, A. ,Munoz-Diosdado, A. ,Vallianatos, F. ,Li, H.-C. ,Gospodinov, D. ,Matcharashvili, T. ,Valverde-Esparza, S. ,Czechowski, Z. ,Marekova, E. ,Ryabinin, G. ,Vallianatos, F. ,Galvez-Coyt, G. ,Varlamov, A. ,Spichak, V. ,Alexakis, D. , Optimizing statistical classification accuracy of satellite remotely sensed imagery for supporting fast flood hydrological analysis. Acta Geophysica Vol. 60, no. 3/2012
[Top]