Category: Vol. 61, no. 2

Wave moment geodynamics

Czasopismo : Acta Geophysica
Tytuł artykułu : Wave moment geodynamics

Autorzy :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia, vik@kscnet.ru,
Abstrakty : The work presents a review of natural-science representations on the rotary motion of matter and its piecewise structure. Development of dense GPS-networks allowed to experimentally confirm the concept of block structures of the geophysical environment and to prove rotary character of block movement. An analysis of both the migration of earthquake sources and the movement of sections of tectonic plates’ borders has allowed to reveal general properties of such movements and to prove their wave nature. It is shown that within the limits of rotational model, blocks and plates are interconnected among themselves by the elastic long-range fields forming a uniform planetary geodynamic field. It is offered to use the geodynamic solutions of rotational model in the one class of phenomena as a basis at the construction of a new geological paradigm – wave moment geodynamics.

Słowa kluczowe : block, plate, rotational wave model,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 2
Strony : 245 – 263
Bibliografia : Antonov, V.A., and B.P. Kondratèv (1995), On the conditional extremum for the gravitational energy inherent to the oblate spheroid, Astron. Astrophys. Trans.: J. Eurasian Astron. Soc. 7, 2-3, 173-176, DOI: 10.1080/10556799508205413.
Bykov, V.G. (2008), Stick-slip and strain waves in the physics of earthquake rupture: experiments and models, Acta Geophys. 56, 2, 270-285, DOI: 10.2478/s11600-008-0002-5.
Chandrasekhar, S., and P.H. Roberts (1963), The ellipticity of a slow rotating configuration, Astrophys. J. 138, 801-808, DOI: 10.1086/147686.
De Rubeis, V., Z. Czechowski, and R. Teisseyre (eds.) (2010), Synchronization and Triggering: from Fracture to Earthquake Processes, GeoPlanet: Earth and Planetary Sciences, Springer-Verlag, Berlin, 390 pp.
Elsasser, W.M. (1969), Convection and stress propagation in the upper mantle. In: S.K. Runcorn (ed.), Applications of Modern Physics to the Earth and Planetary Interiors, Wiley-Interscience, New York, 223-246.
Flesch, L.M., A.J. Haines, and W.E. Holt (2001), Dynamics of the India-Eurasia collision zone, J. Geophys. Res. 106, B8, 16435-16460, DOI: 10.1029/2001JB000208.
Fujiwhara, S., T. Tsujimura, and S. Kusamitsu (1933), On the Earth-Vortex, Echelon Faults and Allied Phenomena, Akademische Verlagsgesellschaft, Leipzig.
Gershenzon, N.I., V.G. Bykov, and G. Bambakidis (2009), Strain waves, earthquakes, slow earthquakes, and afterslip in the framework of the Frenkel–Kontorova model, Phys. Rev. E 79, 056601, DOI: 10.1103/PhysRevE.79.056601.
Heirtzler, J.R., G.O. Dickson, E.M. Herron, W.C. Pitman, and X. Le Pichon (1968), Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents, J. Geophys. Res. 73, 6, 2119-2136, DOI: 10.1029/JB073i006p02119.
Isacks, B., J. Oliver, and L.R. Sykes (1968), Seismology and the new global tectonics, J. Geophys. Res. 73, 133-179, DOI: 10.1029/JB073i018p05855.
Kuzikov, S.I., and Sh.A. Mukhamediev (2010), Structure of the present-day velocity field of the crust in the area of the Central-Asian GPS network, Izv. Phys. Solid Earth 46, 7, 584-601, DOI: 10.1134/S1069351310070037.
Landau, L.D., and E.M. Lifshitz (1976), Mechanics, Course of Theoretical Physics, Vol. 1, Buttroworth-Heinemann, Amsterdam.
Le Pichon, X. (1968), Sea-floor spreading and continental drift, J. Geophys. Res. 73, 12, 3661-3697, DOI: 10.1029/JB073i012p03661.
Lee, J.S. (1928), Some characteristic structural types in Eastern Asia and their Bering upon the problem of continental movements, Geol. Mag. 66, 9, 422-430, DOI: 10.1017/S001675680010531X.
Lee, W.H.K., M. Çelebi, M.I. Todorovska, and H. Igel (2009a), Introduction to the Special Issue on rotational seismology and engineering applications, Bull. Seismol. Soc. Am. 99, 2B, 945-957, DOI: 10.1785/0120080344.
Lee, W.H.K., H. Igel, and D. Trifunac (2009b), Recent advances in rotational seismology, Seismol. Res. Lett. 80, 3, 479-490, DOI: 10.1785/gssrl.80.3.479.
Magnitskiy, V.A. (1967), The Internal Structure and Physics of the Earth, NASA, Washington D.C.
Morgan, W.J. (1968), Rises, trenches, great faults and crustal blocks, J. Geophys. Res. 73, 6, 1959-1982, DOI: 10.1029/JB073i006p01959.
Nikolaevskiy, V.N. (1996), Geomechanics and Fluidodynamics, Kluwer Academic Publ., Dordrecht.
Replumaz, A., and P. Tapponnier (2003), Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks, J. Geophys. Res. 108, 2285, DOI: 10.1029/2001JB000661.
Riemann, B. (1861), Beitrag zu den Untersuchungen über die Bewegung eines flüssigen gleichartingen Ellipsoides, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 9.
Takeuchi, A. (1986), On the episodic vicissitude of tectonic stress field of the Cenozonic northeast Honshu arc, Japan. In: N. Nasu et al. (eds.), Formation of Active Ocean Margins, Kluwer Academic Publ., Tokyo, 443-465.
Teisseyre, R. (2010), Fluid theory with asymmetric molecular stresses: difference between vorticity and spin equations, Acta Geophys. 58, 6, 1056-1071, DOI: 10.2478/s11600-010-0029-2.
Teisseyre, R., and M. Górski (2011), Earthquake fragmentation and slip processes: Spin and shear-twist wave mosaic, Acta Geophys. 59, 3, 453-469, DOI: 10.2478/s11600-011-0001-9.
Thatcher, W. (1995), Microplate versus continuum descriptions of active tectonic deformation, J. Geophys. Res. 100, B3, 3885-3894, DOI: 10.1029/94JB03064.
Vikulin, A.V. (2006), Earth rotation, Elasticity and Geodynamics: Earthquake Wave Rotary Model. In: R. Teisseyre, M. Takeo, and E. Majewski (eds.), Earthquake Source Asymmetry, Structural Media and Rotation Effects, Springer, Berlin, 273-289, DOI: 10.1007/3-540-31337-0_20.
Vikulin, A.V. (2008), Energy and moment of the Earth’s rotational field, Russ. Geol. Geophys. 49, 422-429.
Vikulin, A.V. (2009), Physics of the Earth and Geodynamics, KamGU, Petropavlovsk-Kamchatsky, 463, www.kscnet.ru (in Russian).
Vikulin, A.V. (2011), Seismicity, Volcanism, Geodynamics: Selected Works, KamGU, Petropavlovsk-Kamchatskii, 407, www.kscnet.ru (in Russian).
Vikulin, A.V., and G.A. Ivanchin (2000), Rotational model of seismic process, Russ. J. Pac. Geol. 15, 6, 1225-1240.
Vikulin, A.V., and A.N. Krolevets (2002), Seismotectonic processes and the Chandler oscillation, Acta Geophys. Pol. 50, 3, 395-411.
Vikulin, A.V., and T.Yu. Tveritinova (2008), Momentum-wave nature of geological medium, Mosc. Univ. Geol. Bull. 63, 6, 368-371, DOI: 10.3103/S0145875208060033.
Vikulin, A.V., A.G. Ivanchin, and T.Yu. Tveritinova (2011), Moment vortex geodynamics, Mosc. Univ. Geol. Bull. 66, 1, 29-36, DOI: 10.3103/S014587521101008X.
Xie, X.-S. (2004), Discussion on rotational tectonics stress field and the genesis of circum-Ordos landmass fault system, Acta Seismol. Sinica 17, 4, 464-472.
DOI :
Cytuj : Vitkulin, A. V. , Wave moment geodynamics. Acta Geophysica Vol. 61, no. 2/2013

Modeling of deep magnetovariation soundings on the rotating earth

Czasopismo : Acta Geophysica
Tytuł artykułu : Modeling of deep magnetovariation soundings on the rotating earth

Autorzy :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia, vik@kscnet.ru,
Semenov, V. Y.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, sem@igf.edu.pl,
Abstrakty : Induced magnetic fields in the Earth arise due to two phenomena: induction generated by the time-variable exciting field and the motional induction caused by movement of the conductive planet in the outer magnetic fields. The comparison of both approaches on the spherical Earth has been analyzed in the present work for two sources in the ionosphere and magnetosphere. For this aim, both sources with their natural sizes and positions have been modeled analytically to obtain the fields on the layered sphere at the middle latitudes. The conditions when the steady ring current field is not influenced by the Earth’s rotation have been established theoretically. The synthetic diurnal magnetograms were used for the deep sounding by the magnetovariation spatial gradient method and the result was compared with the one obtained on the non- rotating sphere. Sounding results using both approaches were found different above the 2D inhomogeneous mantle. The precessions of the magnetospheric belt current pole for daily sampling frequency were presented using several geomagnetic observatory data in the northern hemisphere.

Słowa kluczowe : mantle induction soundings, rotating Earth,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 2
Strony : 264 – 280
Bibliografia : Averochkina, I.A., V.I. Dmitriev, V.V. Sochelnikov, and E.B. Fainberg (1978), On calculation of theoretical curves of deep electromagnetic sounding for model of the spherical Earth’s, Izv. – Phys. Solid Earth 24, 3, 63-66 (in Russian).
Banks, R.J. (1969), Geomagnetic variations and the electrical conductivity of the upper mantle, Geophys. J. Roy. Astron. Soc. 17, 5, 457-487, DOI: 10.1111/j.1365-246X.1969.tb00252.x.
Berdichevsky, M.N., L.L. Vanjan, and E.B. Fainberg (1969), The frequency sounding of the Earth using spherical analysis results of geomagnetic variations, Geomagn. Aeron. 9, 372-374 (in Russian).
Berdichevsky, M.N., and M.S. Zhdanov (1984), Advanced Theory of Deep Geomagnetic Sounding, Elsevier, Amsterdam, 408 pp.
Born, M., and E. Wolf (1964), Principles of Optics, Pergamon Press, Oxford.
Bullard, E.C. (1949), Electromagnetic induction in a rotating sphere, Proc. Roy. Soc. Lond. A 199, 1059, 413-443, DOI: 10.1098/rspa.1949.0146.
Campbell, W.H. (1989), The regular geomagnetic-field variations during quiet solar conditions. In: J.A. Jacobs (ed.), Geomagnetism, Vol. 3, Academic Press, London, 385-460.
Counil, J.L., M. Menvielle, and J.L. Le Mouel (1987), Upper mantle lateral heterogeneities and magnetotelluric daily variation data, Pure Appl. Geophys. 125, 2-3, 319-340, DOI: 10.1007/BF00874500.
Fujii, I., and A. Schultz (2002), The 3D electromagnetic responses of the Earth to ring current and auroral oval excitation, Geophys. J. Int. 151, 3, 689-709, DOI: 10.1946/j.1365-246X.2002.01775.x.
Guglielmi, A.V., and M.B. Gokhberg (1987), On the magnetotelluric sounding in the seismically active areas, Izv. – Phys. Solid Earth 33, 11, 122-123 (in Russian).
Hermance, J.F. (1995), Electrical conductivity models of the crust and mantle. In: T.J. Ahrens (ed.), Global Earth Physics. A Handbook of Physical Constants, American Geophysical Union, Washington.
Hermance, J.F., and W. Wang (1992), “Mode-blind” estimates of deep earth resistivity, J. Geomag. Geoelectr. 44, 6, 373-389, DOI: 10.5636/jgg.44.373.
Hvoždara, M. (1971), On some effects connected with electromagnetic induction in a rotating Earth, Studia Geophys. Geodet. 15, 2, 173-180, DOI: 10.1007/BF01623914.
Hvoždara, M. (1974), Non-harmonic electromagnetic induction in a rotating conducting Earth, Contrib. Geophys. Inst. Slovak. Acad. Sc. 5, 63-72.
Hvoždara, M., and G. Siráň (1975), Penetration of long-period geomagnetic variations to the core of the Earth, Acta Facult. Rerum Natural. Univer. Comen. Astron. Geophys. 1, 27-39.
Hvoždara, M. (1976), Electromagnetic induction in a multi-layer rotating Earth due to an external harmonic magnetic field, Contrib. Geophys. Inst. Slovak. Acad. Sc. 6, 113-125.
Hvoždara, M. (1980), Anomalies in the field of the Sq-variations and their relation to lateral conductivity inhomogeneities of the Earth, Contrib. Geophys. Inst. Slovak. Acad. Sc. 10, 63-67.
Hvoždara, M., and A. Prigancová (2002), Geomagnetic effects due to an eclipseinduced low-conductivity ionospheric spot, J. Geophys. Res. 107, A12, 1467, DOI: 10.1029/2002JA009260.
Hvoždara, M., and J. Vozar (2007), Electromagnetic induction in the spherical rotating Earth due to asymmetric current loops or belts. In: 22 Kolloquium Elektromagnetische Tiefenforschung, 1-5 October 2007, Decin, Czech Republic, 82-97, http://bib.gfz-potsdam.de/emtf/2007/.
Jones, A.G. (1982), Observations of the electrical asthenosphere beneath Scandinavia, Tectonophysics 90, 1-2, 37-55, DOI: 10.1016/0040-1951(82)90252-9.
Kharin, E.P., and V.Yu. Semenov (1989), Model of geomagnetic field variations AT the period range from 4 days until 3 years, Il Novo Cimento C 12, 5, 547-554, DOI: 10.1007/BF02508014.
Kuckes, A.F. (1973), Relations between electrical conductivity of a mantle and fluctuating magnetic fields, Geophys. J. Roy. Astron. Soc. 32, 1, 119- 130, DOI: 10.1111/j.1365-246X.1973.tb06523.x.
Kuckes, A.F., A.G. Nekut, and B.G. Thompson (1985), A geomagnetic scattering theory for evaluation of earth structure, Geophys. J. Roy. Astron. Soc. 83, 2, 319-330, DOI: 10.1111/j.1365-246X.1985.tb06489.x.
Kuvshinov, A., H. Utada, D. Avdeev, and T. Koyama (2005), 3-D modelling and analysis of Dst C-responses in the North Pacific Ocean region, revisited, Geophys. J. Int. 160, 2, 505-526, DOI: 10.1111/j.1365-246X.2005.02477.x.
Lilley, F.E.M., D.V. Woods, and M.N. Sloane (1981), Electrical conductivity from Australian magnetometer arrays using spatial gradient data, Phys. Earth Planet. Inter. 25, 3, 202-209, DOI: 10.1016/0031-9201(81)90062-5.
Logvinov, I. (2002), Applying the horizontal spatial gradient method for the deep conductivity estimations in the Ukraine, Acta Geophys. Pol. 50, 4, 567-573.
Maus, S., and H. Lühr (2005), Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth, Geophys. J. Int. 162, 3, 755-763, DOI: 10.1111/j.1365-246X.2005.02691.x.
Nishida, A. (1978), Geomagnetic Diagnosis of the Magnetosphere, Physics and Chemistry in Space, Vol. 9, Springer Verlag, New York, 256 pp.
Olsen, N. (1998), The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 hr, Geophys. J. Int. 133, 2, 298-308, DOI: 10.1046/j.1365-246X.1998.00503.x.
Olsen, N. (1999), Long-period (30 days – 1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe, Geophys. J. Int. 138, 1, 179-187, DOI: 10.1046/j.1365-246x.1999.00854.x.
Olsen, N., and M. Mandea (2007), Will the magnetic North Pole move to Siberia? Eos Trans. AGU 88, 29, 293-295, DOI: 10.1029/2007EO290001.
Parkinson, W.D. (1983), Introduction to Geomagnetism, Scottish Academic Press, Edinburgh, 434 pp.
Schmucker, U. (1970), Anomalies of geomagnetic variations in the Southwestern United States, Bull. Scripps Inst. Oceanogr. 13, 1-165.
Schmucker, U. (1999a), A spherical harmonic analysis of solar daily variations in the years 1964-1965: response estimates and source fields for global induction – I. Methods, Geophys. J. Int. 136, 2, 439-454, DOI: 10.1046/j.1365-246X.1999.00742.x.
Schmucker, U. (1999b), A spherical harmonic analysis of solar daily variations in the years 1964-1965: response estimates and source fields for global induction – II. Results, Geophys. J. Int. 136, 2, 455-476, DOI: 10.1046/j.1365-246X.1999.00743.x.
Schmucker, U. (2003), Horizontal spatial gradient sounding and geomagnetic depth sounding in the period range of daily variations. In: 20. Kolloquium Elektromagnetische Tiefenforschung, 29.09-3.10.2003, Königstein, 228-237.
Schmucker, U. (2008), Comparative induction studies with geomagnetic observatory data in three epochs. In: 19th Int. Workshop on Electromagnetic Induction in the Earth, 23-29 October, 2008, Beijing, China, 879-884.
Semenov, V.Yu., and W. Jóźwiak (1999), Model of the geoelectrical structure of the mid- and lower mantle in the Europe–Asia region, Geophys. J. Int. 138, 2, 549-552, DOI: 10.1046/j.1365-246X.1999.00888.x.
Semenov, V.Yu., and V.N. Shuman (2010), Impedances for induction soundings of the Earth’s mantle, Acta Geophys. 58, 4, 527-542, DOI: 10.2478/s11600-010-0003-z.
Semenov, V.Yu., B. Ladanivskyy, and K. Nowożyński (2011), New induction sounding tested in Central Europe, Acta Geophys. 59, 5, 815-832, DOI: 10.2478/s11600-011-0030-4.
Smythe, W.R. (1950), Static and Dynamic Electricity, McGraw Hill Book, New York.
Shuman, V.N. (1999), Scalar local impedance conditions and the impedance tensor in processing and interpretation of a magnetotelluric experiment, Geophys. J., Kiev 19, 361-385 (in Russian).
Shuman, V., and S. Kulik (2002), The fundamental relations of impedance type in general theories of the electromagnetic induction studies, Acta Geophys. Pol. 50, 4, 607-618.
Sochelnikov, V.V. (1979), Principles of the Theory of the Natural Electromagnetic Field in a Sea, Gidrometeoizdat, Leningrad (in Russian).
Vanyan, L.L., V.A. Kuznetsov, T.V. Lyubetskaya, N.A. Palshin, T. Korja, I. Lahti, and the BEAR Working Group (2002), Electrical conductivity of the crust beneath Central Lapland, Izv. – Phys. Solid Earth 38, 10, 798-815.
Vozar, J., and V.Yu. Semenov (2010), Compatibility of induction methods for mantle soundings, J. Geophys. Res. 115, B03101, DOI: 10.1029/2009JB006390.
DOI :
Cytuj : Vitkulin, A. V. ,Semenov, V. Y. , Modeling of deep magnetovariation soundings on the rotating earth. Acta Geophysica Vol. 61, no. 2/2013
[Top]

Thermodynamics with rotation motions: Fragmentation and slip

Czasopismo : Acta Geophysica
Tytuł artykułu : Thermodynamics with rotation motions: Fragmentation and slip

Autorzy :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia, vik@kscnet.ru,
Semenov, V. Y.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, sem@igf.edu.pl,
Majewski, E.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, emaj@igf.edu.pl,
Abstrakty : Basing on the Asymmetric Continuum Theory, we develop the thermodynamics including fragmentation spin fracture processes; applications for the earthquake source processes are considered. The fracture band model is used to describe a dislocation and disclination superlattice. The Gibbs free energy of defect formation is specified. A dynamic spin fracture criterion was formulated. Consequently, a dynamic model of rock fracture employing dislocations, disclinations, and cracks was constructed to describe slip and fragmentation fracture processes in the earthquake sources.

Słowa kluczowe : Asymmetric Continuum, fracture band model, fragmentation fracture, fracture criterion,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 2
Strony : 281 – 310
Bibliografia : Boratyński, W., and R. Teisseyre (2006), Continuum with rotation nuclei and defects: dislocation and disclination densities. In: R. Teisseyre, M. Takeo, and E. Majewski (eds.), Earthquake Source Asymmetry, Structural Media and Rotation Effects, Springer-Verlag, Heidelberg-Berlin, 57-66.
Kocks, U.F., A.S. Argon, and M.F. Ashby (1975), Thermodynamics and Kinetics of Slip, Pergamon Press, Oxford, 288 pp.
Kossecka, E., and R. DeWitt (1977), Disclination kinematic, Arch. Mech. 29, 633-651.
Kröner, E. (1981), Continuum theory of defects. In: R. Balian, M. Kléman, and J.P. Poirer (eds.), Physics of Defects (Les Houches, Session XXXV, 1980). North Holland, Amsterdam, 217-315.
Kuklińska, M. (1996), Thermodynamics of line defects: construction of a dislocation superlattice, Acta Geophys. Pol. 44, 237-249.
Majewski, E. (1986), Initiation of rock fracture at different strain rates: an attempt of modeling the mining tremor processes based on dynamic plasticity, Publs. Inst. Geophys. Pol. Acad. Sci., M-8 (191), 11-38 (in Polish).
Majewski, E. (1993), Thermodynamic approach to evolution. In: R. Teisseyre, L. Czechowski, and J. Leliwa-Kopystyński (eds.), Dynamics of Earth’s Evolution, Vol. 6, Ser. “Physics and Evolution of the Earth’s Interior”, PWN, Warszawa, Elsevier, Amsterdam.
Majewski, E. (1995), Thermal effects in earthquake processes. In: R. Teisseyre (ed.), Theory of Earthquake Premonitory and Fracture Processes, PWN, Warszawa, 591-604.
Majewski, E. (2001), Thermodynamics of fault slip. In: R. Teisseyre, and E. Majewski (eds.), Earthquake Thermodynamics and Phase Transformations in the Earth’s Interior, Vol. 76, Ser. “International Geophysics”, Academic Press, San Diego, 323-327, DOI: 10.1016/S0074-6142(01)80089-9.
Majewski, E., and R. Teisseyre (1997), Earthquake thermodynamics, Tectonophysics 277, 1-3, 219-233, DOI: 10.1016/S0040-1951(97)00088-7.
Majewski, E., and R. Teisseyre (1998), Anticrack-associated faulting in deep subduction zones, Phys. Chem. Earth 23, 1115-1122, DOI: 10.1016/S0079-1946(98)00138-4.
Majewski, E., and R. Teisseyre (2001), Anticrack-associated faulting and superplastic flow in deep subduction zones. In: R. Teisseyre, and E. Majewski (eds.), Earthquake Thermodynamics and Phase Transformations in the Earth’s Interior, Vol. 76, Ser. “International Geophysics”, Academic Press, San Diego, 379-397, DOI: 10.1016/S0074-6142(01)80092-9.
Mróz, Z., and M. Angellilo (1982), Rate-dependent degradation model for concrete and rock. In: R. Dungar (ed.), Proc. Int. Symp. on Numerical Models in Geomechanics, 13-17 September 1982, Zurich, Elsevier, Amsterdam, 208-217.
Mróz, Z., and E. Majewski (1989), Dynamic model of damage of coal and of some rocks for specification of rock burst mechanisms, Arch. Mining Sci. 34, 65-95 (in Polish).
Prigogine, I. (1976), Thermodynamics of Irreversible Processes, 3rd ed., John Wiley and Sons, New York.
Roux, S., and E. Guyon (1985), Mechanical percolation: a small beam lattice study, J. Phys. Lett. (Paris) 46, 21, 999-1004, DOI: 10.1051/jphyslet:019850046021099900.
Shimbo, M. (1975), A geometrical formulation of asymmetric features in plasticity, Bull. Fac. Eng. Hokkaido Univ. 77, 155-159.
Teisseyre, K. (2011), Spin and twist motions in the earthquake preparation processes: Analysis of records, Acta Geophys. 59, 1, 5-28, DOI: 10.2478/s11600-010-0011-z.
Teisseyre, R. (1969), Dislocational representation of thermal stresses, Acta Geophys. Pol. 16, 3-12.
Teisseyre, R. (1970), Crack formation and energy release caused by the concentration of dislocations along fault planes, Tectonophysics 9, 6, 547-557, DOI: 10.1016/0040-1951(70)90005-3.
Teisseyre, R. (1996), Shear band thermodynamical earthquake model, Acta Geophys. Pol. 44, 3, 219-236.
Teisseyre, R. (1997), Shear band thermodynamical model of fracturing with a compressional component. In: S. Gibowicz, and S. Lasocki (eds.), Rockburst and Seismicity in Mines, Balkema, Rotterdam, Brookfield, 17-21.
Teisseyre, R. (2001), Shear band thermodynamic model of fracturing. In: R. Teisseyre, and E. Majewski (eds.), Earthquake Thermodynamics and Phase Transformations in the Earth’s Interior, Academic Press, San Diego, 279-292.
Teisseyre, R. (2008a), Introduction to asymmetric continuum: dislocations in solids and extreme phenomena in fluids, Acta Geophys. 56, 2, 259-269, DOI: 10.2478/s11600-008-0010-5.
Teisseyre, R. (2008b), Asymmetric continuum: standard theory. In: R. Teisseyre, H. Nagahama, and E. Majewski (eds.), Physics of Asymmetric Continuum: Extreme and Fracture Processes: Earthquake Rotation and Soliton Waves, Springer-Verlag, Berlin-Heidelberg, 95-109.
Teisseyre, R. (2009), Tutorial on new developments in the physics of rotational motions, Bull. Seismol. Soc. Am. 99, 2B, 1028-1039, DOI: 10.1785/0120080089.
Teisseyre, R. (2010), Fluid theory with asymmetric molecular stresses: Difference between vorticity and spin equations, Acta Geophys. 58, 6, 1056-1071, DOI: 10.2478/s11600-010-0029-2.
Teisseyre, R., and W. Boratyński (2006), Deviations from symmetry and elasticity: asymmetric continuum mechanics. In: R. Teisseyre, M Takeo, and E. Majewski (eds.), Physics of Asymmetric Continuum: Extreme and Fracture Processes: Earthquake Rotation and Soliton Waves, Springer-Verlag, Berlin-Heidelberg, 31-41.
Teisseyre, R., and M. Górski (2009), Fundamental deformations in asymmetric continuum, Bull. Seismol. Soc. Am. 99, 2B, 1132-1136, DOI: 10.1785/0120080091.
Teisseyre, R., and M. Górski (2011), Earthquake fragmentation and slip processes: spin and shear-twist wave mosaic, Acta Geophys. 59, 3, 453-469, DOI: 10.2478/s11600-011-0001-9.
Teisseyre, R., and M. Górski (2012), Induced strains and defect continuum theory: internal reorganization of Load, Acta Geophys. 60, 1, 24-42, DOI: 10.2478/s11600-011-0046-9.
Teisseyre, R., and E. Majewski (1990), Thermodynamics of line defects and earthquake processes, Acta Geophys. Pol. 38, 4, 355-373.
Teisseyre, R., and E. Majewski (1995a), Thermodynamics of line defects. In: R. Teisseyre (ed.), Theory of Earthquake Premonitory and Fracture Processes, PWN, Warszawa, 324-332.
Teisseyre, R., and E. Majewski (1995b), Earthquake thermodynamics. In: R. Teisseyre (ed.), Theory of Earthquake Premonitory and Fracture Processes, PWN, Warszawa, 586-590.
Teisseyre, R., and E. Majewski (2001a), Thermodynamics of line defects and earthquake thermodynamics. In: R. Teisseyre, and E. Majewski (eds.), Earthquake Thermodynamics and Phase Transformations in the Earth’s Interior, Academic Press, San Diego, 261-278.
Teisseyre, R., and E. Majewski (2001b), Physics of earthquakes. In: W.H.K. Lee, H. Kanamori, and P.C. Jennings (eds.), International Handbook of Earthquake and Engineering Seismology, Academic Press, San Diego.
Teisseyre, R., M. Białecki, and M. Górski (2006a), Degenerated asymmetric continuum theory. In: R. Teisseyre, M. Takeo, and E. Majewski (eds.), Physics of Asymmetric Continuum: Extreme and Fracture Processes: Earthquake Rotation and Soliton Waves, Springer-Verlag, Berlin-Heidelberg, 43-55.
Teisseyre, R., M. Górski, and K.P. Teisseyre (2006b), Fracture-band geometry and rotation energy release. In: R. Teisseyre, M. Takeo, and E. Majewski (eds.), Physics of Asymmetric Continuum: Extreme and Fracture Processes: Earthquake Rotation and Soliton Waves, Springer-Verlag, Berlin-Heidelberg, 169-183.
Teisseyre, R., M. Górski, and K.P. Teisseyre (2008), Fracture processes: spin and twist-shear coincidence. In: R. Teisseyre, H. Nagahama, and E. Majewski (eds.), Physics of Asymmetric Continuum: Extreme and Fracture Processes: Earthquake Rotation and Soliton Waves, Springer-Verlag, Berlin-Heidelberg, 111-122.
Varotsos, P.A. (2007), Comparison of models that interconnect point defect parameters in solids with bulk properties, J. Appl. Phys. 101, Art Nr. 123503.
Varotsos, P.A., and K.D. Alexopoulos (1986), Thermodynamics of Point Defects and Their Relation with Bulk Properties, North-Holland, Amsterdam, 474 pp.
Varotsos, P., and M. Lazaridou (2001), Thermodynamics of point defects. In: R. Teisseyre, and E. Majewski (eds.), Earthquake Thermodynamics and Phase Transformations in the Earth’s Interior, Vol. 76, Ser. “International Geophysics”, Academic Press, San Diego, 231-259, DOI: 10.1016/S0074-6142(01)80084-X.
DOI :
Cytuj : Vitkulin, A. V. ,Semenov, V. Y. ,Majewski, E. , Thermodynamics with rotation motions: Fragmentation and slip. Acta Geophysica Vol. 61, no. 2/2013
[Top]

Scaling characteristics of SEGMA magnetic field data around the Mw 6.3 Aquila earthquake

Czasopismo : Acta Geophysica
Tytuł artykułu : Scaling characteristics of SEGMA magnetic field data around the Mw 6.3 Aquila earthquake

Autorzy :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia, vik@kscnet.ru,
Semenov, V. Y.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, sem@igf.edu.pl,
Majewski, E.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, emaj@igf.edu.pl,
Nenovski, P.
National Institute for Geophysics, Geodesy and Geography, Sofia, Bulgaria, nenovski@geophys.bas.bg,
Abstrakty : We apply detrended fluctuation analysis (DFA) on fluxgate and search-coil data in ULF range (scales 10-90 s or 0.1-0.011 Hz) for the months January-April 2009 available from the South European GeoMagnetic Array stations: Castello Tesino (CST), Ranchio (RNC), and L’Aquila (AQU) in Italy; Nagycenk (NCK) in Hungary; and Panagyuriste (PAG) in Bulgaria. DFA is a data processing method that allows for the detection of scaling behaviors in observational time series even in the presence of non-stationarities. The H and Z magnetic field components at night hours (00-03 UT, 01-04 LT) and their variations at the stations CST, AQU, NCK, and PAG have been examined and their scaling characteristics are analyzed depending on geomagnetic and local conditions. As expected, the scaling exponen ts are found to increase when the Kp index increases, indicating a good correlation with geomagnetic activity. The scaling exponent reveals also local changes (at L’Aquila), which include an increase for the Z (vertical) component, followed by a considerable decrease for the X (horizontal) component in the midst of February 2009. Attempts are made to explain this unique feature with artificial and/or natural sources including the enhanced earthquake activity in the months January-April 2009 at the L’Aquila district.

Słowa kluczowe : detrended fluctuation analysis (DFA), magnetic field data, ultra low frequency (ULF), pulse activity, polarization, earthquake,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 2
Strony : 311 – 337
Bibliografia : Anzidei, M., E. Boschi, V. Cannelli, R. Devoti, A. Esposito, A. Galvani, D. Melini, G. Pietrantonio, F. Riguzzi, V. Sepe, and E. Serpelloni (2009), Coseismic deformation of the destructive April 6, 2009 L’Aquila earthquake (central Italy) from GPS data, Geophys. Res. Lett. 36, L17307, DOI: 10.1029/2009gl039145.
Atzori, S., I. Hunstad, M. Chini, S. Salvi, C. Tolomei, C. Bignami, S. Stramondo, E. Trasatti, A. Antonioli, and E. Boschi (2009), Finite fault inversion of DinSAR coseimic displacement of the 2009 L’Aquila earthquake (central Italy), Geophys. Res. Lett. 36, L15305, DOI: 10.1029/2009GL039293.
Bernardi, A., A.C. Fraser-Smith, P.R. McGill, and O.G. Villard Jr. (1991), ULF magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake, Phys. Earth Planet. Int. 68, 1-2, 45-63, DOI: 10.1016/0031-9201(91)90006-4.
Bleier, T., and C. Dunson (2005), ELF magnetic field monitoring of the San Simeon M6.4 quake from both Quakesat and a ground network. In: Proc. International Workshop on Seismo-Electromagnetics, Tokyo, Japan, March Issue.
Bleier, T., and F. Freund (2005), Earthquake earthquake warning systems, IEEE Spectrum 42, 12, 22-27, DOI: 10.1109/MSPEC.2005.1549778.
Bleier, T., C. Dunson, M. Maniscalco, N. Bryant, R. Bambery, and F. Freund (2009), Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October Alum Rock M5.4 earthquake, Nat. Hazards Earth Syst. Sci. 9, 585-603, DOI: 10.5194/nhess- 9-585-2009.
Bortnik, J., T.E. Bleier, C. Dunson, and F. Freund (2010), Estimating the seismotelluric current required for observable electromagnetic ground signals, Ann. Geophys. 28, 1615-1624, DOI: 10.5194/angeo-28-1615-2010.
Buldyrev, S.V., A.L. Goldberger, S. Havlin, R.N. Mantegna, M.E. Matsa, C.-K. Peng, M. Simons, and H.E. Stanley (1995), Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis, Phys. Rev. E 51, 5, 5084-5091, DOI: 10.1103/PhysRevE.51.5084.
Campbell, W.H. (2009), Natural magnetic disturbance fields, not precursors, preceding the Loma Prieta earthquake, J. Geophys. Res. 114, A05307, DOI: 10.1029/2008JA013932.
Chamati, M., P. Nenovski, M. Vellante, U. Villante, K. Schwingenschuh, M. Boudjada, and V. Wesztergom (2009), Application of DFA method to magnetic field data from SEGMA array, Bulg. Geophys. J. 35, 1-4, 3-16.
Chiarabba, C., A. Amato, M. Anselmi, P. Baccheschi, I. Bianchi, M. Cattaneo, G. Cecere, L. Chiaraluce, M.G. Ciaccio, P. De Gori, G. De Luca, M. Di Bona, R. Di Stefano, L. Faenza, A. Govoni, L. Improta, F.P. Lucente, A. Marchetti, L. Margheriti, F. Mele, A. Michelini, G. Monachesi, M. Moretti, M. Pastori, N. Piana Agostinetti, D. Piccinini, P. Roselli, D. Seccia, and L. Valoroso (2009), The 2009 L’Aquila (central Italy) MW 6.3 earthquake: Main shock and aftershocks, Geophys. Res. Lett. 36, L18308, DOI: 10.1029/2009GL039627.
Currenti, G., C. Del Negro, V. Lapenna, and L. Telesca (2005a), Scaling characteristics of local geomagnetic field and seismicity at Etna volcano and their Dynamics in relation to the eruptive activity, Earth Planet. Sci. Lett. 235, 1-2, 96-106, DOI: 10.1016/j.epsl.2005.02.043.
Currenti, G., C. Del Negro, V. Lapenna, and L. Telesca (2005b), Fluctuation analysis of the hourly time variability of volcano-magnetic signals recorded AT Mt. Etna volcano, Sicily (Italy), Chaos Soliton. Fract. 23, 5, 1921-1929, DOI: 10.1016/j.chaos.2004.07.035.
Currenti, G., C. Del Negro, V. Lapenna, and L. Telesca (2005c), Multifractality in local geomagnetic field at Etna volcano, Sicily (southern Italy), Nat. Hazards Earth Syst. Sci. 5, 4, 555-559, DOI: 10.5194/nhess-5-555-2005.
De Luca, G., S. Marcucci, G. Milana, and T. Sanò (2005), Evidence of lowfrequency amplification in the city of L’Aquila, Central Italy, through a multidisciplinary approach including strong- and weak-motion data, ambitne noise, and numerical modeling, Bull. Seismol. Soc. Am. 95, 4, 1469-1481, DOI: 10.1785/0120030253.
Del Negro, C., G. Budetta, and F. Ferricci (1994), Volcanomagnetic anomalies: a review and the computation of the piezomagnetic field expected at Vulcano (Aeolian Islands, Italy), Ann Geofis. 37, Suppl. 5, 1167-1183.
Draganov, A.B., U.S. Inan, and Yu.N. Taranenko (1991), ULF magnetic signatures at the Earth surface due to ground water flow: A possible precursor to earthquakes, Geophys. Res. Lett. 18, 6, 1127-1130, DOI: 10.1029/91GL01000.
Egbert, G.D. (2002), On the generation of ULF magnetic variations by conductivity fluctuations in a fault zone, Pure Appl. Geophys. 159, 6, 1205-1227, DOI: 10.1007/s00024-002-8678-y.
Fenoglio, M.A., A.C. Fraser-Smith, G.C. Beroza, and M.J.S. Johnston (1993), Comparison of ultra-low frequency electromagnetic signals with aftershock activity during the 1989 Loma Prieta earthquake sequence, Bull. Seismol. Soc. Am. 83, 2, 347-357.
Fenoglio, M.A., M.J.S. Johnston, and J.D. Byerlee (1995), Magnetic and electric fields associated with changes in high pore pressure in fault zones: Application to the Loma Prieta ULF emissions, J. Geophys. Res. 100, B7, 12951-12958, DOI: 10.1029/95JB00076.
Fraser-Smith, A.C. (2008), Ultralow-frequency magnetic fields preceding large earthquakes, EOS Trans. AGU 89, 23, 211, DOI: 10.1029/2008EO230007.
Fraser-Smith, A.C. (2009), The ultralow-frequency magnetic fields associated with and preceding earthquakes. In: M. Hayakawa (ed.), Electromagnetic Phenomena Associated with Earthquakes, Trasworld Research Network, Trivandrum, 1-20.
Fraser-Smith, A.C., A. Bernardi, P.R. McGill, M.E. Ladd, R.A. Helliwell, and, O.G. Villard, Jr. (1990), Low-frequency magnetic field measurements near the epicenter of the Ms7.1 Loma Prieta earthquake, Geophys. Res. Lett. 17, 1465-1468, DOI: 10.1029/GL017i009p01465.
Fraser-Smith, A.C., P.R. McGill, R.A. Helliwell, and O.G. Villard, Jr. (1994), Ultralow frequency magnetic field measurements in southern California Turing the Northridge earthquake of 17 January 1994, Geophys. Res. Lett. 21, 20, 2195-2198, DOI: 10.1029/94GL01984.
Freund, F.T. (2007a), Pre-earthquake signals – Part I: Deviatoric stresses turn rocks into a source of electric currents, Nat. Hazards Earth Syst. Sci. 7, 535-541, DOI: 10.5194/nhess-7-535-2007.
Freund, F.T. (2007b), Pre-earthquake signals – Part II: Flow of battery currents in the crust, Nat. Hazards Earth Syst. Sci. 7, 543-548, DOI: 10.5194/nhess-7-543-2007.
Freund, F.T., A. Takeuchi, and B.W. Lau (2006), Electric currents streaming out of stressed igneous rocks – A step towards understanding pre-earthquake low frequency EM emissions, Phys. Chem. Earth 31, 4-9, 389-396, DOI: 10.1016/j.pce.2006.02.027.
Hattori, K., and M. Hayakawa (2007), Recent progress and state of the art of seismoelectromagnetics, IEEJ Trans. Fund. Mater. 127, 1, 4-6, DOI: 10.1541/ieejfms.127.4.
Hayakawa, M., and Y. Fujinawa (eds.) (1994), Electromagnetic Phenomena Related to Earthquake Prediction, TERRAPUB, Tokyo, 677 pp.
Hayakawa, M., R. Kawate, O.A. Molchanov, and K. Yumoto (1996), Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993, Geophys. Res. Lett. 23, 3, 241-244, DOI: 10.1029/95GL02863.
Hayakawa, M., T. Ito, and N. Smirnova (1999), Fractal analysis of ULF geomagnetic data associated with the Guam earthquake on August 8, 1993, Geophys. Res. Lett. 26, 18, 2797-2800, DOI: 10.1029/1999GL005367.
Hayakawa, M., T. Itoh, K. Hattori, and K. Yumoto (2000), ULF electromagnetic precursors for an earthquake at Biak, Indonesia on February 17, 1996, Geophys. Res. Lett. 27, 10, 1531-1534, DOI: 10.1029/1999GL005432.
Ida, Y., M. Hayakawa, A. Adalev, and K. Gotoh (2005), Multifractal analysis for the ULF geomagnetic data during the 1993 Guam earthquake, Nonlin. Processes Geophys. 12, 157-162, DOI: 10.5194/npg-12-157-2005.
Johnston, M.J.S. (1997), Review of electric and magnetic fields accompanying seismic and volcanic activity, Surv. Geophys. 18, 5, 441-476, DOI: 10.1023/ A:1006500408086.
Johnston, M.J.S., Y. Sasai, G.D. Egbert, and R.J. Mueller (2006), Seismomagnetic effects from the long-awaited 28 September 2004 M 6.0 Parkfield earthquake, Bull. Seismol. Soc. Am. 96, 4B, S206-S220; DOI: 10.1785/0120050810.
Kantelhardt, J.W., E. Koscielny-Bunde, H.H.A. Rego, S. Havlin, and A. Bunde (2001), Detecting long-range correlations with detrended fluctuation analysis, Physica A 295, 3-4, 441-454, DOI: 10.1016/S0378-4371(01)00144-3.
Kopytenko, Yu.A., T.G. Matiashvili, P.M. Voronov, E.A. Kopytenko, and O.A. Molchanov (1993), Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsation data at Dusheti and Vardzia, Phys. Earth Planet. Int. 77, 1-2, 85-95, DOI: 10.1016/0031-9201(93)90035-8.
Lucente, F.P., P. De Gori, L. Margheriti, D. Piccinini, M. Di Bona, C. Chiarabba, and N.P. Agostinetti (2010), Temporal variation of seismic velocity and anisotropy before the 2009 MW 6.3 L’Aquila earthquake, Italy, Geology 38, 11, 1015-1018, DOI: 10.1130/G31463.1.
Masci, F. (2010), On claimed ULF seismogenic fractal signatures in the geomagnetic field, J. Geophys. Res. 115, A10236, DOI: 10.1029/2010JA015311.
Masci, F. (2011), On the seismogenic increase of the ratio of the ULF geomagnetic field components, Phys. Earth Planet. Int. 187, 1-2, 19-32, DOI: 10.1016/j.pepi.2011.05.001.
Merzer, M., and S.L. Klemperer (1997), Modeling low-frequency magnetic-field precursors to the Loma Prieta earthquake with a precursory increase in fault-zone conductivity, Pure Appl. Geophys. 150, 2, 217-248, DOI: 10.1007/s000240050074.
Miyahara, S., Y. Tanaka, K. Saita, K. Yumoto, and H. Tachira (1999), On ULF magnetic field variations with the Guam earthquake of 8 August 1993. In: M. Hayakawa (ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, TERRAPUB, Tokyo, 189-201.
Molchanov, O.A., and M. Hayakawa (1994), Generation of ULF seismogenic electromagnetic emission: a natural consequence of microfracturing process. In: M. Hayakawa, and Y. Fujinawa (eds.), Electromagnetic Phenomena Related to Earthquake Prediction, TERRAPUB, Tokyo, 537-563.
Molchanov, O.A., and M. Hayakawa (1995), Generation of ULF electromagnetic emissions by microfracturing, Geophys. Res. Lett. 22, 22, 3091-3094, DOI: 10.1029/95GL00781.
Molchanov, O.A., and M. Hayakawa (1998), On the generation mechanism of ULF seismogenic electromagnetic emissions, Phys. Earth Planet. Int. 105, 3-4, 201-210, DOI: 10.1016/S0031-9201(97)00091-5.
Molchanov, O.A., Yu.A. Kopytenko, P.M. Voronov, E.A. Kopytenko, T.G. Matiashvili, A.C. Fraser-Smith, and A. Bernardi (1992), Results of ULF magnetic field measurements near the epicenters of the Spitak (Ms =6.9) and Loma Prieta (Ms = 7.1) earthquakes: Comparative analysis, Geophys. Res. Lett. 19, 14, 1495-1498, DOI: 10.1029/92GL01152.
Molchanov, O.A., M. Hayakawa, and V.A. Rafalsky (1995), Penetration characteristics of electromagnetic emissions from an underground seismic source into the atmosphere, ionosphere, and magnetosphere, J. Geophys. Res. 100, A2, 1691-1712, DOI: 10.1029/94JA02524.
Nenovski, P., I. Blagoeva, M. Vellante, U. Villante, K. Schwingenschuh, M. Boudjada, and V. Wesztergom (2007), Identification of sources of geomagnetic variations using Detrended Fluctuation Analysis (DFA), WDS’07 Proceedings of Contributed Papers, Part II, 7-16.
Park, S.K. (1996), Precursors to earthquakes: Seismoelectromagnetic signals, Surv. Geophys. 17, 4, 493-516, DOI: 10.1007/BF01901642.
Park, S.K., M.J.S. Johnston, T.R. Madden, F.D. Morgan, and H.F. Morrison (1993), Electromagnetic precursors to earthquakes in the ULF bands: A review of observations and mechanisms, Rev. Geophys. 31, 2, 117-132, DOI: 10.1029/93RG00820.
Parrot, M., and D. Ouzounov (2006), Surveying the Earth’s electromagnetic environment from space, EOS Trans. AGU 87, 52, 595, DOI: 10.1029/2006EO520004.
Pondrelli, S., S. Salimbeni, A. Morelli, G. Ekström, M. Olivieri, and E. Boschi (2010), Seimic moment tensors of the April 2009, L’Aquila (Central Italy) earthquake sequence, Geophys. J. Int. 180, 1, 238-242, DOI: 10.1111/j.1365-246X.2009.04418.x.
Prattes, G., K. Schwingenschuh, H.U. Eichelberger, W. Magnes, M. Boudjada, M. Stachel, M. Vellante, V. Wesztergom, and P. Nenovski (2008), Multipoint ground-based ULF magnetic field observations in Europe Turing seismic active periods in 2004 and 2005, Nat. Hazards Earth Syst. Sci. 8, 3, 501-507, DOI: 10.5194/nhess-8-501-2008.
Prattes, G., K. Schwingenschuh, H.U. Eichelberger, W. Magnes, M. Boudjada, M. Stachel, M. Vellante, U. Villante, V. Wesztergom, and P. Nenovski (2011), Ultra Low Frequency (ULF) European multi station magnetic field analysis before and during the 2009 earthquake at L’Aquila regarding regional geotechnical information, Nat. Hazards Earth Syst. Sci. 11, 7, 1959-1968, DOI: 10.5194/nhess-11-1959-2011.
Reichhardt, T. (2003), Satellites aim to shake up quake predictions, Nature 424, 478, DOI: 10.1038/424478a.
Savage, M.K. (2010), The role of fluids in earthquake generation in the 2009 Mw 6.3 L’Aquila, Italy, earthquake and its foreshocks, Geology 38, 11, 1055-1056, DOI: 10.1130/focus112010.1.
Simpson, J.J., and A. Taflove (2005), Electrokinetic effect of the Loma Prieta earthquake calculated by an entire-Earth FDTD solution of Maxwell’s equations, Geophys. Res. Lett. 32, L09302, DOI: 10.1029/2005GL022601.
Surkov, V.V., O.A. Molchanov, and M. Hayakawa (2003), Pre-earthquake ULF electromagnetic perturbations as a result of inductive seismomagnetic phenomena during microfracturing, J. Atmos. Sol.-Terr. Phys. 65, 1, 31-46, DOI: 10.1016/S1364-6826(02)00117-7.
Telesca, L. (2010), A non-extensive approach in investigating the seismicity of L’Aquila area (central Italy), struck by the 6 April 2009 earthquake (ML = 5.8), Terra Nova 22, 2, 87-93, DOI: 10.1111/j.1365-3121.2009.00920.x.
Telesca, L., and K. Hattori (2007), Non-uniform scaling behavior in ultra-lowfrequency (ULF) earthquake-related geomagnetic signals, Physica A 384, 2, 522-528, DOI: 10.1016/j.physa.2007.05.040.
Telesca, L., V. Lapenna, M. Macchiato, and K. Hattori (2008), Investigating non uniform scaling behavior in Ultra Low Frequency (ULF) earthquake-related geomagnetic signals, Earth Planet. Sci. Lett. 268, 1-2, 219-224, DOI: 10.1016/j.epsl.2008.01.033.
Thomas, J.N., J.J. Love, and M.J.S. Johnston (2009a), On the reported magnetic precursor of the 1989 Loma Prieta earthquake, Phys. Earth Planet. Int. 173, 3-4, 207-215, DOI: 10.1016/j.pepi.2008.11.014.
Thomas, J.N., J.J. Love, M.J.S. Johnston, and K. Yumoto (2009b), On the reported magnetic precursor of the 1993 Guam earthquake, Geophys. Res. Lett. 36, L16301, DOI: 10.1029/2009GL039020.
Varotsos, P.A., N.V. Sarlis, and E.S. Scordas (2010), Detrended fluctuation analysis of the magnetic and electric field variations that precede rupture, arXiv:0904.2465v10 cond-mat.stat-mech.
Villante, U., and M. Vellante (1998), An analysis of working days contamination in micropulsation measurements, Ann. Geofis. 41, 3, 325-332, DOI: 10.4401/ag-4350.
Villante, U., M. Vellante, A. Piancatelli, A. Di Cienzo, T.L. Zhang, W. Magnes, V. Wesztergom, and A. Meloni (2004), Some aspects of man-made contamination on ULF measurements, Ann. Geophys. 22, 4, 1335-1345, DOI: 10.5194/angeo-22-1335-2004.
Villante, U., M. De Lauretis, C. De Paulis, P. Francia, A. Piancatelli, E. Pietropaolo, M. Vellante, A. Meloni, P. Palangio, K. Schwingenschuh, G. Prattes, W. Magnes, and P. Nenovski (2010), The 6 April 2009 earthquake AT L’Aquila: A preliminary analysis of magnetic field measurements, Nat. Hazards Earth Syst. Sci. 10, 2, 203-214, DOI: 10.5194/nhess-10-203-2010.
Yen, H.-Y., C.-H. Chen, Y.-H. Yeh, J.-Y. Liu, C.-R. Lin, and Y.-B. Tsai (2004), Geomagnetic fluctuations during the 1999 Chi-Chi earthquake in Taiwan, Earth Planets Space 56, 39-45.
Zlotnicki, J., and M. Bof (1998), Volcanomagnetic signals associated with the quasicontinuous activity of the andesitic Merapi volcano, Indonesia: 1990-1995, Phys. Earth Planet. Int. 105, 3-4, 119-130, DOI: 10.1016/S0031-9201(97)00085-X.
Zlotnicki, J., J.L. Le Mouël, R. Kanwar, P. Yvetot, G. Vargemezis, P. Menny, F. Fauquet, and M. Parrot (2006), Ground-based electromagnetic studies combined with remote sensing based on Demeter mission: Away to monitor active faults and volcanoes, Planet. Space Sci. 54, 5, 541-557, DOI: 10.1016/j.pss.2005.10.022.
DOI :
Cytuj : Vitkulin, A. V. ,Semenov, V. Y. ,Majewski, E. ,Nenovski, P. , Scaling characteristics of SEGMA magnetic field data around the Mw 6.3 Aquila earthquake. Acta Geophysica Vol. 61, no. 2/2013
[Top]

Long-term earthquake prediction in the Marmara region based on the regional time- and magnitude-predictable model

Czasopismo : Acta Geophysica
Tytuł artykułu : Long-term earthquake prediction in the Marmara region based on the regional time- and magnitude-predictable model

Autorzy :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia, vik@kscnet.ru,
Semenov, V. Y.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, sem@igf.edu.pl,
Majewski, E.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, emaj@igf.edu.pl,
Nenovski, P.
National Institute for Geophysics, Geodesy and Geography, Sofia, Bulgaria, nenovski@geophys.bas.bg,
Sayil, N.
Karadeniz Technical University, Engineering Faculty, Department of Geophysics, Trabzon, Turkey, sayil@ktu.edu.tr,
Abstrakty : In order to estimate the recurrence intervals for large earthquakes that occurred in the Marmara region, this region, limited with the coordi- nates of 39°-42° N, 25°-32° E, has been separated into seven seismogenic sources on the basis of certain seismological criteria, and regional time- and magnitude-predictable model has been applied for these sources. Considering the interevent time between successive mainshocks, the following two predictive relations were computed: log Tt = 0.26 Mmin+0.06 Mp – 0.56 log M0 + 13.79 and Mf = 0.63 Mmin – 0.07 Mp + 0.43 log M0 – 7.56. Multiple correlation coefficient and standard deviation have been computed as 0.53 and 0.35 for the first relation and 0.66 and 0.39 for the second relation, respectively. On the basis of these relations and using the occurrence time and magnitude of the last mainshocks in each seismogenic source, the probabilities of occurrence P(Δt) of the next mainshocks during the next five decades and the magnitude of the expected mainshocks were determined.

Słowa kluczowe : recurrence time, regional time- and magnitude-predictable model, interevent time, Marmara region,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 2
Strony : 338 – 356
Bibliografia : Alsan, E., L. Tezuçan, and M. Båth (1975), An earthquake catalogue for Turkey for the interval 1913-1970, Report No. 7-75, Kandilli Observatory, Istanbul and Uppsala University, Sweden.
Ambraseys, N.N. (2001), Reassessment of earthquakes, 1900-1999, in the Eastern Mediterranean and the Middle East, Geophys. J. Int. 145, 2, 471-485, DOI: 10.1046/j.0956-540x.2001.01396.x.
Ambraseys, N.N., and C.F. Finkel (1995), The Seismicity of Turkey and Adjacent Areas, A Historical Review, 1500-1800, Eren Press, Istanbul, 240 pp.
Ambraseys, N.N., and J.A. Jackson (1981), Earthquake hazard and vulnerability in the northeastern Mediterranean: The Corinth earthquake sequence of February-March 1981, Disaster 5, 4, 355-368, DOI: 10.1111/j.1467-7717.1981.tb01108.x.
Ambraseys, N.N., and J.A. Jackson (2000), Seismicity of the Sea of Marmara (Turkey) since 1500, Geophys. J. Int. 141, 3, F1-F6, DOI: 10.1046/j.1365-246x.2000.00137.x.
Ayhan, E., E. Alsan, N. Sancaklı, and S.B. Uçer (1987), An earthquake catalogue of Turkey and surrounding area (1881-1980), Bogazici University, Istanbul.
Barka, A.A., and K. Kadinsky-Cade (1988), Strike-slip fault geometry in Turkey and its influence on earthquake activity, Tectonics 7, 3, 663-684, DOI: 10.1029/TC007i003p00663.
Corral, A. (2004), Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett. 92, 10, 108501, DOI: 10.1103/PhysRevLett.92.108501.
Dewey, J.W. (1976), Seismicity of Northern Anatolia, Bull. Seismol. Soc. Am. 66, 3, 843-868.
Ekström, G., and A.M. Dziewonski (1988), Evidence of bias in estimations of earthquake size, Nature 332, 319-323, DOI: 10.1038/332319a0.
Ergin, K., U. Guclu, and Z. Uz (1967), An earthquake catalogue of Turkey and surrounding area (from A.D. 11 to close of 1964), Istanbul Tech. Univ., Mining Faculty, Istanbul.
Gardner, J.K., and L. Knopoff (1974), Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull. Seismol. Soc. Am. 64, 5, 1363-1367.
Gundogdu, O., and Y. Altinok (1986), An earthquake data set of Turkey and surrounding area 1900-1986, Istanbul Univ., Engineering Faculty, Dept. Of Geophys., Istanbul.
Gutenberg, B., and C.F. Richter (1944), Frequency of Earthquakes in California, Bull. Seismol. Soc. Am. 34, 4, 185-188.
Helmstetter, A., and D. Sornette (2004), Comment on “Power-law time distribution of large earthquakes”, Phys. Rev. Lett. 92, 12, 129801, DOI: 10.1103/PhysRevLett.92.129801.
Kagan, Y.Y. (1997), Statistical aspects of Parkfield earthquake sequence and Parkfield prediction experiment, Tectonophysics 270, 3-4, 207-219, DOI: 10.1016/S0040-1951(96)00210-7.
Kanamori, H. (1977), The energy release in great earthquakes, J. Geophys. Res. 82, 20, 2981-2987, DOI: 10.1029/JB082i020p02981.
Karakaisis, G.F. (2000), Effects of zonation on the results of the application of the regional time predictable seismicity model in Greece and Japan, Earth Planet. Space, 52, 221-228.
Karnik, V. (1968), Seismicity of the European Area, D. Reidel Publ. Co., Dordrecht.
Kenar, Ö., İ. Osmansahin, and M.F. Özer (1996), Seismicity and tectonics of ekstern Anatolia, Bull. IISEE 30, 59-76.
Kerr, R.A. (2004), Parkfield keeps secrets after a long-awaited quake, Science 306, 5694, 206-207, DOI: 10.1126/science.306.5694.206.
King, G.C.P., and D.D. Bowman (2003), The evolution of regional seismicity between large earthquakes, J. Geophys. Res. 108, B2, 2096, DOI: 10.1029/2001JB000783.
Koyama, J., S. Zang, and T. Ouchi (1995), Mathematical modeling and stochastic scaling of complex earthquake activity. In: J. Koyama, and D. Feng (eds.), Advance in Mathematical Seismology, Seismological Press, Beijing, 165-180.
McClusky, S., S. Balassanian, A. Barka, C. Demir, S. Ergintav, I. Georgiev, O. Gurkan, M. Hamburger, K. Hurst, H. Kahle, K. Kastens, G. Kekelidze, R. King, V. Kotzev, O. Lenk, S. Mahmoud, A. Mishin, M. Nadariya, A. Ouzounis, D. Paradissis, Y. Peter, M. Prilepin, R. Reilinger, I. Sanli, H. Seeger, A. Tealeb, N. Toksöz, and G. Veis (2000), Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, J. Geophys. Res. 105, B3, 5695-5719, DOI: 10.1029/1996JB900351.
McKenzie, D. (1972), Active tectonics of the Mediterranean region, Geophys. J. Roy. Astron. Soc. 30, 2, 109-185, DOI: 10.1111/j.1365-246X.1972.tb02351.x.
Molnar, P. (1979), Earthquake recurrence intervals and plate tectonics, Bull. Seismol. Soc. Am. 69, 1, 115-133.
Mulargia, F., and R.J. Geller (2003), Earthquake Science and Seismic Risk Reduction, Kluwer Academic Publ., Dordrecht.
Nekrasova, A., V. Kossobokov, A. Peresan, A. Aoudia, and G.F. Panza (2011), A multiscale application of the unified scaling law for earthquakes in the Central Mediterranean area and Alpine region, Pure Appl. Geophys. 168, 1-2, 297-327, DOI: 10.1007/s00024-010-0163-4.
Öcal, N. (1968), Seismicity and earthquake geography of Turkey (earthquake catalogue of Turkey for 1950-1960), Kandilli Observatory, Seismology Publications, Istanbul.
Panthi, A., D. Shanker, H.N. Singh, A. Kumar, and H. Paudyal (2011), Timepredictable model applicability for earthquake occurrence in northeast India and vicinity, Nat. Hazards Earth Syst. Sci. 11, 993-1002, DOI: 10.5194/nhess-11-993-2011.
Papadimitriou, E.E., C.B. Papazachos, and T.M. Tsapanos (2001), Test and application of the time and magnitude predictable model to the intermediate and deep focus earthquakes in the subduction zones of the circum-Pacific belt, Tectonophysics 330, 1-2, 45-68, DOI: 10.1016/S0040-1951(00)00218-3.
Papazachos, B.C. (1991), Long-term earthquake prediction in South Balkan region based on a time-dependent seismicity model. In: 1st General Conf. of the Balkan Physical Union, 26-28 September, 1991, Thessaloniki, 1-7.
Papazachos, B.C. (1992), A time- and magnitude-predictable model for generation of shallow earthquakes in the Aegean Area, Pure Appl. Geophys. 138, 2, 287-308, DOI: 10.1007/BF00878900.
Papazachos, B.C., and Ch.A. Papaioannou (1993), Long-term earthquake prediction in the Aegean Area based on a time and magnitude predictable model, Pure Appl.Geophys. 140, 4, 593-612, DOI: 10.1007/BF00876578.
Papazachos, B.C., E.E. Papadimitriou, G.F. Karakaisis, and D.G. Panagiotopoulos (1997a), Long-term earthquake prediction in the circum-Pacific convergent belt, Pure Appl.Geophys. 149, 1, 173-217, DOI: 10.1007/BF00945167.
Papazachos, B.C., G.F. Karakaisis, E.E. Papadimitriou, and Ch.A. Papaioannou (1997b), The regional time and magnitude predictable model and its application to the Alpine–Himalayan Belt, Tectonophysics 271, 3-4, 295-323, DOI: 10.1016/S0040-1951(96)00252-1.
Parsons, T. (2004), Recalculated probability of M ≥ 7 earthquakes beneath the Sea of Marmara, Turkey, J. Geophys. Res. 109, B5, B05304, DOI: 10.1029/2003JB002667.
Paudyal, H., D. Shanker, H.N. Singh, and V.P. Singh (2009), Application of time and magnitude-predictable model in the Central Himalaya and vicinity for estimation of seismic hazard, Acta Geod. Geophys. Hung. 44, 2, 213-226, DOI: 10.1556/AGeod.44.2009.2.8.
Pinar, N., and E. Lahn (1952), Detailed catalog of Turkey Earthquake, Ministry of Public Works, Ankara (in Turkish).
Qin, C., E.E. Papadimitriou, B.C. Papazachos, and G.F. Karakaisis (2001), Timedependent seismicity in China, J. Asian Earth Sci. 19, 1-2, 97-128, DOI: 10.1016/S1367-9120(00)00019-5.
Sayil, N. (2005), An application of the time- and magnitude-predictable model to long-term earthquake prediction in eastern Anatolia, J. Seismol. 9, 3, 367-379, DOI: 10.1007/s10950-005-0037-x.
Sayil, N., and I. Osmanşahin (2008), An investigation of seismicity for western Anatolia, Nat. Hazards 44, 1, 51-64, DOI: 10.1007/s11069-007-9141-2.
Shanker, D., A. Panthi, and H.N. Singh (2012), Long-term seismic hazard analysis in Northeast Himalaya and its adjoining regions, Geosciences 2, 2, 25-32, DOI: 10.5923/j.geo.20120202.04.
Shimazaki, K., and T. Nakata (1980), Time-predictable recurrence model for large earthquakes, Geophys. Res. Lett. 7, 4, 279-282, DOI: 10.1029/GL007i004p00279.
Soysal, H., S. Sipahioglu, D. Kolcak, and Y. Altinok (1981), Historical Earthquake Catalog of Turkey and Its Environment, 2100 BC to 1900 AD, TUBITAK, TBAG 341, Ankara (in Turkish).
Stein, R.S. (2002), Parkfield’s unfulfilled promise, Nature 419, 6904, 257-258, DOI: 10.1038/419257a.
Taymaz, T., R. Westaway, and R. Reilinger (2004), Active faulting and crustal deformation in the Eastern Mediterranean region, Tectonophysics 391, 1-4, 1-9, DOI: 10.1016/j.tecto.2004.07.005.
Weisberg, S. (1980), Applied Linear Regression, John Wiley & Sons Inc., New York, 283 pp.
Weldon, R.J., T.E. Fumal, G.P. Biasi, and K.M. Scharer (2005), Past and future earthquakes on the San Andreas fault, Science 308, 5724, 966-967, DOI: 10.1126/science.1111707.
Westaway, R. (1990), Present-day kinematics of the plate boundary zone between Africa and Europe, from the Azores to the Aegean, Earth Planet. Sci. Lett. 96, 3-4, 393-406, DOI: 10.1016/0012-821X(90)90015-P.
Yadav, R.B.S., D. Shanker, S. Chopra, and A.P. Singh (2010), An application of region al time and magnitude predictable model for long-term earthquake prediction in the vicinity of October 8, 2005 Kashmir Himalaya earthquake, Nat. Hazards 54, 3, 985-1014, DOI: 10.1007/s11069-010-9519-4.
DOI :
Cytuj : Vitkulin, A. V. ,Semenov, V. Y. ,Majewski, E. ,Nenovski, P. ,Sayil, N. , Long-term earthquake prediction in the Marmara region based on the regional time- and magnitude-predictable model. Acta Geophysica Vol. 61, no. 2/2013
[Top]

Topography of the Moho and earth crust structure beneath the East Vietnam Sea from 3D inversion of gravity field data

Czasopismo : Acta Geophysica
Tytuł artykułu : Topography of the Moho and earth crust structure beneath the East Vietnam Sea from 3D inversion of gravity field data

Autorzy :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia, vik@kscnet.ru,
Semenov, V. Y.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, sem@igf.edu.pl,
Majewski, E.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, emaj@igf.edu.pl,
Nenovski, P.
National Institute for Geophysics, Geodesy and Geography, Sofia, Bulgaria, nenovski@geophys.bas.bg,
Sayil, N.
Karadeniz Technical University, Engineering Faculty, Department of Geophysics, Trabzon, Turkey, sayil@ktu.edu.tr,
Nguyen, N. T.
Institute of Marine Geology and Geophysics, Vietnam Academy of Science and Technology, Hanoi, Vietnam, nguyen_nhutrung@hotmail.com,
Abstrakty : The Moho depth, crustal thickness and fault systems of the East Vietnam Sea (EVS) are determined by 3D interpretation of satellite grav- ity. The Moho depth is calculated by 3D Parker inversion from residual gravity anomaly that is obtained by removing the gravity effects of sea- floor and Pre-Cenozoic sediment basement topographies from the free air anomaly. The 3D inversion solution is constrained by power density spectrum of gravity an omaly and seismic data. The calculated Moho depths in the EVS vary from 30-31 km near the coast to 9 km in the Central Basin. A map of the lithosphere extension factor in the Cenozoic is constructed from Moho and Pre-Cenozoic sediment basement depths. The fault systems constructed by the maximum horizontal gradient approach include NE-SW, NW-SE, and N-S oriented faults. Based on the interpretation results, the EVS is sub-divided into five structural zones which demonstrated the different characteristics of the crustal structure.

Słowa kluczowe : satellite gravity, Moho, 3D gravity inversion, crustal structure, mid-ocean ridge,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 2
Strony : 357 – 384
Bibliografia : Ben-Avraham, Z., and S. Uyeda (1973), The evolution of the China Basin and the Mesozoic paleogeography of Borneo, Earth Planet. Sci. Lett. 18, 2, 365-376, DOI: 10.1016/0012-821X(73)90077-0.
Blakely, R.J. (1995), Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, Cambridge, 464 pp., DOI: 10.1017/CBO9780511549816.
Blakely, R.J., and R.W. Simpsom (1986), Approximating edges of source Dobies from magnetic or gravity anomalies, Geophysics 51, 7, 1494-1498, DOI: 10.1190/1.1442197.
Braitenberg, C., S. Wienecke, and Y. Wang (2006), Basement structure from satellite-derived gravity field: South China Sea ridge, J. Geophys. Res. 111, B05407, DOI: 10.1029/2005JB003938.
Briais, A., P. Patrat, and P. Tapponnier (1993), Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia, J. Geophys. Res. 98, 6299-6328, DOI: 10.1029/92JB02280.
Bui, C.Q. (ed.) (1995), Geology, geodynamic and mineral resources potential in East Vietnam Sea. National Project, Final Report, KT-03-02, 158 pp. (in Vietnamese).
CCOP (1991), Total sedimentary isopach maps offshore east Asia, 1:4 000 000, Coordinating Committee for Geoscience Programmes in East and Southeast Asia, Bangkok, Techn. Bull. 23.
Chen, B., and S. Lei (1987), The map of crustal structures of South China Sea. In: L. He, and B. Chen (eds.), Atlas of Geology and Geophysics of South China Sea (1:2 000 000), Sheet No. 10, Map Publishing House of Guangdong Province, Guangzhou (in Chinese).
Clift, P.D., and Z. Sun (2006), The sedimentary and tectonic evolution of the Yinggehai–Song Hong basin and the southern Hainan margin, South China Sea: Implications for Tibetan uplift and monsoon intensification, J. Geophys. Res. 111, B06405, DOI: 10.1029/2005JB004048.
Clift, P., G.H. Lee, N.A. Duc, U. Barckhausen, H.V. Long, and S. Zhen (2008), Seismic reflection evidence for a Dangerous Grounds miniplate: No extrusion origin for the South China Sea, Tectonics 27, TC3008, DOI: 10.1029/2007TC002216.
Fu, L.-L., and A. Cazenave (eds.) (2001), Satellite Altimetry and Earth Sciences. A Handbook of Techniques and Applications, International Geophysics Series, Vol. 69, Academic Press, New York, 459 pp., DOI: 10.1016/S0074-6142(01)80158-3(01)80158-3.
Fyhn, M.B.W., L.O. Boldreel, and L.H. Nielsen (2009a), Tectonic and climatic control on growth and demise of the Phanh Rang Carbonate Platform offshore south Vietnam, Basin Res. 21, 2, 225-251, DOI: 10.1111/j.1365-2117.2008.00380.x.
Fyhn, M.B.W., L.O. Boldreel, and L.H. Nielsen (2009b), Geological development of the Central and South Vietnamese margin: Implications for the establishment of the South China Sea, Indochinese escape tectonics and Cenozoic volcanism, Tectonophysics 478, 3-4, 184-214, DOI: 10.1016/j.tecto.2009.08.002.
Hall, R. (1996), Reconstructing Cenozoic SE Asia, Geol. Soc., London, Spec. Publ. 106, 153-184, DOI: 10.1144/GSL.SP.1996.106.01.11.
Hirayama, J. (ed.) (1991), Total sedimentary isopach maps offshore East Asia, CCOP Tech. Bull. 23, 116 pp.
Huchon, P., T.N.H. Nguyen, and N. Chamot-Rooke (1998), Finite extension cross the South Vietnam basins from 3D gravimetric modelling: relation to South China Sea kinematics, Mar. Petrol. Geol. 15, 7, 619-634, DOI: 10.1016/S0264-8172(98)00031-2.
Hwang, C., E.-C. Kao, and B. Parsons (1998), Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data, Geophys. J. Int. 134, 2, 449-459, 10.1111/j.1365-246X.1998.tb07139.x.
Kiselov, O.M., and U.P. Fedorov (1992), Gravity data of the Gagarinxki Cruise 1990-1992, Final Cruise Report, Vol. 11, 225 pp.
Kulinic, R.G. (1989), Evolution of the Earth Crust in the Cenozoic and the Tectonic Model in the Southeast Asia, Moscow Publishing House, 250 pp. (in Russian).
Le, N.L. (ed.) (2000), Compiling the structure and tectonic maps of the East Vietnam Sea and adjacent, Final Report, National Oceanic Project, KHCN-06, 58 pp. (in Vietnamese).
Lee, G.H., and J.S. Watkins (1998), Seismic sequence stratigraphy and hydrocarbon potential of the Phu Khanh Basin, offshore Central Vietnam, South China Sea, AAPG Bull. 82, 9, 1711-1735.
Lee, G.H., K. Lee, and J.S. Watkins (2001), Geologic evolution of the Cuu Long and Nam Con Son Basins, offshore southern Vietnam, South China Sea, AAPG Bull. 85, 6, 1055-1082, DOI: 10.1306/8626CA69-173B-11D7-8645000102C1865D.
Li, C.W. (ed.) (1976), The offshore hydrocarbon potential of East Asia: A decade of investigation (1966-1975), UNDP technical support for regional offshore prospecting in East Asia (RAS/72/022), 114 pp.
Lister, G.S., M.A. Etheridge, and P.A. Symonds (1986), Detachment faulting and the evolution of passive continental margins, Geology 14, 246-250, DOI: 10.1130/0091-7613(1986)14<246:DFATEO>2.0.CO;2.
Ludwig, W.J. (1970), The Manila trench and West Luzon trough – III. Seismicrefraction measurements, Deep Sea Res. Oceanogr. Abstr. 17, 3, 553-571, DOI: 10.1016/0011-7471(70)90067-7.
Ludwig, W.J., N. Kumar, and R.E. Houtz (1979), Profiler sonobuoy measurement in the South China Sea Basin, J. Geophys. Res. 84, B7, 3505-3518, DOI: 10.1029/JB084iB07p03505.
Marquis, G., D. Roques, P. Huchon, O. Coulon, N. Chamot-Rooke, C. Rangin, and X. Le Pichon (1997), Amount and timing of extension along the Continental margin off Central Vietnam, Bull. Soc. Geol. Fr. 168, 6, 707-716.
Nguyen, N.T., H.H. Nguyen, T.T.H. Nguyen, and H.H. Pham (2002), Deep structure characteristics of Truong Sa Archipelago based on satellite gravity, J. Earth Sci. 4, T24, 348-362 (in Vietnamese).
Nguyen, N.T., S.M. Lee, and B.C. Que (2004), Satellite gravity anomalies and their correlation with the major tectonic features in the South China Sea, Gondwana Res. 7, 2, 407-424, DOI: 10.1016/S1342-937X(05)70793-0.
Nissen, S.S., D.E. Hayes, P. Buhl, J. Diebold, Y. Bochu, W. Zeng, and Y. Chen (1995), Deep penetration seismic soundings across the northern margin of the South China Sea, J. Geophys. Res. 100, B11, 22407-22433, DOI: 10.1029/95JB01866.
Parker, R.L. (1973), The rapid calculation of potential anomalies, Geophys. J. Roy. Astron. Soc. 31, 4, 447-455, DOI: 10.1111/j.1365-246X.1973.tb06513.x.
Rangin, C., P. Huchon, X. Le Pichon, H. Bellon, C. Lepvrier, D. Roques, D.H. Nguyen, and P.V. Quynh (1995), Cenozoic deformation of central and south Vietnam, Tectonophysics 251, 1-4, 179-196, DOI: 10.1016/0040-1951(95)00006-2.
Sandwell, D.T., and W.H.F. Smith (2009), Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rate, J. Geophys. Res. 114, B01411, DOI: 10.1029/2008JB006008.
Sato, T., and K. Okumura (2000), Geotectonic map of East and Southeast Asia: Sheets 4, 5 and 6. First product of the CCOP-CPCEMR geotectonic map project, CCOP Tech. Bull. 27, 16, CD-rom.
Smith, W.H.F., and D.T. Sandwell (1997), Global sea floor topography from satellite altimetry and ship depth soundings, Science 277, 5334, 1956-1962, DOI: 10.1126/science.277.5334.1956.
Spector, A., and F.S. Grant (1970), Statistical models for interpreting aeromagnetic data, Geophysics 35, 2, 293-302, DOI: 10.1190/1.1440092.
Tapponnier, P., G. Peltzer, and R. Armijo (1986), On the mechanics of the collision between India and Asia, Geol. Soc. London Spec. Publ. 19, 113-157, DOI: 10.1144/GSL.SP.1986.019.01.07.
Taylor, B., and D.E. Hayes (1980), The tectonic evolution of the South China Basin, Geophys. Monogr. Ser. 23, 89-104, DOI: 10.1029/GM023p0089.
Taylor, B., and D.E. Hayes (1983), Origin and history of the South China Basin, Geophys. Monogr. Ser. 27, 23-56, DOI: 10.1029/GM027p0023.
Xia, K., C. Huang, S. Jiang, Y. Zhang, D. Su, S. Xia, and Z. Chen (1994), Comparison of the tectonics and geophysics of the major structural belts between the northern and southern continental margins of the South China Sea, Tectonophysics 235, 1-2, 99-116, DOI: 10.1016/0040-1951(94)90019-1.
Yan, P., D. Zhou, and Z. Lui (2001), A crustal structure profile across the northern continental margin of the South China Sea, Tectonophysics 338, 1, 1-21, DOI: 10.1016/S0040-1951(01)00062-2.
DOI :
Cytuj : Vitkulin, A. V. ,Semenov, V. Y. ,Majewski, E. ,Nenovski, P. ,Sayil, N. ,Nguyen, N. T. , Topography of the Moho and earth crust structure beneath the East Vietnam Sea from 3D inversion of gravity field data. Acta Geophysica Vol. 61, no. 2/2013
[Top]

On the influence of DC railway noise on variation data from Belsk and Lviv geomagnetic observatories

Czasopismo : Acta Geophysica
Tytuł artykułu : On the influence of DC railway noise on variation data from Belsk and Lviv geomagnetic observatories

Autorzy :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia, vik@kscnet.ru,
Semenov, V. Y.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, sem@igf.edu.pl,
Majewski, E.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, emaj@igf.edu.pl,
Nenovski, P.
National Institute for Geophysics, Geodesy and Geography, Sofia, Bulgaria, nenovski@geophys.bas.bg,
Sayil, N.
Karadeniz Technical University, Engineering Faculty, Department of Geophysics, Trabzon, Turkey, sayil@ktu.edu.tr,
Nguyen, N. T.
Institute of Marine Geology and Geophysics, Vietnam Academy of Science and Technology, Hanoi, Vietnam, nguyen_nhutrung@hotmail.com,
Neska, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, anne@igf.edu.pl,
Abstrakty : Geomagnetic variation data from the observatories in Belsk (BEL, Poland) and Lviv (LVV, Ukraine) significantly suffer from disturbances caused by direct current (DC) electric railways. The aim of this study is to quantify the impact of these disturbances on quantities derived from such data, as the K index of magnetic activity and the induction arrow used in the geomagnetic deep sounding method to indicate lateral contrasts of elec- tric conductivity in the solid earth. Therefore, undisturbed data have been reconstructed by means of a frequency-domain transfer function that relates the horizontal magnetic field components of the observatory to the ones synchronously recorded at a noise-free reference station. The comparison of the K index derived from original and reconstructed data shows an increase of quiet time segments by 29 per cent for LVV and by 14 per cent for BEL due to our noise removal procedure. Furthermore, the distribution of the corrected K indices agrees well with the one from the Niemegk observatory in Germany

Słowa kluczowe : geomagnetic observations, DC railway noise, induction arrows, K index,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 2
Strony : 385 – 403
Bibliografia : Bartels, J., N.H. Heck, and H.F. Johnston (1939), The three-hour-range index measuring geomagnetic activity, Terr. Magn. Atmos. Electr. 44, 4, 411-454, DOI: 10.1029/TE044i004p00411.
Gamble, T.,W. Goubau, and J. Clarke (1979), Magnetotellurics with a remote magnetic reference, Geophysics 44, 1, 53-68, DOI: 10.1190/1.1440923.
Georgescu, P., J.-L. Le Mouël, and M. Mandea (2002), Electric and magnetic perturbations generated by D.C. electric railway, Geofizica 40, 69-82.
Jozwiak, W. (2011), Large-scale crustal conductivity pattern in Central Europe and its correlation to deep tectonic structures, Pure Appl. Geophys., DOI: 10.1007/s00024-011-0435-7.
Krainski,W. (1968), On geomagnetic activity and K indices (O aktywnosci geomagnetycznej i wskaznikach K), Acta Geophys. Pol. 16, 1, 57-69 (in Polish).
Larsen, J.C., R.L. Mackie, A. Manzella, A. Fiordelisi, and S. Rieven (1996), Robust smooth magnetotelluric transfer functions, Geophys. J. Int. 124, 3, 801-819, DOI: 10.1111/j.1365-246X.1996.tb05639.x.
Lowes, F. J. (2009),DCrailways and the magnetic fields they produce – the geomagnetic context, Earth Planets Space 61, i-xv.
Maule, C., P. Thejll, A. Neska, J. Matzka, L. Pedersen, and A. Nilsson (2009), Analyzing and correcting for contaminating magnetic fields at the Brorfelde geomagnetic observatory due to high voltage DC power lines, Earth Planets Space 61, 11, 1233-1241.
Neska, A. (2010), Subsurface conductivity obtained from DC railway signal propagation with a dipole model. In: O. Ritter and U. Weckmann (eds.), Proc. 23rd Schmucker-Weidelt-Colloquium for Electromagnetic Depth Research, Dtsch. Geophys. Ges., Potsdam, Germany, 244-251.
Neska, A., A. Schäfer, L. Houpt, H. Brasse, and EMTESZ Working Group (2008), From Precambrian to Variscan basement: Magnetotellurics in the region of NWPoland, NE Germany, and south Sweden across the Baltic Sea. In: O. Ritter and H. Brasse (eds.), Protokoll zum 22. Kolloquium Elektromagnetische Tiefenforschung, Dtsch. Geophys. Ges., Potsdam, Germany, 151-163.
Nowozynski, K., T. Ernst, and J. Jankowski (1991), Adaptive smoothing method for computer derivation of K-indices, Geophys. J. Int. 104, 1, 85-93, DOI: 10.1111/j.1365-246X.1991.tb02495.x.
Oettinger, G., V. Haak, and J. Larsen (2001), Noise reduction in magnetotelluric timeseries with a new signal-noise separation method and its application to a field experiment in the Saxonian Granulite Massif, Geophys. J. Int. 146, 3, 659-669, DOI: 10.1046/j.1365-246X.2001.00473.x.
Pirjola, R., L. Newitt, D. Boteler, L. Trichtchenko, P. Fernberg, L. McKee, D. Danskin, and G.J. van Beck (2007), Modelling the disturbance caused by a dc-electrified railway to geomagnetic measurements, Earth Planets Space 59, 943-949.
Schäfer, A., L. Houpt, H. Brasse, N. Hoffmann, and EMTESZ Working Group (2011), The North German Conductivity Anomaly revisited, Geophys. J. Int. 187, 1, 85-98, DOI: 10.1111/j.1365-246X.2011.05145.x.
Schmucker, U. (1984), EM Übertragungsfunktionen aus Beobachtungen mit mehreren gleichzeitig registrierenden Stationen. In: 10. Kolloquium Elektromagnetische Tiefenforschung, Grafrath in Oberbayern, 35-36 (in German).
Sizow, Y.P. (1977), Instrukcija po sostawleniju mesjatchnogo obzora sostojanija magnitnogo polja zemli, Institute of Earth Magnetism, the Ionosphere, and Radio Wave Propagation, Academy of Sciences USSR, Moscow (in Russian).
Tokumoto, T., and S. Tsunomura (1984), Calculation of magnetic field disturbance produced by electric railway, Mem. Kakioka Magn. Obs. 20, 2, 33-44 (original in Japanese, English translation available).
*Wiese, H. (1962), Geomagnetische Tiefentellurik Teil II: Die Streichrichtung der Untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen Variationen, Pure Appl Geophys. 52, 1, 83-103, DOI: 10.1007/BF01996002.
Yanagihara, K. (1977), Magnetic field disturbance produced by electric railway, Mem. Kakioka Magn. Obs. 38, 1, 17-34.
DOI :
Cytuj : Vitkulin, A. V. ,Semenov, V. Y. ,Majewski, E. ,Nenovski, P. ,Sayil, N. ,Nguyen, N. T. ,Neska, A. , On the influence of DC railway noise on variation data from Belsk and Lviv geomagnetic observatories. Acta Geophysica Vol. 61, no. 2/2013
[Top]

Classification of low flow and hydrological drought for a river basin

Czasopismo : Acta Geophysica
Tytuł artykułu : Classification of low flow and hydrological drought for a river basin

Autorzy :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia, vik@kscnet.ru,
Semenov, V. Y.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, sem@igf.edu.pl,
Majewski, E.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, emaj@igf.edu.pl,
Nenovski, P.
National Institute for Geophysics, Geodesy and Geography, Sofia, Bulgaria, nenovski@geophys.bas.bg,
Sayil, N.
Karadeniz Technical University, Engineering Faculty, Department of Geophysics, Trabzon, Turkey, sayil@ktu.edu.tr,
Nguyen, N. T.
Institute of Marine Geology and Geophysics, Vietnam Academy of Science and Technology, Hanoi, Vietnam, nguyen_nhutrung@hotmail.com,
Neska, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, anne@igf.edu.pl,
Tokarczyk, T.
Institute of Meteorology and Water Management, National Research Institute, Wrocław Branch, Wrocław, Poland, Tamara.Tokarczyk@imgw.pl,
Abstrakty : The occurrence of drought is one of the characteristic features of Polish climate. Drought usually lasts for many weeks and covers consid- erable area causing economic and social losses. Due to the influence which drought has on environment, economy and society, more and more research and implementation works are devoted to issues concerning its occurrence, risk assessment, monitoring, and forecasting. Literature indicates that hydrological droughts are most often associated with low flow periods on rivers. The paper presents analyses of hydrological drought periods on the basis of hydrological drought index (HDI) for selected Nysa Kłodzka study basin (SW part of Poland). Analyses were carried out in relation to the Maximum Credible Hydrological Drought (MCHD). In addition, attempts were taken to assess the hydrological drought based on atmospheric drought focused on application in ungauged basins in terms of hydrological monitoring.

Słowa kluczowe : low flow, hydrological drought index, Maximum Credible Hydrological Drought,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 2
Strony : 404 – 421
Bibliografia : Beran, M.A., and J.A. Rodier (1985), Hydrological aspects of drought, Stud. Rep. Hydrol. 39, UNESCO-WMO, Paris (in French).
Byczkowski, A. (1996), Hydrology, Wyd. SGGW, Warszawa (in Polish).
Clausen, B., and C.P. Pearson (1995), Regional frequency analysis of annual maximum streamflow drought, J. Hydrol. 173, 1-4, 111-130, DOI: 10.1016/0022-1694(95)02713-Y.
Demuth, S. (1994), Regionalization of low flows using a multiple regression approach – a review. In: Proc. 17th Conf. of Danube Countries, Budapest, Vol. 1, 115-122.
Dracup, J.A., K.S. Lee, and E.G. Paulson Jr. (1980), On the definition of droughts, Water Resour. Res. 16, 2, 297-302, DOI: 10.1029/WR016i002p00297.
Dubicki, A. (ed.) (2002), Water resources in the upper and middle Odra river basin under drought conditions, Wyd. IMGW, Ser. Atlasy i Monografie, Warszawa (in Polish).
Eyton, J.R. (1984), Complementary-color, two-variable maps, Ann. Assoc. Am. Geographers 74, 3, 477-490, DOI: 10.1111/j.1467-8306.1984.tb01469.x.
Hudson, H.E., and R. Hazen (1964), Droughts and low streamflow. In: V.T. Chow (ed.), Handbook of Applied Hydrology, Sec. 18, McGraw-Hill, New York.
Jakubowski, W. (2003), Guide and computer program NIZOWKA, Mathematic Division, Agricultural University, Wrocław.
Jakubowski, W., and L. Radczuk (2004), Nizowka 2003 software. In: L.M. Tallaksen and H.A.J. van Lanen (eds.), Hydrological Drought – Processes and Estimation Methods for Streamflow and Groundwater, Developments in Water Science, Vol. 48, Elsevier Science, Amsterdam.
Jakubowski, W., and T. Tokarczyk (2007), The maximum low flow parameters depending on assumed threshold level. In: Proc. IUGG 24th General Assembly ”Earth: Our Changing Planet”, 2-13 July, 2007, Perugia, Italy, poster, http://www.iugg2007perugia.it/webbook/.
Jakubowski, W., and T. Tokarczyk (2008), Temporal variability of the hydrological drought intensity in Nysa Kłodzka basin. In: A. Dubicki (ed.), Meteorologia, Hydrologia, Ochrona Środowiska – Kierunki Badań i Problemy, Wyd. IMGW, Seria: Monografie, Warszawa, 234-243 (in Polish).
Łabędzki, L. (1999), Usability of the Penman-Monteith equation for calculating reference and grassland evapotranspiration, Wiad. IMUZ 20, 2, 89-101 (in Polish).
Musiał, E., and E. Gąsiorek (2003), Penman – software to determine the potential evaporation according to Penman formule, Katedra Mat. AR we Wrocławiu, Wrocław.
Peters, E., P.J.J.F. Torfs, H.A.J. van Lanen, and G. Bier (2003), Propagation of drought through groundwater – a new approach using linear reservoir theory, Hydrol. Process. 17, 15, 3023-3040, DOI: 10.1002/hyp.1274.
Smakhtin, V.U. (2001), Low flow hydrology: a review, J. Hydrol. 240, 3-4, 147-186, DOI: 10.1016/S0022-1694(00)00340-1.
Swan, A.R.H., and M. Sandilands (1995), Introduction to geological data analysis, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32, 8, 387A-387A(1), DOI: 10.1016/0148-9062(95)99593-M.
Tallaksen, L.M. (2000), Streamflow drought frequency analysis. In: J.V. Vogt and F. Somma (ed.), Drought and Drought Mitigation in Europe, Advances in Natural and Technological Hazards Research, Vol. 14, Kluwer Academic Publ., Dordrecht, 103-117.
Tallaksen, L.M., and H.A.J. van Lanen (eds.) (2004), Hydrological Drought – Processes and Estimation Methods for Streamflow and Groundwater, Developments in Water Science, Vol. 48, Elsevier Science, Amsterdam.
Tokarczyk, T. (2001), Low flow’s appearance in the Ziemia Kłodzka region, Wiadomości IMGW 24, 2.
Tokarczyk, T. (2010), Low Flow as an Indicator of Hydrological Drought, Wyd. IMGW, Ser. Monografie IMGW, Warszawa (in Polish).
Tokarczyk, T., and W. Jakubowski (2006), Temporal and spatial variability of drought in mountain catchments of Nysa Klodzka basin. In: Climate Variability and Change: Hydrological Impacts, IAHS Publication 308, Wallingford, 139-144.
Vogel, R.M., and J.R. Stedinger (1987), Generalized storage-reliability-yield relationships, J. Hydrol. 89, 3-4, 303-327, DOI: 10.1016/0022-1694(87)90184-3.
Yevjevich, V. (1967), An objective approach to definition and investigations of Continental hydrologic droughts, Hydrology Papers, Vol. 23, Colorado State University, Fort Collins, USA.
Zelenhasić, E., and A. Salvai (1987), A method of streamflow drought analysis, Water Resour. Res. 23, 1, 156-168, DOI: 10.1029/WR023i001p00156.
Zeliaś, A. (ed.) (1991), Spatial Econometrics, PWE, Warszawa (in Polish).
Zielińska, M. (1963), Statistical methods of low-water computation – I, Prz. Geof. 7, 1-2 (in Polish).
Zielińska, M. (1964), Statistical methods of low-water computation – II, Prz. Geof. 9, 2 (in Polish).
DOI :
Cytuj : Vitkulin, A. V. ,Semenov, V. Y. ,Majewski, E. ,Nenovski, P. ,Sayil, N. ,Nguyen, N. T. ,Neska, A. ,Tokarczyk, T. , Classification of low flow and hydrological drought for a river basin. Acta Geophysica Vol. 61, no. 2/2013
[Top]

Geoelectrical and hydrochemical investigations for characterizing the salt water intrusion in the Khanasser valley, northern Syria

Czasopismo : Acta Geophysica
Tytuł artykułu : Geoelectrical and hydrochemical investigations for characterizing the salt water intrusion in the Khanasser valley, northern Syria

Autorzy :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia, vik@kscnet.ru,
Semenov, V. Y.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, sem@igf.edu.pl,
Majewski, E.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, emaj@igf.edu.pl,
Nenovski, P.
National Institute for Geophysics, Geodesy and Geography, Sofia, Bulgaria, nenovski@geophys.bas.bg,
Sayil, N.
Karadeniz Technical University, Engineering Faculty, Department of Geophysics, Trabzon, Turkey, sayil@ktu.edu.tr,
Nguyen, N. T.
Institute of Marine Geology and Geophysics, Vietnam Academy of Science and Technology, Hanoi, Vietnam, nguyen_nhutrung@hotmail.com,
Neska, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, anne@igf.edu.pl,
Tokarczyk, T.
Institute of Meteorology and Water Management, National Research Institute, Wrocław Branch, Wrocław, Poland, Tamara.Tokarczyk@imgw.pl,
Asfahani, J.
Geology Department, Atomic Energy Commission, Damascus, Syria, csientific@aec.org.sy,
Abstrakty : An integrated approach of geoel ectrical and hydrochemical investi- gation surveys was proposed for indicating contact regions between saline and fresh groundwater in the Khanasser valley region, northern Syria. The qualitative and quantitative interpretations of 34 vertical electrical soundings (VES) enable to characterize the salt water intrusion laterally and vertically. The established iso-apparent resistivity maps for different AB/2 spacings obviously indicate the presence of a low-resistivity (less than 4 Ohmźm) zone related to the salt water intrusion in the Quaternary and Paleogene deposits. The different hydrochemical and geophysical parameters, such as electrical resistivity, total dissolved solids (TDS) and major ions concentrations used to characterize the salt water intrusion gave almost similar results in locating and mapping the different boundaries of the groundwater salinity. The proposed approach is useful for mapping the interface be tween different groundwater quali- ties, and can be therefore used to successfully characterize the salt water intrusion phenomenon in other semi-arid regions. The application of such an approach is a powerful tool and can be used for water resource management in the water scarce areas.

Słowa kluczowe : groundwater, electric resistivity, salt water intrusion, Khanasser valley, Syria,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 2
Strony : 422 – 444
Bibliografia : Abou Zakhem, B., and R. Hafez (2007), Environmental isotope study of seawater intrusion in the coastal aquifer (Syria), Environ. Geol. 51, 8, 1329-1339, DOI: 10.1007/s00254-006-0431-x.
ACSAD (1984), Water resources map of the Arab countries, The Arab Center for the Studies of Arid Zones and Dry Lands, Damascus, Syria.
Al-Sayed, E.A., and G. El-Qady (2007), Evaluation of sea water intrusion using the electrical resistivity and transient electromagnetic survey: Case study at Fan of Wadi Feiran, Sinai, Egypt. In: EMG 2007 International Workshop “Innovation in EM, Grav and Mag Methods: A New Perspective for Exploration”, 15-18 April 2007, Capri, Italy.
Asfahani, J. (2007a), Geoelectrical investigation for characterizing the hydrogeological conditions in semi-arid region in Khanasser valley, Syria, J. Arid Environ. 68, 1, 31-52, DOI: 10.1016/j.jaridenv.2006.03.028.
Asfahani, J. (2007b), Electrical earth resistivity surveying for delineating the characteristics of ground water in a semi-arid region in Khanasser valley, northern Syria, Hydrol. Process. 21, 8, 1085-1097, DOI: 10.1002/hyp.6290.
Asfahani, J. (2007c), Neogene aquifer properties specified through the interpretation of electrical sounding data, Salamiyeh region, central Syria, Hydrol. Process. 21, 21, 2934-2943, DOI: 10.1002/hyp.6510.
Asfahani, J. (2010), Application of surfacial geoelectrical resistivity technique in hydrogeology domain for characterizing saline groundwater in semi arid regions. In: B. Veress and J. Szigethy (eds.), Horizons in Earth Science Research, Vol. 1, NOVA Science Publishers, New York, 351-381.
Asfahani, J. (2011), Electrical resistivity investigations for guiding and controlling fresh water well drilling in semi-arid region in Khanasser valley, northern Syria, Acta Geophys. 59, 1, 139-154, DOI: 10.2478/s11600-010-0031-8.
Asfahani, J. (2012a), Quaternary aquifer transmisivity derived from vertical electric al sounding measurements in the semi-arid Khanasser valley region, Syria, Acta Geophys. 60, 4, 1143-1158, DOI: 10.2478/s11600-012-0016-x.
Asfahani, J. (2012b), Groundwater potential estimation deduced from vertical electric al sounding measurements in the semi-arid Khanasser valley region, Syria, Hydrol. Sci. J. (in print).
Asfahani, J., and Y. Radwan (2007), Tectonic evolution and hydrogeological characteristics of Khanasser valley, northern Syria, derived from the interpretation of vertical electrical soundings, Pure Appl. Geophys. 164, 11, 2291-2311, DOI: 10.1007/s00024-007-0274-8.
Ayers, J.F. (1989), Conjunctive use of geophysical and geological data in the study of an alluvial aquifer, Ground Water 27, 5, 625-632, DOI: 10.1111/j.1745-6584.1989.tb00475.x.
Herczeg, A.L., and W.M. Edmunds (2000), Inorganic ions as tracers. In: P.G. Cook and A.L. Herczeg (eds.), Environmental Tracers in Subsurface Hydrology, Kluwer Academic Publ., Dordrecht, 31-78.
Hoekstra, P. (1990), Surface geophysics – Tool for ground water management in coastal aquifers, Water Wastewater Int. 5, 3, 15-21.
Hoogeveen, R., and M. Zoebisch (1999), Decline of groundwater quality in Khanasser valley (Syria) due to salt water intrusion. In: 6th Int. Conf. on the Development of Dry Lands, 22-27 August 1999, Cairo, Egypt, 16 pp.
Hussein, M.T., and H.S. Awad (2006), Delineation of groundwater zones using lithology and electric tomography in the Khartoum basin, central Sudan, Comp. Rend. Geosci. 338, 16, 1213-1218, DOI: 10.1016/j.crte.2006.09.007.
Loke, M.H. (1996), The use of electrical imaging surveys for mapping subsurface pollution. In: Prosiding Seminar Geologi & Sekitaran: Impak dan Pengauditan, Bangi, 223-232.
Nassir, S.S.A., and C.Y. Lee (1998), The use of geoelectrical surveys for the delineation of different subsurface geological and man-made features. In: Ninth Regional Congress on Geology, Mineral and Energy Resources of Southeast Asia, Kuala Lumpur, 70-71.
Pichgin, N.I., and I.K.H. Habibullaev (1985), Methodological recomendations in studying geo-tectonic conditions of vertical electrical soundings data with application of EC computer for solving hydrogeological and geo-engineering problems, Tashkend (in Russian).
Ponikarov, V.P. (1964), The geological map of Syria, 1:200.000 and explanatory notes, Ministry of Industry, Department of Geological and Mineral Research, Damascus, Syria.
Reilly, T.E., and A.S. Goodman (1985), Quantitative analysis of saltwater-freshwater relationships in groundwater systems – A historical perspective, J. Hydrol. 80, 1-2, 125-160, DOI: 10.1016/0022-1694(85)90078-2.
Samsudin, A.R., A. Haryono, U. Hamzah, and A.G. Rafek (1997), Salinity study of coastal groundwater aquifers in North Kelantan, Malaysia, Bull. Geol. Soc. Malaysia 41, 59-165.
Soumi, G. (1991), Supplemental irrigation systems of the Syrian Arab Republic (SAR). In: Proc. Workshop on Regional Consultation on Supplemental Irrigation, ICARDA and FAO, 7-9 December 1987, Rabat, Morocco, Kluwer Academic Publishers, Dordrecht, 497-511.
Todd, D.K. (1980), Ground Water Hydrology, 2nd ed., John Wiley and Sons, New York, 535 pp.
Zohdy, A.A.R., G.P. Eaton, and D.R. Mabey (1974), Application of surface geophysics to ground-water investigations, Techniques of Water-Resource Investigation, U.S. Geol. Surv.
DOI :
Cytuj : Vitkulin, A. V. ,Semenov, V. Y. ,Majewski, E. ,Nenovski, P. ,Sayil, N. ,Nguyen, N. T. ,Neska, A. ,Tokarczyk, T. ,Asfahani, J. , Geoelectrical and hydrochemical investigations for characterizing the salt water intrusion in the Khanasser valley, northern Syria. Acta Geophysica Vol. 61, no. 2/2013
[Top]

Analysis of particulate matter concentrations in Mazovia region, central Poland, based on 2007-2010 data

Czasopismo : Acta Geophysica
Tytuł artykułu : Analysis of particulate matter concentrations in Mazovia region, central Poland, based on 2007-2010 data

Autorzy :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia, vik@kscnet.ru,
Semenov, V. Y.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, sem@igf.edu.pl,
Majewski, E.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, emaj@igf.edu.pl,
Nenovski, P.
National Institute for Geophysics, Geodesy and Geography, Sofia, Bulgaria, nenovski@geophys.bas.bg,
Sayil, N.
Karadeniz Technical University, Engineering Faculty, Department of Geophysics, Trabzon, Turkey, sayil@ktu.edu.tr,
Nguyen, N. T.
Institute of Marine Geology and Geophysics, Vietnam Academy of Science and Technology, Hanoi, Vietnam, nguyen_nhutrung@hotmail.com,
Neska, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, anne@igf.edu.pl,
Tokarczyk, T.
Institute of Meteorology and Water Management, National Research Institute, Wrocław Branch, Wrocław, Poland, Tamara.Tokarczyk@imgw.pl,
Asfahani, J.
Geology Department, Atomic Energy Commission, Damascus, Syria, csientific@aec.org.sy,
Pietruczuk, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, januszj@igf.edu.pl,
Abstrakty : Measurement results of PM10 (par ticulate matter with diameters below 10µm) concentrations performed at four stations in central Poland (2007-2010) were analyzed in terms of levels and distributions of concentrations, the number of exceedances of the limit values and the causes of these exceedances. PM10 levels were similar at suburban and rural stations, except of one station located in the vicinity of a busy street. The median of PM10 concentration ranged from 26µg/m³ at suburban station to 44µg/m³ at Warsaw Kerb station. Seasonal variability analysis of PM10 concentration revealed an additional maximum beyond the usual autumn-winter one. This maximum occurred in April at all stations, and corresponded to seasonal wildfires activity and dust activation in Eastern Europe. Cluster analysis of back-traj ectories revealed that PM10 concen- trations depend on the direction of advection of the incoming air; the highest values are registered for air of regional and southern origins, while the lowest are for the airma sses coming from the north and north-west direction.

Słowa kluczowe : PM10, particulate matter, backward trajectories, cluster analysis, long-range transport,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 2
Strony : 445 – 462
Bibliografia : Abdalmogith, S.S., and R.M. Harrison (2005), The use of trajectory cluster analysis to examine the long-range transport of secondary inorganic aerosol in the UK, Atmos. Environ. 39, 35, 6686-6695, DOI: 10.1016/j.atmosenv.2005.07.059.
Analitis, A., K. Katsouyanni, K. Dimakopoulou, E. Samoli, A.K. Nikoloulopoulos, Y. Petasakis, G. Touloumi, J. Schwartz, H.R. Anderson, K. Cambra, F. Forastiere, D. Zmirou, J.M. Vonk, L. Clancy, B. Kriz, J. Bobvos, and J. Pekkanen (2006), Short-term effects of ambient particles on cardiovascular and respiratory mortality, Epidemiology 17, 2, 230-233, DOI: 10.1097/01.ede.0000199439.57655.6b.
Annesi-Maesano, I., F. Forastiere, N. Kunzli, and B. Brunekreef (2007), Particulate matter, science and EU policy, Eur. Respir. J. 29, 3, 428-431, DOI: 10.1183/09031936.00129506.
Baker, J. (2010), A cluster analysis of long range air transport pathways and associated pollutant concentrations within the UK, Atmos. Environ. 44, 4, 563-571, DOI: 10.1016/j.atmosenv.2009.10.030.
Barnaba, F., F. Angelini, G. Curci, and G.P. Gobbi (2011), An important fingerprint of wildfires on the European aerosol load, Atmos. Chem. Phys. 11, 20, 10487-10501, DOI: 10.5194/acp-11-10487-2011.
Birmili, W., K. Schepanski, A. Ansmann, G. Spindler, I. Tegen, B. Wehner, A. Nowak, E. Reimer, I. Mattis, K. Müller, E. Brüggemann, T. Gnauk, H. Herrmann, A. Wiedensohler, D. Althausen, A. Schladitz, T. Tuch, and G. Löschau (2008), A case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine, Atmos. Chem. Phys. 8, 997-1016, DOI: 10.5194/acp-8-997-2008.
Borge, R., J. Lumbreras, S. Vardoulakis, P. Kassomenos, and E. Rodríguez (2007), Analysis of long-range transport influences on urban PM10 using two-stage atmospheric trajectory clusters, Atmos. Environ. 41, 21, 4434-4450, DOI: 10.1016/j.atmosenv.2007.01.053.
Borrego, C., E. Sá, A. Monteiro, J. Ferreira, and A.I. Miranda (2009), Forecasting human exposure to atmospheric pollutants in Portugal – A model ling approach, Atmos. Environ. 43, 36, 5796-5806, DOI: 10.1016/j.atmosenv.2009.07.049.
Brunekreef, B., and R.L. Maynard (2008), A note on the 2008 EU standards for particulate matter, Atmos. Environ. 42, 26, 6425-6430, DOI: 10.1016/j.atmosenv.2008.04.036.
Carnevale, C., G. Finzi, E. Pisoni, and M. Volta (2008), Modelling assessment of PM10 exposure control policies in Northern Italy, Ecol. Model. 217, 3-4, 219-229, DOI: 10.1016/j.ecolmodel.2008.06.005.
CSO (2011), Concise Statistical Yearbook of Poland, 2011, Główny Urząd Statystyczny, Warszawa.
Draxler, R.R., and G.D. Hess (1998), An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition, Aust. Met. Mag. 47, 295-308.
Gehrig, R., and B. Buchmann (2003), Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long term Swiss monitoring data, Atmos. Environ. 37, 19, 2571-2580, DOI: 10.1016/S1352-2310(03)00221-8.
Jarosławski, J., and A. Pietruczuk (2010), On the origin of seasonal variation of aerosol optical thickness in UV range over Belsk, Poland, Acta Geophys. 58, 6, 1134-1146, DOI: 10.2478/s11600-010-0019-4.
Jorba, O., C. Pérez, F. Rocadenbosch, and J.M. Baldasano (2004), Cluster analysis of 4-day back trajectories arriving in the Barcelona area, Spain, from 1997 to 2002, J. Appl. Meteor. 43, 6, 887-901, DOI: 10.1175/1520-0450(2004)043<0887:CAODBT>2.0.CO;2.
Juda-Rezler, K., M. Reizer, and J.-P. Oudinet (2011), Determination and analysis of PM10 source apportionment during episodes of air pollution in Central Eastern European urban areas: The case of wintertime 2006, Atmos. Environ. 45, 36, 6557-6566, DOI: 10.1016/j.atmosenv.2011.08.020.
Katragkou, E., S. Kazadzis, V. Amiridis, V. Papaioannou, S. Karathanasis, and D. Melas (2009), PM10 regional transport pathways in Thessaloniki, Greece, Atmos. Environ. 43, 5, 1079-1085, DOI: 10.1016/j.atmosenv.2008.11.021.
Koçak, M., N. Mihalopoulos, and N. Kubilay (2009), Origin and source regions of PM10 in the Eastern Mediterranean atmosphere, Atmos. Res. 92, 4, 464-474, DOI: 10.1016/j.atmosres.2009.01.005.
Koçak, M., C. Theodosi, P. Zarmpas, U. Im, A. Bougiatioti, O. Yenigun, and N. Mihalopoulos (2011), Particulate matter (PM10) in Istanbul: Origin, Skurce areas and potential impact on surrounding regions, Atmos. Environ. 45, 38, 6891-6900, DOI: 10.1016/j.atmosenv.2010.10.007.
Koelemeijer, R.B.A., C.D. Homan, and J. Matthijsen (2006), Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe, Atmos. Environ. 40, 27, 5304-5315, DOI: 10.1016/j.atmosenv.2006.04.044.
Lenschow, P., H.-J. Abraham, K. Kutzner, M. Lutz, J.-D. Preuss, and W. Reichenbächer (2001), Some ideas about the sources of PM10, Atmos. Environ. 35, Suppl. 1, S23-S33, DOI: 10.1016/S1352-2310(01)00122-4.
Lonati, G., S. Cernuschi, and M. Giugliano (2011), The duration of PM10 concentration in a large metropolitan area, Atmos. Environ. 45, 1, 137-146, DOI: 10.1016/j.atmosenv.2010.09.033.
Makra, L., I. Matyasovszky, Z. Guba, K. Karatzas, and P. Anttila (2011), Monitoring the long-range transport effects on urban PM10 levels using 3D clusters of backward trajectories, Atmos. Environ. 45, 16, 2630-2641, DOI: 10.1016/j.atmosenv.2011.02.068.
Mijić, Z., M. Tasić, S. Rajšić, and V. Novaković (2009), The statistical characters of PM10 in Belgrade area, Atmos. Res. 92, 4, 420-426, DOI: 10.1016/j.atmosres.2009.01.002.
Pastuszka, J.S., W. Rogula-Kozłowska, and E. Zajusz-Zubek (2010), Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes, Environ. Monit. Assess. 168, 1-4, 613-627, DOI: 10.1007/s10661-009-1138-8.
Pietruczuk, A., and A. Chaikovsky (2012), Variability of aerosol properties Turing the 2007-2010 spring seasons over Central Europe, Acta Geophys., DOI: 10.2478/s11600-012-0017-9.
Pongkiatkul, P., and N.-T. Kim Oanh (2007), Assessment of potential long-range transport of particulate air pollution using trajectory modeling and monitoring data, Atmos. Res. 85, 1, 3-17, DOI: 10.1016/j.atmosres.2006. 10.003.
Querol, X., A. Alastuey, C.R. Ruiz, B. Artiñano, H.C. Hansson, R.M. Harrison, E. Buringh, H.M. ten Brink, M. Lutz, P. Bruckmann, P. Straehl, and J. Schneider (2004), Speciation and origin of PM10 and PM2.5 in selected European cities, Atmos. Environ. 38, 38, 6547-6555, DOI: 10.1016/j.atmosenv.2004.08.037.
Rozwadowska, A., T. Zieliński, T. Petelski, and P. Sobolewski (2010), Cluster analysis of the impact of air back-trajectories on aerosol optical properties at Hornsund, Spitsbergen, Atmos. Chem. Phys. 10, 3, 877-893, DOI: 10.5194/acp-10-877-2010.
Schwarz, J., X. Chi, W. Maenhaut, M. Civiš, J. Hovorka, and J. Smolík (2008), Elemental and organic carbon in atmospheric aerosols at downtown and suburban sites in Prague, Atmos. Res. 90, 2-4, 287-302, DOI: 10.1016/j.atmosres.2008.05.006.
Sfetsos, A., and D. Vlachogiannis (2010), A new approach to discovering the causa relationship between meteorological patterns and PM10 exceedances, Atmos. Res. 98, 2-4, 500-511, DOI: 10.1016/j.atmosres.2010.08.021.
Ulevicius, V., S. Byčenkiene, V. Remeikis, A. Garbaras, S. Kecorius, J. Andriejauskiene, D. Jasinevičiene, and G. Mocnik (2010), Characterization of pollution events in the East Baltic region affected by regional biomass fire emissions, Atmos. Res. 98, 2-4, 190-200, DOI: 10.1016/j.atmosres.2010.03.021.
Unal, Y.S., H. Toros, A. Deniz, and S. Incecik (2011), Influence of meteorological factors and emission sources on spatial and temporal variations of PM10 concentrations in Istanbul metropolitan area, Atmos. Environ. 45, 31, 5504-5513, DOI: 10.1016/j.atmosenv.2011.06.039.
Van Dingenen, R., F. Raes, J.P. Putaud, U. Baltensperger, A. Charron, M.-C. Facchini, S. Decesari, S. Fuzzi, R. Gehrig, H.-C. Hansson, R.M. Harrison, C. Hüglin, A.M. Jones, P Laj., G. Lorbeer, W. Maenhaut, F. Palmgren, X. Querol, S. Rodriguez, J. Schneider, H. ten Brink, P. Tunved, K. Tørseth, B. Wehner, E. Weingartner, A. Wiedensohler, and P. Wåhlin (2004), A European aerosol phenomenology – 1: Physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ. 38, 16, 2561-2577, DOI: 10.1016/j.atmosenv.2004.01.040.
Vardoulakis, S., and P. Kassomenos (2008), Sources and factors affecting PM10 levels in two European cities: Implications for local air quality management, Atmos. Environ. 42, 17, 3949-3963, DOI: 10.1016/ j.atmosenv.2006.12.021.
Wang, F., D.S. Chen, S.Y. Cheng, J.B. Li, M.J. Li, and Z.H. Ren (2010), Identification of regional atmospheric PM10 transport pathways using HYSPLIT, MM5-CMAQ and synoptic pressure pattern analysis, Environ. Modell. Softw. 25, 8, 927-934, DOI: 10.1016/j.envsoft.2010.02.004.
DOI :
Cytuj : Vitkulin, A. V. ,Semenov, V. Y. ,Majewski, E. ,Nenovski, P. ,Sayil, N. ,Nguyen, N. T. ,Neska, A. ,Tokarczyk, T. ,Asfahani, J. ,Pietruczuk, A. , Analysis of particulate matter concentrations in Mazovia region, central Poland, based on 2007-2010 data. Acta Geophysica Vol. 61, no. 2/2013
[Top]

Climatological drivers of changes in flood hazard in Germany

Czasopismo : Acta Geophysica
Tytuł artykułu : Climatological drivers of changes in flood hazard in Germany

Autorzy :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia, vik@kscnet.ru,
Semenov, V. Y.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, sem@igf.edu.pl,
Majewski, E.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, emaj@igf.edu.pl,
Nenovski, P.
National Institute for Geophysics, Geodesy and Geography, Sofia, Bulgaria, nenovski@geophys.bas.bg,
Sayil, N.
Karadeniz Technical University, Engineering Faculty, Department of Geophysics, Trabzon, Turkey, sayil@ktu.edu.tr,
Nguyen, N. T.
Institute of Marine Geology and Geophysics, Vietnam Academy of Science and Technology, Hanoi, Vietnam, nguyen_nhutrung@hotmail.com,
Neska, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, anne@igf.edu.pl,
Tokarczyk, T.
Institute of Meteorology and Water Management, National Research Institute, Wrocław Branch, Wrocław, Poland, Tamara.Tokarczyk@imgw.pl,
Asfahani, J.
Geology Department, Atomic Energy Commission, Damascus, Syria, csientific@aec.org.sy,
Pietruczuk, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, januszj@igf.edu.pl,
Hattermann, F. F.
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany, hattermann@pik-potsdam.de,
Abstrakty : Since several destructive floods have occurred in Germany in the last decades, it is of considerable interest and relevance (e.g., when undertaking flood defense design) to take a closer look at the climatic factors driving the changes in flood hazard in Germany. Even if there also exist non-climatic factors controlling the flood hazard, the present paper demonstrates that climate change is one main driver responsible for the increasing number of floods. Increasing trends in temperature have been found to be ubiquitous in Germany, with impact on air humidity and changes in (intense) precipitation. Growing trends in flood pronecirculation pattern and heavy precipitation are significant in many regions of Germany over a multi-decade interval and this can be translated into the rise of flood hazard and flood risk.

Słowa kluczowe : flooding, intense precipitation, humidity, climate change,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 2
Strony : 463 – 477
Bibliografia : Bárdossy, A., and H.J. Caspary (1990), Detection of climate change in Europe by analyzing European atmospheric circulation patterns from 1881 to 1989, Theor. Appl. Climatol. 42, 3, 155-167, DOI: 10.1007/BF00866871.
Becker, A., and U. Grünewald (2003), Flood risk in Central Europe, Science 300, 5622, 1099, DOI: 10.1126/science.1083624.
Bronstert, A. (ed.) (1996), Hochwasser in Deutschland unter Aspekten global er Veränderungen. Bericht über das DFG-Rundgespräch am 9. Oktober 1995 in Potsdam, PIK Report No. 17, 59 pp. (in German).
Caspary, H.-J. (2000), Increased risk of river flooding in southwest Germany caused by changes of the atmospheric circulation across Europe. In: A. Bronstert, C. Bismuth, and L. Menzel (eds.), Proc. Eur. Conf. on Advances in Flood Research, PIK Report No. 65, Vol. 1, 212-223.
Gerstengarbe, F.-W., and P.C. Werner (2005), Katalog der Großwetterlagen Europas (1881-2004) nach Paul Hess und Helmut Brezowsky, 6th ed., PIK Report No. 100, Potsdam Institute for Climate Change Impact Research, 148 pp. (in German).
Hattermann, F.F., Z.W. Kundzewicz, S. Huang, T. Vetter, W. Kron, O. Burghoff, B. Merz, A. Bronstert, V. Krysanova, F.-W. Gerstengarbe, P. Werner, and Y. Hauf (2012), Flood risk from a holistic perspective – observed changes in Germany. In: Z.W. Kundzewicz (ed.), Changes in Flood Risk in Europe, CRC Press, Wallingford, 212-237, DOI: 10.1201/b12348-14.
Huang, S., V. Krysanova, H. Österle, and F.F. Hattermann (2010), Simulation of spatiotemporal dynamics of water fluxes in Germany under climate change, Hydrol. Process. 24, 23, 3289-3306, DOI: 10.1002/hyp.7753.
Kundzewicz, Z.W., and S. Huang (2010), Seasonal temperature extremes in Potsdam, Acta Geophys. 58, 6, 1115-1133, DOI: 10.2478/s11600-010-0026-5.
Kundzewicz, Z.W., and A.J. Robson (2004), Change detection in hydrological records – a review of the methodology, Hydrol. Sci. J. 49, 1, 7-19, DOI: 10.1623/hysj.49.1.7.53993.
Kundzewicz, Z.W., and H.-J. Schellnhuber (2004), Floods in the IPCC TAR perspective, Nat. Hazards 31, 1, 111-128, DOI: 10.1023/B:NHAZ.0000020257.09228.7b.
Kundzewicz, Z.W., U. Ulbrich, T. Brücher, D. Graczyk, A. Krüger, G.C. Leckebusch, L. Menzel, I. Pińskwar, M. Radziejewski, and M. Szwed (2005), Summer floods in Central Europe – climate change track? Nat. Hazards 36, 1/2, 165-189, DOI: 10.1007/s11069-004-4547-6.
Kundzewicz, Z.W., F.-W. Gerstengarbe, H. Österle, P.C. Werner, and W. Fricke (2009), Recent anomalies of mean temperature of 12 consecutive months – Germany, Europe, Northern Hemisphere, Theor. Appl. Climatol. 95, 3-4, 417-422, DOI: 10.1007/s00704-008-0013-9.
Merz, B. (2006), Flood Risks: Limitations and Potentials of Risk Assessment, Scheizerbart, Stuttgart, 334 pp. (in German).
Petrow, T., J. Zimmer, and B. Merz (2009), Changes in the flood hazard in Germany through changing frequency and persistence of circulation patterns, Nat. Hazards Earth Syst. Sci. 9, 4, 1409-1423, DOI: 10.5194/nhess-9-1409-2009.
Pinter, N., R.R. van der Ploeg, P. Schweigert, and G. Hoefer (2006), Flood magnification on the River Rhine, Hydrol. Process. 20, 1, 147-164, DOI: 10.1002/hyp.5908.
Rudolf, B., and J. Rapp (2003), The century flood of the River Elbe in August 2002: Synoptic weather development and climatological aspects, Quarterly Report of the German NWP-System of the Deutscher Wetterdienst, No. 2, Part 1, Offenbach, Germany, 8-23.
van der Ploeg, R.R., G. Machulla, D. Hermsmeyer, J. Ilsemann, M. Gieska, and J. Bachmann (2002), Changes in land use and the growing number of flash floods in Germany. In: J. Steenvoorden, F. Claessen, and J. Willems (eds.), Agricultural Effects on Ground and Surface Waters: Research at the Edge of Science and Society, IAHS Publ. No. 273, 317-321.
Werner, P.C., and F.-W. Gerstengarbe (2010), Katalog der Großwetterlagen Europas (1881-2009) nach Paul Hess und Helmut Brezowsky, 7th ed., PIK Report No. 119, Potsdam Institute for Climate Change Impact Research, 140 pp. (in German).
Yue, S., P. Pilon, B. Phinney, and G. Cavadias (2002), The influence of autocorrelation on the ability to detect trend in hydrological series, Hydrol. Process. 16, 9, 1807-1829, DOI: 10.1002/hyp.1095.
DOI :
Cytuj : Vitkulin, A. V. ,Semenov, V. Y. ,Majewski, E. ,Nenovski, P. ,Sayil, N. ,Nguyen, N. T. ,Neska, A. ,Tokarczyk, T. ,Asfahani, J. ,Pietruczuk, A. ,Hattermann, F. F. , Climatological drivers of changes in flood hazard in Germany. Acta Geophysica Vol. 61, no. 2/2013
[Top]

DInSAR technique for three-dimensional coastal spit simulation from Radarsat-1 fine mode data

Czasopismo : Acta Geophysica
Tytuł artykułu : DInSAR technique for three-dimensional coastal spit simulation from Radarsat-1 fine mode data

Autorzy :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia, vik@kscnet.ru,
Semenov, V. Y.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, sem@igf.edu.pl,
Majewski, E.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, emaj@igf.edu.pl,
Nenovski, P.
National Institute for Geophysics, Geodesy and Geography, Sofia, Bulgaria, nenovski@geophys.bas.bg,
Sayil, N.
Karadeniz Technical University, Engineering Faculty, Department of Geophysics, Trabzon, Turkey, sayil@ktu.edu.tr,
Nguyen, N. T.
Institute of Marine Geology and Geophysics, Vietnam Academy of Science and Technology, Hanoi, Vietnam, nguyen_nhutrung@hotmail.com,
Neska, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, anne@igf.edu.pl,
Tokarczyk, T.
Institute of Meteorology and Water Management, National Research Institute, Wrocław Branch, Wrocław, Poland, Tamara.Tokarczyk@imgw.pl,
Asfahani, J.
Geology Department, Atomic Energy Commission, Damascus, Syria, csientific@aec.org.sy,
Pietruczuk, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, januszj@igf.edu.pl,
Hattermann, F. F.
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany, hattermann@pik-potsdam.de,
Marghany, M.
Institute for Science and Technology Geospatial (INSTeG), University of Technology, Malaysia (UTM), Skudai, Johor Bahru, Malaysia, maged@utm.my,
Abstrakty : This work presents a new approach to 3D spit simulation using differential synthetic aperture interferometry (DInSAR). In doing so, conventional DInSAR procedures are implemented to three repeat passes of RADARSAT-1 SAR fine mode data (F1). Further, a new application of using fuzzy B-spline algorithm is implemented with phase unwrapping technique. The study shows that the performance of DInSAR method using fuzzy B-spline is better than the DInSAR technique, which is vali- dated by the coefficient of determination r² of 0.96, probability p of 0.002, and accuracy (RMSE) of ± 0.034 m, with 90 per cent confidence intervals. In conclusion, integration of fuzzy B-spline with phase unwrapping produces an accurate 3D coastal geomorphology reconstruction.

Słowa kluczowe : DInSAR, fringe, interferogram, fuzzy B-spline algorithm, coastal geomorphology, split, digital elevation model (DEM),
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 2
Strony : 478 – 493
Bibliografia : Anile, A.M., S. Deodato, and G. Privitera (1995), Implementing fuzzy arithmetic, Fuzzy Set. Syst. 72, 2, 239-250, DOI: 10.1016/0165-0114(94)00355-B.
Anile, A.M., B. Falcidieno, G. Gallo, M. Spagnuolo, and S. Spinello (2000), Modeling uncertain data with fuzzy B-splines, Fuzzy Set. Syst. 113, 3, 397-410, DOI: 10.1016/S0165-0114(98)00146-8.
Askne, J., M. Santoro, G. Smith, and J.E.S. Fransson (2003), Multitemporal repeatpass SAR interferometry of boreal forests, IEEE Trans. Geosci. Remote Sens. 41, 7, 1540-1550, DOI: 10.1109/TGRS.2003.813397.
Bürgmann, R., P.A. Rosen, and E.J. Fielding (2000), Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation, Ann. Rev. Earth Plan. Sci. 28, 169-209, DOI: 10.1146/annurev.earth.28.1.169.
Dall, J. (2007), InSAR elevation bias caused by penetration into uniform volumes, IEEE Trans. Geosci. Remote Sens. 45, 7, 2319-2324, DOI: 10.1109/TGRS. 2007.896613.
Fan, H., K. Deng, C. Ju, C. Zhu, and J. Xue (2011), Land subsidence monitoring by D-InSAR technique, Min. Sci. Technol. (China) 21, 6, 869-872, DOI: 10.1016/j.mstc.2011.05.030.
Fuchs, H., Z.M. Kedem, and S.P. Uselton (1977), Optimal surface re construction from planar contours, Commun. ACM 20, 10, 693-702, DOI: 10.1145/359842.359846.
Gens, R. (2000), The influence of input parameters on SAR interferometric processing and its implication on the calibration of SAR interferometric data, Int. J. Remote Sens. 21, 8, 1767-1771, DOI: 10.1080/014311600210056.
Hanssen, R.F. (2001), Radar Interferometry: Data Interpretation and Error Analysis, Kluwer Academic Publ., Dordrecht.
Lee, H. (2001), Interferometric synthetic aperture radar coherence imagery for land surface change detection, Ph.D. Thesis, University of London.
Luo, X., F. Huang, and G. Liu (2006), Extraction co-seismic Deformation of Bam earthquake with Differential SAR Interferometry, J. New Zea. Inst. Surv. 296, 20-23.
Marghany, M. (2011), Three-dimensional visualisation of coastal geomorphology using fuzzy B-spline of dinsar technique, Int. J. Phys. Sci. 6, 30, 6967-6971, DOI: 10.5897/IJPS11.768.
Marghany, M. (2012), 3-D coastal bathymetry simulation from airborne TOPSAR polarized data. In: P. Blondel (ed.), Bathymetry and Its Applications, In-Tech Open Access Publisher, University Campus STeP Ri, Croatia, 57-76.
Marghany, M., and M. Hashim (2009), Differential synthetic aperture radar interferometry (DINSAR) for 3D coastal geomorphology reconstruction, Int. J. Comput. Sci. Network Secur. 9, 5, 59-63.
Marghany, M., and M. Hashim (2010a), Different polarised topographic synthetic aperture radar (TOPSAR) bands for shoreline change mapping, Int. J. Phys. Sci. 5, 12, 1883-1889.
Marghany, M., and M. Hashim (2010b), Velocity bunching and Canny algorithms for modelling shoreline change rate from synthetic aperture radar (SAR), Int. J. Phys. Sci. 5, 12, 1908-1914.
Marghany, M., A.P. Cracknell, and M. Hashim (2010a), 3-D visualizations of coastal bathymetry by utilization of airborne TOPSAR polarized data, Int. J. Dig. Earth 3, 2, 187-206, DOI: 10.1080/17538940903477406.
Marghany, M., Z. Sabu, and M. Hashim (2010b), Mapping coastal geomorphology changes using synthetic aperture radar data, Int. J. Phys. Sci. 5, 12, 1890-1896.
Massonnet, D., and K.L. Feigl (1998), Radar interferometry and its application to changes in the Earth’s surface, Rev. Geophys. 36, 4, 441-500, DOI: 10.1029/97RG03139.
Nizalapur, V., R. Madugundu, and C. Shekhar Jha (2011), Coherence-based land cover classification in forested areas of Chattisgarh, Central India, Rusing environmental satellite – advanced synthetic aperture radar data, J. Appl. Remote Sens. 5, 059501-1-059501-6, DOI: 10.1117/1.3557816.
RADARSAT International (2012), RADARSAT application, available online from http:www.rsi.ca.
Rao, K.S., and H.K. Al-Jassar (2010), Error analysis in the digital elevation model of Kuwait desert derived from repeat pass synthetic aperture radar interferometry, J. Appl. Remote Sens. 4, 1-24, DOI: 10.1117/1.3504170.
Rao, K.S., H.K. Al-Jassar, S. Phalke, Y.S. Rao, J.P. Muller, and Z. Li (2006), A study on the applicability of repeat-pass SAR interferometry for generating DEMs over several Indian test sites, Int. J. Remote Sens. 27, 3, 595-616, DOI: 10.1080/01431160500239248.
Rövid, A., A.R. Várkonyi-Koczy, and P. Várlaki (2004), 3D model estimation from multiple images. In: IEEE Int. Conf. on Fuzzy Systems FUZZ-IEEE’2004, 25-29 July 2004, Budapest, Hungary, 1661-1666, DOI: 10.1109/FUZZY.2004.1375430.
Russo, F. (1998), Recent advances in fuzzy techniques for image enhancement, IEEE Trans. Instrum. Meas. 47, 6, 1428-1434, DOI: 10.1109/19.746707.
Sumantyo, J.T.S., M. Shimada, P. Mathieu, and H.Z. Abidin (2012), Long-term consecutive DInSAR for volume change estimation of land deformation, IEEE Trans. Geosci. Remote Sens. 50, 1, 259-270, DOI: 10.1109/TGRS.2011.2160455.
Yang, J., T. Xiong, and Y. Peng (2007), A fuzzy approach to filtering interferometric SAR data, Int. J. Remote Sens. 28, 6, 1375-1382, DOI: 10.1080/01431160600740715.
Zebker, H.A., C.L. Werner, P.A. Rosen, and S. Hensley (1994), Accuracy of topographic maps derived from ERS-1 interferometric radar, IEEE Trans. Geosci. Remote Sens. 32, 4, 823-836, DOI: 10.1109/36.298010.
Zebker, H.A., P.A. Rosen, and S. Hensley (1997), Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, J. Geophys. Res. 102, B4, 7547-7563, DOI: 10.1029/96JB03804.
DOI :
Cytuj : Vitkulin, A. V. ,Semenov, V. Y. ,Majewski, E. ,Nenovski, P. ,Sayil, N. ,Nguyen, N. T. ,Neska, A. ,Tokarczyk, T. ,Asfahani, J. ,Pietruczuk, A. ,Hattermann, F. F. ,Marghany, M. , DInSAR technique for three-dimensional coastal spit simulation from Radarsat-1 fine mode data. Acta Geophysica Vol. 61, no. 2/2013
[Top]

Numerical calculation of cosmic ray ionization rate profiles in the middle atmosphere and lower ionosphere with relation to characteristic energy intervals

Czasopismo : Acta Geophysica
Tytuł artykułu : Numerical calculation of cosmic ray ionization rate profiles in the middle atmosphere and lower ionosphere with relation to characteristic energy intervals

Autorzy :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia, vik@kscnet.ru,
Semenov, V. Y.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, sem@igf.edu.pl,
Majewski, E.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, emaj@igf.edu.pl,
Nenovski, P.
National Institute for Geophysics, Geodesy and Geography, Sofia, Bulgaria, nenovski@geophys.bas.bg,
Sayil, N.
Karadeniz Technical University, Engineering Faculty, Department of Geophysics, Trabzon, Turkey, sayil@ktu.edu.tr,
Nguyen, N. T.
Institute of Marine Geology and Geophysics, Vietnam Academy of Science and Technology, Hanoi, Vietnam, nguyen_nhutrung@hotmail.com,
Neska, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, anne@igf.edu.pl,
Tokarczyk, T.
Institute of Meteorology and Water Management, National Research Institute, Wrocław Branch, Wrocław, Poland, Tamara.Tokarczyk@imgw.pl,
Asfahani, J.
Geology Department, Atomic Energy Commission, Damascus, Syria, csientific@aec.org.sy,
Pietruczuk, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, januszj@igf.edu.pl,
Hattermann, F. F.
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany, hattermann@pik-potsdam.de,
Marghany, M.
Institute for Science and Technology Geospatial (INSTeG), University of Technology, Malaysia (UTM), Skudai, Johor Bahru, Malaysia, maged@utm.my,
Velinov, P. I. Y.
Space Research and Technology Institute, Bulgarian Academy of Sciences, Sofia, Bulgaria, pvelinov@bas.bg,
Abstrakty : Numerical calculations of galac tic cosmic ray (GCR) ionization rate profiles are presented for the middle atmosphere and lower iono- sphere altitudes (35-90 km) for the full GCR composition (protons, alpha particles, and groups of heavier nuclei: light L, medium M, heavy H, very heavy VH). This investigation is based on a model developed by Velinov et al. (1974) and Velinov and Mateev (2008), which is further improved in the present paper. Analytical expressions for energy interval contributions are provided. An approximation of the ionization function on three energy intervals is used and for the first time the charge decrease interval for electron capturing (Dorman 2004) is investigated quantitatively. Development in this field of research is important for better understanding the impact of space weather on the atmosphere. GCRs in fluence the ionization and electric parameters in the atmosphere and also the chemical processes (ozone creation and depletion in the stratosphere) in it. The model results show good agreement with experimental data (Brasseur and Solomon 1986, Rosenberg and Lanzerotti 1979, Van Allen 1952).

Słowa kluczowe : galactic cosmic ray ionization, middle atmosphere, lower ionosphere,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 2
Strony : 494 – 509
Bibliografia : Agostinelli, S., J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arcel, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche (2003), GEANT4 – a simulation toolkit, Nucl. Instrum. Meth. Phys. Res. A 506, 3, 250-303, DOI: 10.1016/S0168-9002(03)01368-8.
Alexandrov, L., and A. Mishev (2008), Application of afxy-code for parameterization of ionization yield function Y in the atmosphere for primary cosmic ray protons, arXiv:0712.3174 physics.space-ph.
Apanasenko, A.V., V.A. Beresovskaya, M. Fuji, V.I. Galkin, M. Hareyama, M. Ichimura, S. Ito, E. Kamioka, T. Kitami, T. Kobayashi, V.V. Kopenkin, S. Kuramata, Y. Kuriyama, V.I. Lapshin, A.K. Managadze, H. Matsutani, H. Mikami, N.P. Misnikova, R.A. Mukhamedshin, M. Namiki, H. Nanjo, S.N. Nazarov, S.I. Nikolsky, T. Oe, S. Ohta, V.I. Osedlo, D.S. Oshuev, P.A. Publichenko, I.V. Rakovolskaya, T.M. Roganova, M. Saito, G.P. Sazhina, H. Semba, Yu.N. Shabanova, T. Shibata, H. Sugimoto, L.G. Sveshnikova, K. Takahashi, T. Tsutiya, V.M. Taran, N. Yajima, T. Yamagami, K. Yamamoto, I.V. Yashin, E.A. Zamchalova, G.T. Zetsepin, and I.S. Zayarnaya (2001), All particle spectrum observed by RUNJOB. In: Proc. 27th Int. Cosmic Ray Conference, 7-15 August 2001, Hamburg, Germany, 1622-1625.
Bethe, H. (1930), Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie, Ann. Phys. 397, 3, 325-400, DOI: 10.1002/andp.19303970303 (in German).
Bloch, F. (1933), Bremsvermögen von Atomen mit mehreren Elektronen, Z. Phys., 81, 5-6, 363-376, DOI: 10.1007/BF01344553 (in German).
Bohr, N. (1913), On the theory of the decrease of velocity of moving electrified particles on passing through matter, Philos. Mag. Ser. 6 25, 145, 10-31, DOI: 10.1080/14786440108634305.
Brasseur, G.P., and S. Solomon (1986), Aeronomy of the Middle Atmosphere, Chemistry and Physics of the Stratosphere and Mesosphere, 2 ed., Atmospheric and Oceanographic Sciences Library, Reidel Publ. Comp., Dordrecht, 452 pp.
De Nolfo, G.A., N.E. Yanasak, W.R. Binns, A.C. Cummings, A.J. Davis, J.S. George, P.L. Hink, M.H. Israel, R.A. Leske, R.A. Mewaldt, E.C. Stone, T.T. von Rosenvinge, and M.E. Wiedenbeck (2003), New measurements of the Li, Be, and B isotopes as a test of cosmic ray transport models. In: Proc. 28th Int. Cosmic Ray Conference, 31 July – 7 August 2003, Tsukuba, Japan, 1777-1780.
Desorgher, L., E.O. Flückiger, M. Gurtner, M.R. Moser, and R. Bütikofer (2005), Atmocosmics: A GEANT 4 code for computing the interaction of cosmic rays with the Earth’s atmosphere, Int. J. Modern Phys. A 20, 29, 6802-6804, DOI: 10.1142/S0217751X05030132.
Dorman, L.I. (2004), Cosmic Rays in the Earth’s Atmosphere and Underground, Astrophysics and Space Science Library, Kluwer Academic Publ., Dordrecht.
Dorman, L.I., and I.D. Kozin (1983), Cosmic Radiation in the Upper Atmosphere, Fizmatgiz, Moscow.
Gleeson, L.J., and W.I. Axford (1968), Solar modulation of galactic cosmic rays, Astrophys. J. 154, 1011, DOI: 10.1086/149822.
Heaps, M.G. (1978), Parameterization of the cosmic ray ion-pair production rate above 18 km, Planet. Space Sci. 26, 6, 513-517, DOI: 10.1016/0032-0633(78)90041-7.
Heck, D., J. Knapp, J.N. Capdevielle, G. Schatz, and T. Thouw (1998), CORSIKA: A Monte Carlo code to simulate extensive air showers, Forschungszentrum Karlsruhe, Report FZKA 6019.
Maplesoft (2010), Maple, Version 14, Mathematics with Maple, Maplesoft.
Mishev, A.L. (2009), Recent CORSIKA code simulations for space climate and astrophysics toward to Sun-Earth influences studies. In: Proc. Int. Conference, Fundamental Space Research, 120-123.
Mishev, A.L., and P.I.Y. Velinov (2010), The effect of model assumptions on computations of cosmic ray induced ionization in the atmosphere, J. Atmos. Solar Terr. Phys. 72, 5-6, 476-481, DOI: 10.1016/j.jastp.2010.01.004.
Rosenberg, T.J., and L.J. Lanzerotti (1979), Direct energy inputs to the middle atmosphere. In: NASA, Goddard Space Flight Center, Middle Atmosphere Electrodynamics, SEE N79-25608 16-46, 43-70.
Ruder, H., P.I.Y. Velinov, and L.N. Mateev (2006), Interval coupling of cosmic Ray protons in ionization model for planetary ionospheres and atmospheres, C. R. Acad. Bulg. Sci. 59, 7, 717-722.
Starodubcev, S.V., and A.M. Romanov (1962), Penetration of charged particles through substance, Publ. House Uzb. Acad. Sci., Tashkent (in Russian).
Sternheimer, R.M. (1961), Fundamental principles and methods of particle detection, In: L.C.L. Yuan, and C.-S. Wu (eds.), Methods in Experimental Physics, Vol. 5, Part A. Nuclear Physics, Acad. Press, New York – London.
Tassev, Y.K. (2008), Relationships between low energy proton flux and ozone, temperature and pressure during and after the solar proton event from 20 January 2005, C. R. Acad. Bulg. Sci. 61, 2, 243-252.
Toptygin, I.N. (1985), Cosmic Rays in Interplanetary Magnetic Fields, D. Reidel Publ., Dordrecht, 375 pp.
Usoskin, I.G., K. Alanko-Huotari, G.A. Kovaltsov, and K. Mursula (2005), Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951-2004, J. Geophys. Res. 110, A12108, DOI: 10.1029/2005JA011250.
Usoskin, I.G., L. Desorgher, P. Velinov, M. Storini, E.O. Flückiger, R. Bütikofer, and G.A. Kovalstov (2009), Ionization of the Earth’s atmosphere by solar and galactic cosmic rays, Acta Geophys. 57, 1, 88-101, DOI: 10.2478/s11600-008-0019-9.
Usoskin, I.G., G.A. Kovaltsov, and I.A. Mironova (2010), Cosmic ray induced ionization model CRAC:CRII: An extension to the upper atmosphere, J. Geophys. Res. 115, D10302, DOI: 10.1029/2009JD013142.
Van Allen, J.A. (1952), The nature and intensity of the cosmic radiation. In: C.S. White and OO Benson, Jr. (eds.), Physics and Medicine of the Upper Atmosphere, University of New Mexico Press, Albuquerque.
Velinov, P.I.Y., G. Nestorov, and L. Dorman (1974), Cosmic Ray Influence on the Ionosphere and on the Radiowave Propagation, BAS Publ. House, Sofia.
Velinov, P.I.Y. (1991), Effect of anomalous CR on ionization in high latitude ionosphere, C. R. Acad. Bulg. Sci. 44, 2, 33.
Velinov, P.I.Y., and L. Mateev (2008), Analytical approach to cosmic ray ionization by nuclei with charge Z in the middle atmosphere – Distribution of galactic CR effects, Adv. Space Res. 42, 9, 1586-1592, DOI: 10.1016/j.asr.2007.12.008.
Velinov, P.I.Y., A. Mishev, and L. Mateev (2009), Model for induced ionization by galactic cosmic rays in the Earth atmosphere and ionosphere, Adv. Space Res. 44, 9, 1002-1007, DOI: 10.1016/j.asr.2009.06.006.
Wolfram, S. (2008), Mathematica, Version 7.0, Wolfram Research Inc., Champaign.
DOI :
Cytuj : Vitkulin, A. V. ,Semenov, V. Y. ,Majewski, E. ,Nenovski, P. ,Sayil, N. ,Nguyen, N. T. ,Neska, A. ,Tokarczyk, T. ,Asfahani, J. ,Pietruczuk, A. ,Hattermann, F. F. ,Marghany, M. ,Velinov, P. I. Y. , Numerical calculation of cosmic ray ionization rate profiles in the middle atmosphere and lower ionosphere with relation to characteristic energy intervals. Acta Geophysica Vol. 61, no. 2/2013
[Top]