Category: Vol. 63, no. 4

On variation in Schloenbachia varians (J. Sowerby, 1817) from the Lower Cenomanian of western Kazakhstan

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : On variation in Schloenbachia varians (J. Sowerby, 1817) from the Lower Cenomanian of western Kazakhstan

Autorzy :
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Abstrakty : An assemblage of 94 specimens of Schloenbachia varians (J. Sowerby, 1817) from the Lower Cenomanian Sharpeiceras schlueteri Subzone of the Mantelliceras mantelli Zone of the Besakty section in the Mangyshlak Mountains of western Kazakhstan includes 26 complete adults that range from to 59–174 mm in diameter. No size-related dimorphism was detected in the assemblage, which shows wide, continuous intraspecific variation. This is described in terms of five formae; from robust to gracile these are: ventriosa, varians sensu stricto, subtuberculata, intermedia, and subplana. The ratio of robust (ventriosa + varians sensu stricto) to gracile (subtuberculata + intermedia + subplana) individuals is 34% to 66%. The reference specimens of the formae and their synonyms are described and illustrated, and related to the Besakty material. The modification of adult body chamber ornament of all formae is documented, and Jakeiceras Cooper and Owen, 2011 is shown to be based on an adult of a passage form between forma subtuberculata and forma intermedia. The differences between Lower Cenomanian S. varians, lower Middle Cenomanian S. coupei (Brongniart, 1822), and upper Middle and lower Upper Cenomanian S. lymensis Spath, 1926b are described and illustrated.

Słowa kluczowe : amonity, Schloenbachia, mutacja, cenoman, kreda, Kazachstan, Ammonites, Schloenbachia, variation, Cenomanian, Cretaceous, Kazakhstan,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2013
Numer : Vol. 63, no. 4
Strony : 443 – 468
Bibliografia : 1. Amédro, F., Matrion, B., Touch, R. and Verrier, J.-M. 2012. Extension d’un niveau repère riche en Inoceramus crippsi bivalve dans le Cénomanien basal du Bassin de Paris. Annales de la Société Géologique du Nord, 19, 9–23.
2. Brongniart, A. 1822. Sur quelques terrains de Craie hors du Bassin de Paris, 80–101. In Cuvier, G. and Brongniart, A. Description géologique des environs de Paris, 3rd edn., 428 p. Dufour et D’ Ocagne; Paris.
3. Cobban, W.A. 1969. The Late Cretaceous ammonites Scaphites leei Reeside and Scaphites hippocrepis (DeKay) in the Western Interior of the United States. U.S. Geological Survey Professional Paper, 619, 27 p.
4. Cooper, M.R. and Owen, H.G. 2011. Evolutionary relationships among Schloenbachiidae (Cretaceous Ammonoidea: Hoplitoidea), with a revised classification of the family. Neues Jährbuch für Geologie und Paläontologie Abhandlungen, 262, 289–307.
5. Davis, R.A., Landman, N.H., Dommergues, J.-L., Marchand, D. and Bucher, H. 1996. Mature modification and dimorphism in ammonoid cephalopods. Topics in Geobiology, 13, Ammonoid Palaeobiology, 464–539.
6. Delamette, M. and Kennedy, W.J. 1991. Cenomanian ammonites from the condensed deposits of the Helvetic Domain. Journal of Paleontology, 65, 435–465.
7. Donovan, D.T. 1953. The Jurassic and Cretaceous stratigraphy and palaeontology of Traill Ø, East Greenland. Meddelelser om Grønland, 111, 150 p.
8. Donovan, D.T. 1954. Upper Cretaceous fossils from Traill and Geographical Society Oer, East Greenland. Meddelelser om Grønland, 72, 33 p.
9. Douvillé, H. 1890. Sur la classification des Cératites de la Craie. Bulletin de la Société Géologique de France (3), 18, 275–292.
10. Gale, A.S. 1995. Cyclostratigraphy and correlation of the Cenomanian Stage in Western Europe. Geological Society Special Publication, 85, 177–197.
11. Gale, A.S. and Friedrichs, S. 1989. Occurrence of the ammonite genus Sharpeiceras in the Lower Cenomanian Chalk Marl of Folkestone. Proceedings of the Geologists’ Association, 100, 80–82.
12. Gale, A.S., Hancock, J.M. and Kennedy, W.J. 1999. Biostratigraphical and sequence correlation of the Cenomanian sucessions in Mangyshlak (W. Kazakhstan) and Crimea (Ukraine) with those in southern England. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique. Sciences de la Terre, 69, supplement A, 67–86.
13. Hancock, J.M., Kennedy, W.J. and Klaumann, H. 1972. Ammonites from the transgressive Cretaceous on the Rhenish Massif, Germany. Palaeontology, 15, 445–499.
14. Hiss, M. 1982. Ammoniten des Cenomans vom Südrand der westfälischen Kreide zwischen Unna und Möhnesee. Paläontologische Zeitschrift, 56, 177–208.
15. Hyatt, A. 1903. Pseudoceratites of the Cretaceous. United States Geological Survey Monograph, 44, 351 p.
16. Immel, H. and Seyed-Emami, K. 1985. Die Kreideammoniten des Glaukonitkalkes (0. Alb- 0. Cenoman) des Kolah – Qazi – Gebirges sudostlich von Esfahan (Zentral Iran). Zitteliana 12, 87–137.
17. Juignet, P. and Kennedy, W.J. 1976. Faunes d’ammonites et biostratigraphie comparée du Cénomanien du nord-ouest de la France (Normandie) et du sud d’Angleterre. Bulletin Trimestriele de la Société Géologique de Normandie et des Amis du Muséum du Havre, 63, 1–193.
18. Kaplan, U., Kennedy, W.J., Lehmann, J. and Marcinowski, R. 1998. Stratigraphie und Ammonitenfaunen des westfälischen Cenoman. Geologie und Paläontologie in Westfalen, 51, 236 p.
19. Kennedy, W.J. 1985. A note on Ammonites tollotianus Pictet, 1847. Cretaceous Research, 6, 383–385.
20. Kennedy, W.J. 1994. Cenomanian ammonites from Cassis, Bouches-du-Rhône, France. Palaeopelagos, Special Volume 1, 209–254.
21. Kennedy, W.J., Amédro, F., Robaszynski, F. and Jagt, J.W.M. 2011. Ammonite faunas from condensed Cenomanian-Turonian sections (‘Tourtias’) in southern Belgium and northern France. Netherlands Journal of Geosciences, 90, 209–238.
22. Kennedy, W.J., Chahida, M.R. and Djafarian, M.A.1979. Cenomanian Cephalopods from the Glauconitic Limestone southeast of Esfahan, Iran. Acta Palaeontologica Polonica, 24, 3–50.
23. Kennedy, W.J. and Hancock, J.M. 1970. Ammonites of the genus Acanthoceras from the Cenomanian of Rouen, France. Palaeontology, 13, 462–490.
24. Kennedy, W.J. and Juignet, P. 1984. A revision of the ammonite faunas of the type Cenomanian. 2. The families Binneyitidae, Desmoceratidae, Engonoceratidae, Placenticeratidae, Hoplitidae, Schloenbachiidae, Lyelliceratidae and Forbesiceratidae. Cretaceous Research, 5, 93–161.
25. Kennedy, W.J., King, C. and Ward, D.J. 2008. The Upper Albian and Lower Cenomanian succession at Kolbay, eastern Mangyshlak, southwest Kazakhstan. Bulletin de l’Institut royal des Sciences naturelles de Belgique, Sciences de la Terre, 78, 117–147.
26. Korn, D., Ebbighausen, V., Bockwinkel, J. and Klug, C. 2003. The A-mode sutural ontogeny in prolecanitid ammonites. Palaeontology, 46, 1123–1132.
27. Kullmann, J. and Wiedmann, J. 1970. Significance of sutures in phylogeny of Ammonoidea. University of Kansas, Paleontological Contributions, 42, 1–32.
28. Luppov, N.P. 1963. New Cenomanian and Lower Turonian ammonites of the genus Placenticeras from Central Asia. Trudy Vsesoyuznogo nauchno-issledovatel’skogo geologicheskogo institua VSEGEI, novaya seriya, 109, 135–160. In Russian
29. Manija, A.A. 1974 Stratigraphy and ammonites of the Cenomanian deposits of southern Turkmenia. In; Korobkova, I.A. 1974. Stratigraphy and molluscan fauna of the Upper Cretaceous and Palaeocene sediments of Southern and Eastern Turkmenia. Ministry of Geology of the USSR, Ashkasbad, 275 p. In Russian
30. Mantell, G.A. 1822. The fossils of the South Downs; or illustrations of the geology of Sussex. xvi + 327 p. Lupton Relfe; London.
31. Marcinowski, R. 1983. Upper Albian and Cenomanian ammonites from some sections of the Mangyshlak and Tuarkyr regions, Transcaspia, Soviet Union. Neues Jahrbuch für Geologie und Pälaontologie, Monatshefte (1983), 156–180.
32. Marcinowski, R. and Radwanski, A. 1983. The mid-Cretaceous transgression onto the Central Polish Uplands (marginal part of the Central European Basin) Zitteliana, 10, 65–95.
33. Marcinowski, R., Walaszczyk, I. and Olszewska-Nejbert, D. 1996. Stratigraphy and regional development of the mid-Cretaceous (Upper Albian through Coniacian), of the Mangyshlak Mountains, Western Kazakhstan. Acta Geologica Polonica, 46, 1–60.
34. Neumayr, M. 1875. Die Ammoniten der Kreide und die Systematik der Ammonitiden. Zeitschrift der Deutschen Geologischen Gesellschaft, 27, 854–942.
35. Orbigny, A. d’. 1840–1842. Paléontologie française: Terrains crétacés. 1. Céphalopodes. Masson, Paris, 1–120 (1840); 121–430 (1841); 431–662 (1842).
36. Pictet, F.J. 1847. Description des mollusques fossiles qui se trouvent dans les Grès Verts des environs de Genève. Première livraison. Cephalopodes. 156 p. Frick; Geneva.
37. Schlüter, C. 1871–1876. Cephalopoden der oberen deutschen Kreide. Palaeontographica, 21, 1–24 (1871); 21, 25–120 (1872); 24, 1–144 (121–264) + x (1876).
38. Semenov, W.P. 1899. The fauna of the Cretaceous deposits of Mangychlak and some other localities in the Transcaspian province. Travaux de la Société Impériale des Naturalistes de St. Pétersbourg, 28 (5), Section Géologie et Minéralogie, 1–178. In Russian
39. Seyed-Emami, K. and Aryai, A.A. 1981. Ammoniten aus dem unteren Cenoman von Nordostiran (Koppeh-Dagh). Mitteilungen der Bayerischen Staatsammlung für Paläontologie und historische Geologie, 21, 23–39.
40. Sharpe, D. 1853–57. Description of the fossil remains of Mollusca found in the Chalk of England. I, Cephalopoda. Monograph of the Palaeontographical Society, 68 p. 1–26 (1853); 27–36 (1855); 37–68 (1857).
41. Sowerby, J. 1817. The Mineral Conchology of Great Britain, 2, pls. 151–184, A, 185, 186. The Author; London.
42. Spath, L.F. 1926a. On new ammonites from the English Chalk. Geological Magazine, 63, 77–83.
43. Spath, L.F. 1926b. On the zones of the Cenomanian and the uppermost Albian. Proceedings of the Geologists’ Association, 37, 420–432.
44. Spath, L.F. 1928. A Monograph of the Ammonoidea of the Gault Part 6, Monograph of the Palaeontographical Society, 207–266.
45. Spath, L.F. 1938. Problems of ammonite nomenclature. 3. On Ammonites varians J. Sowerby. Geological Magazine, 75, 543–547.
46. Stieler, K. (1922) Über Gault-und Cenoman-Ammoniten aus dem Cenoman des Cap Blanc Nez. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 1922, 19–44.
47. Thomel, G. 1992. Ammonites du Cénomanien et du Turonien du Sud-Est de la France. 1, 422 p. 2, 383 p Serre, Nice.
48. Wiedmann, J. and Schneider, H.L. 1979. Cephalopoden und Alter der Cenoman-Transgression von Mülheim-Broich, SWWestfalen. In Wiedmann, J. (Ed.), Aspekte der Kreide Europas, International Union of Geological Sciences (A), 6, 645–680.
49. Wilmsen, M. and Mosavinia, A. 2011. Phenotypic plasticity and taxonomy of Schloenbachia varians (J. Sowerby, 1817) (Cretaceous Ammonoidea). Paläontologisches Zeitschrift, 85, 168–184.
50. Wilmsen, M. and Niebuhr, B. 2002. Stratigraphic revision of the Upper Lower and Middle Cenomanian in the Lower Saxony basin, (Northern Germany) with special reference to the Salzgitter area. Cretaceous Research 23, 445–460.
51. Wright, C.W. and Kennedy, W.J. 1984-1996. The Ammonoidea of the Lower Chalk. Monograph of the Palaeontographical Society, 319 p. 1–126 (1984); 127–218 (1987); 219–294 (1991); 295–319 (1995); 320–403 (1996).
52. Wright, C.W. 1957. Cretaceous Ammonoidea. In Moore, R.C. (Ed), Treatise on Invertebrate Paleontology. Part L, Mollusca 4, Cephalopoda Ammonoidea. xxii + 490 p. Geological Society of America and University of Kansas Press, New York and Lawrence.
53. Wright, C.W. 1996. Treatise on Invertebrate Paleontology. Part L, Mollusca 4: Cretaceous Ammonoidea. xx + 362 p. (with contributions by J.H. Calloman (sic) and M.K. Howarth). Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas.
54. Wright, C.W. and Wright, E.V. 1951. A survey of the fossil Cephalopoda of the Chalk of Great Britain. Monograph of the Palaeontographical Society, 1– 40.
DOI :
Cytuj : Kennedy, W. J. , On variation in Schloenbachia varians (J. Sowerby, 1817) from the Lower Cenomanian of western Kazakhstan. Acta Geologica Polonica Vol. 63, no. 4/2013

Inoceramid and foraminiferal record and biozonation of the Turonian and Coniacian (Upper Cretaceous) of the Mangyshlak Mts., western Kazakhstan

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Inoceramid and foraminiferal record and biozonation of the Turonian and Coniacian (Upper Cretaceous) of the Mangyshlak Mts., western Kazakhstan

Autorzy :
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland, i.walaszczyk@uw.edu.pl,
Kopaevich, L.
Geological Faculty, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991 Russia,
Beniamovski, V. N.
Geological Institute, Russian Academy of Sciences, Pyzhevski 7, Moscow, 119017, Russia,
Abstrakty : The Turonian and Coniacian (Upper Cretaceous) of the Mangyshlak Mts., western Kazakhstan, yielded a rich and relatively complete inoceramid bivalve record. The faunas and their succession correspond to those known from central and eastern Europe, allowing the zonation established in the latter areas to be applied in a virtually identical form. The gaps in the record of the group in Mangyshlak stem from the regional hiatuses in the geological record in the area and do not reflect any biogeographical differences between eastern and central-western Europe. Planktonic foraminifera are rare. Four successive interval range zones can be distinguished: in ascending stratigraphic order, the Helvetoglobotrunaca helvetica, Marginotruncaca pseudolinneiana, Marginotruncana coronata, and Concavotruncana concavata zones. Their correlation with the inoceramid zonation and, consequently, with the chronostratigraphic scheme, is demonstrated. The zonation and chronostratigraphic subdivision as applied in Mangyshlak may easily be applied to other areas of the peri-Caspian region (Caucasus, Tuarkyr, Kopet-Dagh, SE margin of the East-European Craton).

Słowa kluczowe : kreda, turon, koniak, Mangystau, biostratygrafia, małże, otwornice, korelacja, Europa Północna, prowincja, biogeografia, Cretaceous, Turonian, Coniacian, Mangyshlak, Biostratigraphy, Inoceramid bivalves, Foraminifers, Correlation, North European biogeographic Province,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2013
Numer : Vol. 63, no. 4
Strony : 469 – 487
Bibliografia : 1. Alekseev, A.S., Kopaevich, L.F., Nikishin, A.M., Kuuzmicheva, T.A., Ovechkina M.N. 2007. Cenomanian-Turonian boundary in Southwestern Crimea. Paper 1. Stratigraphy. Byulletin MOIP. Geology, 82, 3–29. In Russian
2. Aliev, M.M. and Kharitonov, V.M. 1981. Stratigraphic distribution of Inoceramus in the Upper Cretaceous deposits of Azerbaijan. Izvestia Akademii Nauk Azerbaydjanskoy SSR, Seria Nauk o Zemle, 2(1981), 3–12. In Russian
3. Aliev, M.M. and Kharitonov, V.M. 1988. Inoceramids. Upper Cretaceous. In: Aliza-Zade, A.A., Aliev, G.A., Aliev, M.M., Alijlla, K and Khalilov, A.G. (Eds), Cretaceous fauna of Azerbaijan, pp. 250–273. Elm; Baku.
4. Aliev, M.M. and Pavlova, M.M. 1983. Stratigraphic and paleoecologic peculiarities of inoceramides of the Upper Cretaceous of the south of the USSR. Izvestia Akasdemii Nauk Azerbaydjanskoy SSR, Seria Nauk o Zemle, 4(1983), 97–102. In Russian
5. Aliev, M.M., Pavlova, M.M. and Kharitonov, V.M. 1982. Biostratigraphic subdivision of the Upper Cretaceous deposits of Daghestan based on inocerams. Izvestia Akasdemii Nauk Azerbaydjanskoy SSR, Seria Nauk o Zemle, 4(1982), 3–11. In Russian
6. Andert, H. 1911. Die Inoceramen des Kreibitz-Zittauer Sandsteingebirges. Festschrift des Humboldtvereins zur Feier seines 50 jahrigen Bestehens, 33–64. Ebersbach.
7. Andert, H. 1934. Die Kreideablagerungen zwischen Elbe und Jeschken Teil III: Die Fauna der obersten Kreide in Sachsen, Böhmen und Schlesien. Abhandlungen der Preußischen Geologischen Landesanstalt, Neue Folge 159, 1–447.
8. Arkhangelsky, A.D. 1916. Les mollusques du crétacé supérieur de Turkestan. Mémoires de Comité Géologique, Nouvelle Série, 152, 1–57. In Russian
9. Arzumanova, E.M. 1964. Some representatives of the family Inoceramidae in the Upper Cretaceous deposits of western Kopet-Dagh. Izvestia Akademii Nauk Turkmenskoy SSR, Seria Fizyko-Technitcheskich, Chmitcheskich and Geologitscheskich Nauk, 3, 101–110.
10. Atabekian, A.A. 1969. On some homonyms in Jurassic and Cretaceous inoceramids. Izvestia Akademii Nauk Armianskoy SSR, 1 (1969), 3–15. In Russian
11. Atabekian A.A. 1974. Inoceramids. In: Atlas of fossil fauna of Armenian SSR, 211–424. Erevan. In Russian
12. Atabekian, A.A. 1997. Inoceramidae. In: V.V. Arkadiev and T.N. Bogdanova (Eds), Atlas of the Cretaceous fauna of southwestern Crimea, pp. 63–70. In Russian
13. Atabekian, A.A. and Likhacheva, A.A. 1961. Upper Cretaceous deposits of western Kopet -Dag. Trudy VSEGEI, Nova Seriya, 62. Leningrad. In Russian
14. Badillet, G. and Sornay, J. 1980. Sur quelques formes du groupe d’Inoceramus labiatus decrites par O. Seitz. Impossibilite d’utiliser ce groupe pour une datation stratigraphique du Turonien inferieur du Saumurois (France). Compte Rendu Academie Science Paris, Serie D, 290, 323–325.
15. Baraboshkin, E.Yu., Alekseev, A.S., Kopaevich, L.F. 2003 Cretaceous Paleogeography of the North-Eastern Peri-Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology. 196, 177–208.
16. Beniamovski, V.N. 2008. Infrazonal biostratigraphy of the Upper Cretaceous in the East European Province based on benthic foraminifers, Part 1: Cenomanian–Coniacian. Stratigraphy and Geological Correlation, 6, 257–266.
17. Böhm, J. 1914. Zusammenstellung der Inoceramen der Kreideformation (Nachtrag). Jahrbruch der Preußischen Geologischen Landesanstalt, 35/1, 595–599.
18. Caron, M. 1985. Cretaceous planktonic foraminifera. In: H.M. Bolli, J.B. Saunders and K. Perch-Nielsen (Eds), Plankton stratigraphy, pp. 17–86. Cambridge University Press; Cambridge.
19. Conrad, T.A. 1855-58. Observations on a group of Cretaceous fossil shells, found in Tippah County, Miss., with description of fifty-six new species. Journal of the Academy of Natural Science of Philadelphia, 3, 323–336.
20. Diebold, F., Bengtson, P., Lees, J.A. and Walaszczyk, I. 2010. Ammonite, inoceramid and nannofossil biostratigraphy across the Turonian–Coniacian boundary in the Aquitaine and Vocontian basins (France) and Diego Basin (Madagascar). Abstract Volume of the 8th International Symposium, Cephalopods – Present and Past (Dijon – France 2010).
21. Dobrov, S.A. and Pavlova, M.M. 1959. Inoceramids. In: M.M. Moskvin (Ed.), Atlas of the Upper Cretaceous fauna of northern Caucasus and Crimea, pp. 130–165. Moscow. In Russian
22. Egoyan, V.L. 1955. Upper Cretaceous deposits of south-western part of Armenian SSR, 270 pp. Akademia Nauk Armianskoy SSR; Erevan. In Russian
23. Elder, W.P. 1991. Mytiloides hattini n. sp., a guide fossil for the base of the Turonian in the Western Interior of North America. Journal of Paleontology 65, 234–241.
24. Ernst, G., Schmid, F. and Seibertz, E. 1983. Event-Stratigraphie im Cenoman und Turon von NW Deutschland. Zitteliana, 10, 531–554.
25. Goldfuss, A. 1834-40. Petrefakta Germaniae tam ea, quae in museo, 2, 106–118. Dusseldorf.
26. Gümbel, C.W. 1868. Verzeichnis der in der Sammlung des Geol.-Mineral. Vereins in Regensburg vorfindlischen Versteinerungen aus den Schichten der ˙Procän-oder Kreideformation aus der Umgebung von Regensburg. Correspondenz-Blatt des Zoologisch-Mineralogischen Vereins in Regensburg, 8 p. 22, 69.
27. Hart, M.B. and Bailey, H.W. 1979. The distribution of planktonic Foraminiferida in the mid-Cretaceous of NW Europe. In: Wiedmann, J. (Ed.). Aspekte der Kreide Europas. International Union of Geological Sciences, Series A 6, p. 527–542.
28. Heine, F. 1929. Die Inoceramen des mittelwestfalischen Emschers und unteren Untersenons. Abhandlungen der Preussischen Geologischen Landesanstalt, Neue Folge, 120, 1–124.
29. Heinz, R. 1926. Beitrag zur Kenntnis der Stratigraphie und Tektonik der oberen Kreide Lüneburg. Mitteilungen aus dem Mineralogisch-Geologischen Staatinstitut, Hamburg, 8, 3–109.
30. Heinz, R. 1928. Das Inoceramen-Profil der Oberen Kreide Lüneburgs. Mit Anführung der neuen Formen und deren Kennzeichnung. Beiträge zur Kenntnis der oberkretazischen Inoceramen I. Jahresbericht des Niedersächsischen geologischen Vereins zu Hannover, 21, 64–81.
31. Heinz, R. 1930. Zur stratigraphischen Stellung der Sonnebergschichten bei Waltersdorf i. Sa. (westsüdwestlich von Zittau). Beiträge zur Kenntnis der oberkretazischen Inoceramen IX. Jahresbericht des Niedersachsischen geologischen Vereins zu Hannover, 23, 25–29.
32. Heinz, R. 1932. Zur Gliederung der sächsisch-schlesischbohmischen Kreide unter Zugrundelegung der norddeutschen Stratigraphie. Beiträge zur Kenntnis der oberkretazischen Inoceramen X. Jahresbericht des Niedersächsischen geologischen Vereins zu Hannover, 24, 24–52.
33. Ivannikov, A.V. 1979. Inoceramids of the Upper Cretaceous in southwestern part of the East-European Platform, pp. 1–102. Akademia Nauk Ukrainskoy SSR, Instytut Geologitscheskich Nauk; Kiev. In Russian
34. Jimbo, K. 1894. Beiträge zur Kenntnis der Fauna der Kreideformation von ˙Hokkaido. Palaeontologische Abhandlungen, N.F., 2 (3), 140–198.
35. Kauffman, E.G. 1973. Cretaceous bivalvia. In: A. Hallam (Ed.), Atlas of Palaeobiogeography, pp. 353–383. Elsevier; Amsterdam.
36. Kauffman, E.G., Hattin, D.E. and Powell, J.D. 1977. Stratigraphic, paleontologic and paleoenvironmental analysis of the Upper Cretaceous rocks of Cimarron County, Northwestern Oklahoma. Memoir of the Geological Society of America, 149, 1–150.
37. Kennedy, W.J., Walaszczyk, I.and Cobban, W.A. 2000. Pueblo, Colorado, USA, candidate Global Boundary Stratotype Section and Point for the base of the Turonian Stage of the Cretaceous, and for the base of the Middle Turonian Substage, with a revision of the Inoceramidae (Bivalvia). Acta Geologica Polonica, 50, 295–334.
38. Khalafova, R.A. 1968. Fauna and stratigraphy of the Upper Cretaceous deposits of the SE part of the Small Caucasus and Nachitchewan area of ASSR, pp. 1–330. Erevan. In Russian
39. Kharitonov, V.M. 1993. Stratigraphy of the Upper Cretaceous deposits of the Araksinskoy tectonic zone of Back-Caucasus Zone. Oteczestvennaya Geologia, 12, 35–42. In Russian
40. Kharitonov, V.M., Ivanov, A.V. and Seltzer, V.B. 2003. Stratigraphy of the Turonian and Coniacian deposits of the Lower Povolzhe. Volga and Pricaspian Region Resources, 36, 48–60. In Russian
41. Kharitonov, V.M., Marinov, V.A., Ivanov, A.V. and Fomin, V.A. 2007. Upper Cretaceous inoceramids from coresections from the West-Siberian plain and some questions on stratigraphy of the Turonian Stage. Izvestia Saratovskovo Universiteta, 7, Seria Nauk o Zemle, 2, 61–70. In Russian
42. Koch, W. 1977. Biostratigraphie in der Oberkreide und Taxonomie von Foraminiferen. Geologisches Jahrbuch, A38, 11–123.
43. Kopaevich, L.F. 1989. Palaeodepth on the base of the analysis planktonic foraminifera assemblages (on materials of Pericaspian sections). Moscow University Geology Bulletin. Ser. 4. Geology, 3, 25–34.
44. Kopaevich, L.F. 1996. The Turonian strata in southwestern Crimea and Mangyshlak (foraminiferal biostratigraphy and palaeobiogeography). Mitteilungen aus dem Geologisch.-Paläontologischen Institut der Universität Hamburg, 77, 203–211.
45. Kopaevich, L.F. 2010. Upper Cretaceous zonal scheme for Crimea-Caucasus area on the base of globotruncanids Bulletin MOIP. Geology, 85, 40–52. In Russian
46. Kopaevich, L.F. 2011. The value of planktonic foraminifers in the stratigraphy of the Upper Cretaceous of the East European Platform. Bulletin MOIP, Geology, 86, 32–45.
47. Kopaevich L., Alekseev A.S., Baraboshkin E.Yu., Beniamovskii V.N. 1999. Cretaceous sedimentary units of Mangyshlak Peninsula (western Kazakhstan). Geodiversitas, 21, 407–419.
48. Kopaevich, L.F., Beniamovski, V.N. and Sadekov A.Yu. 2007. Middle Coniacian–Santonian foraminiferal bioevents around the Mangyshlak Peninsula and Russian Platform. Cretaceous Research, 28, 108–118.
49. Korchagin V.A. 2003. Classification Mesozoic planktonic foraminifers (superfamiles Planomalinacea, Totaliporacea and Globotruncanacea). GEOS, 1–90. Moscow.
50. Kotsubinsky, S.P. 1968. Inoceramidae. In: Fauna of the Cretaceous deposits of the Western Ukraine, 115–148. Kiev. In Ukrainian
51. Kotsubinsky, S.P. 1974. Inocerams. In: Krymgoltz, G.J. (Ed.), Atlas of the Upper Cretaceous Fauna of Donbass, pp. 76–86. Nedra; Moscow. In Russian
52. Loeblich, A.R. and Tappan, H.N. 1987. Foraminiferal genera and their classification, 970 pp. Van Nostrand Reinhold Company; New York.
53. Mantell, G.A. 1822. The fossils of the South Downs; or illustrations of the geology of Sussex. xvi + 327 p. Lupton Relfe; London.
54. Marcinowski, R., Walaszczyk, I. and Olszewska-Nejbert, D. 1996. Stratigraphy and regional development of the mid-Cretaceous (Upper Albian through Coniacian) of the Mangyshlak Mountains, Western Kazakhstan. Acta Geologica Polonica, 46, 1–60.
55. Meek, F.B. 1877. Paleontology. Report of the geological exploration of the 40th parallel. Professional Paper of the Engineer Department of the United States Army, 184, 142–148.
56. Moskvin, M.M. (Ed.) 1987. Stratigraphy of the USSR. Cretaceous System, Part 2, 326 pp. Nedra; Moscow.
57. Muromtzev, V.S. 1973. The question on paleotectonic development of Mangyshlak Peninsula. In: V.S. Muromtzev (Ed.), New data on geology and oil-resources of Mangyshlak. Trudy VNIGRI, 344, 89–113. In Russian
58. Naidin, D.P. 1959. On the paleogeography of the Russian platform during the Upper Cretaceous epoch. Stockholm contributions in geology, 3, 127–138.
59. Naidin, D.P., Beniamowski, V.N. and Kopaevich, L.F. 1984. Methods of transgression and regression study (exemplified by Late Cretaceous basins of west Kazakhstan), pp. 1–162. Izdatelstvo Moskovskovo Universiteta; Moskva. In Russian with English summary
60. Naidin, D.P., Beniamovski, V.N and Kopaevich, L.F. 1994. Palaeogeographic basis of stratigraphic schemes, pp. 1–135. Izdatelstvo Moskovskovo Universiteta; Moskva. In Russian with English summary
61. Natal’in, B.A., Sengör, A.M.C. 2006. Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: the pre-history of the Palaeo-Tethyan closure. Tectonophysics, 404, 175–202.
62. Noda, M. 1984. Notes on Mytiloides incertus (Cretaceous, Bivalvia) from the Upper Turonian of the Pombets area, Central Hokkaido. Transactions and Proceedings of the Paleontological Society of Japan, N.S., 136, 455–473.
63. Noda, M. and Matsumoto, T. 1998. Palaeontology and stratigraphy of the inoceramid species from the mid-Turonian through upper Middle Coniacian in Japan. Acta Geologica Polonica, 48, 432–482.
64. Ogg, J.G., Agtenberg, F.P. and Gradstein, F.M. 2004. The Cretaceous Period. In: F.M. Gradstein, J. Ogg and A. Smith (Eds), a Geologic Time Scale 2004, pp. 344–383. Cambridge University Press, Cambridge.
65. Parkinson, J. 1818. Remarks on the fossils collected by Mr. Phillips near Dover and Folkstone. Transactions of the Geological Society, 1, 1–55. London.
66. Pavlova, M.M. 1955. Inoceramids of the Upper Cretaceous deposits of Daghestan. Unpublished Ph.D. thesis, Moscow State University; Moscow. In Russian
67. Pergament, M.A. and Smirnov, J.P. 1972. Vertical distribution and stratigraphic importance of inocerams in the Upper Cretaceous sections of Daghestan. In: Pergament, M.A. (Ed.), Transactions of the All-Union colloquium on inocerams, pp. 94–113. Moscow. In Russian
68. Pessagno, E.A. Jr. 1967. Upper Cretaceous planktonic foraminifera from the Western Gulf Coastal Plain. Palaeontographica Americana, 5, 259–441.
69. Petrascheck, W. 1903. Ueber Inoceramen aus der Kreide Böhmens und Sachsen. Jahresberichte der Kaiserlisch-Königlichen Geologischen Reichsanstalt, 53 (1), 153–168.
70. Pożaryska, K. and Peryt, D. 1979. The Late Cretaceous and Early Paleocene foraminiferal “Transition Province” in Poland. Aspekte der Kreide Europas, International Union of Geological Sciences, Series A, 6, 293–303.
71. Premoli Silva, I. and Sliter, W.V. 1994. Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottaccione Section, Gubbio, Italy. Palaeontographica Italiana, 81, 2–90.
72. Premoli Silva, I. and Verga, D. 2004. Practical Manual of Cretaceous Planktonic Foraminifera. In: D. Verga and R. Rettori (Eds), International School on Planktonic Foraminifera, 30 Course. Cretaceous. 283 pp. Universities of Perugia and Milan, Tipografia Pontefelcino; Perugia.
73. Robaszynski, F. and Caron, M. (Eds) and European Working Group on Planktonic Foraminifera. 1979. Atlas de foraminiferes planctoniques du Crétacé moyen (mer boréale et Téthys). Cahiers de Micropaléontologie, 1-2, 1–366.
74. Robaszynski F. and Caron M. 1995. Foraminiferes planctoniques du Crétacé: commentaire de la zonation Europe-Mediterranée. Bulletin de la Société géologique de France, 166, 681–692.
75. Robaszynski, F., Caron, M., Dupuis, C., Amedro, F., Gonzales-Donoso, J.M., Linares, D., Hardenbol, J., Gartner, S., Calandra, F. and Deloffre, R. 1990. A tentative integrated stratigraphy in the Turonian of Central Tunisia: Formations, zones and sequential stratigraphy in the Kalaat Senan area. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 14, 213–384.
76. Schlotheim, von E.T. 1813. Beiträge zur Naturgeschichte der Versteinerungen in geognostischer Hinsicht. Leonhard’s Taschenbuch fur Mineralogie 5-7, 93 pp. Frankfurt am Main.
77. Schlüter, C. 1877. Kreide-Bivalven. Zur Gattung Inoceramus. Palaeontographica, 24, 250–288.
78. Stampfli, G.M., Borel, G.D., Cavazza, W., Mosar, J., Ziegler P.A. 2001. Palaeotectonic and palaeogeographic evolution of the western Tethys and Peritethyan domain (IGCP Project 369). Episodes, 24, 221–228.
79. Tröger, K.-A. 1967. Zur Palaontologie, Biostratigraphie und faziellen Ausbildung der unteren Oberkreide (Cenoman bis Turon). Teil I: Palaontologie und Biostratigraphie der Inoceramen des Cenomans bis Turons. Abhandlungen des Staatlichen Museums fur Mineralogie und Geologie zu Dresden, 12, 13–208.
80. Tröger, K.-A. 1989. Problems of Upper Cretaceous inoceramid biostratigraphy and paleobiogeography in Europe and Western Asia. In: Wiedmann, J. (Ed.), Cretaceous of the Western Tethys. Proceedings 3rd International Cretaceous Symposium, Tübingen 1987, pp. 911–930. E. Schweizerbart’sche Verlagsbuchhandlung; Stuttgart.
81. Tur, N.A., Smirnov, J.P. and Huber, B. 2001. Late Albian – Coniacian planktic foraminifera and biostratigraphy of the northeastern Caucasus. Cretaceous Research, 22, 719–734.
82. Walaszczyk, I. and Cobban, W.A. 2000. Inoceramid faunas and biostratigraphy of the Upper Turonian – Lower Coniacian of the Western Interior of the United States. Special Papers in Palaeontology, 64, 1–118.
83. Walaszczyk, I. and Cobban, W. A. 2006. Inoceramid fauna and biostratigraphy of the middle Upper Coniacian and Santonian of the US Western Interior. Acta Geologica Polonica, 56, 241–348.
84. Walaszczyk, I., Kopaevich, L.F. and Olferiev, A.G. 2004. Inoceramid/foraminiferal succession of the Turonian and Coniacian (Upper Cretaceous) of the Briansk region (Central European Russia). Acta Geologica Polonica, 54, 597–609.
85. Walaszczyk, I., Lees, J.A., Peryt, D., Cobban, W.A. and Wood, C.J. 2012. Testing the congruence of the macrofossils versus microfossil record in the Turonian–Coniacian boundary succession of the Wagon Mound–Springer composite section (NE New Mexico, USA). Acta Geologica Polonica, 62, 581–594.
86. Walaszczyk, I. and Peryt, D. 1998. Inoceramid-foraminiferal biostratigraphy of the Turonian through Santonian deposits of the Middle Vistula Section, Central Poland. Zentralblatt für Geologie und Paläontologie I, 11/12, 1501–1513.
87. Walaszczyk, I. and Wood, C.J. 1998. Inoceramids and biostratigraphy at the Turonian/Coniacian boundary; based on the Salzgitter-Salder Quarry, and the Słupia Nadbrzeżna section, Central Poland. Acta Geologica Polonica, 48, 395–434.
88. Walaszczyk, I., Wood, C.J., 1999. Inoceramid stratigraphy. In: Niebuhr, B., Baldschuhn, R., Ernst, E., Walaszczyk, I., Weiss, W., Wood, C.J., The Upper Cretaceous Succession (Cenomanian–Santonian) of the Staffhorst Shaft, Lower Saxony, Northern Germany: Integrated Biostratigraphic, Lithostratigraphic and Downhole Geophysical Log Data. Acta Geologica Polonica, 49, 175–213.
89. Walaszczyk, I., Wood, C.J., Lees, J.A., Peryt, D., Voigt, S. and Wiese, F. 2010. The Salzgitter-Salder Quarry (Lower Saxony, Germany) and Słupia Nadbrzeżna river cliff section (central Poland): a proposed candidate composite Global Boundary Stratotype Section and Point for the Coniacian Stage (Upper Cretaceous). Acta Geologica Polonica, 60, 445–477.
90. Wolansky, D. 1932. Die Cephalopoden und Lamellibranchiaten der Ober-Kreide Pommerns. Abhandlungen des Geologisch-Palaeontogischen Institut Greifswald, 9, 1–72.
91. Wood, C.J., Ernst G. and Rasemann, G. 1984. The Turonian-Coniacian stage boundary in Lower Saxony (Germany) and adjacent areas: the Salzgitter-Salder Quarry as a proposed international standard section. Bulletin of the Geological Society of Denmark, 33, 225–238.
92. Wood, C.J., Walaszczyk, I., Mortimore, R.N and Woods, M.A. 2004. New observations on the inoceramid biostratigraphy of the higher part of the Upper Turonian and the Turonian – Coniacian boundary transition in Poland, Germany and the UK. Acta Geologica Polonica, 54, 541–549.
93. Woods, H. 1912. A monograph of the Cretaceous lamellibranchia of England. Palaeontographical Society, Monograph, 2, 262–340.
DOI :
Cytuj : Kennedy, W. J. ,Walaszczyk, I. ,Kopaevich, L. ,Beniamovski, V. N. , Inoceramid and foraminiferal record and biozonation of the Turonian and Coniacian (Upper Cretaceous) of the Mangyshlak Mts., western Kazakhstan. Acta Geologica Polonica Vol. 63, no. 4/2013
[Top]

Upper Albian and Cenomanian (Cretaceous) ammonites from the Debarsu Formation (Yazd Block, Central Iran)

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Upper Albian and Cenomanian (Cretaceous) ammonites from the Debarsu Formation (Yazd Block, Central Iran)

Autorzy :
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland, i.walaszczyk@uw.edu.pl,
Kopaevich, L.
Geological Faculty, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991 Russia,
Beniamovski, V. N.
Geological Institute, Russian Academy of Sciences, Pyzhevski 7, Moscow, 119017, Russia,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D-01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Storm, M.
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom,
Fürsich, F.
GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, D-91054 Erlangen, Germany,
Majidifard, M.
Geological Survey of Iran, Box 131851-1494, Tehran, Iran,
Abstrakty : New ammonite faunas consisting of 13 taxa provide the first reliable biostratigraphic dating of the Debarsu Formation of the Yazd Block, west-central Iran, indicating several levels in the Upper Albian and Lower Cenomanian, while a foraminiferal assemblage places the top of the Formation in the Middle Turonian. Among the identified ammonite taxa, Acompsoceras renevieri (Sharpe, 1857) is recorded from Iran for the first time. The upper part of the lower Upper Albian is proved by the occurrences of mortoniceratines of the Mortoniceras (M.) inflatum Zone in the lowermost part of the Debarsu Formation. For the upper Upper Albian (traditional Stoliczkaia dispar Zone), the M. (Subschloenbachia) rostratum and M. (S.) perinflatum zones are proved by their index taxa. However, there is no evidence of the terminal Arrhaphoceras (Praeschloenbachia) briacensis Zone. The upper part of the lower Lower Cenomanian Mantelliceras mantelli Zone (M. saxbii Subzone) is proved by M. saxbii and M. cf. mantelli. Below, there is an ammonite-barren interval of ca. 100 m in thickness between M. (S.) perinflatum zonal strata and the M. saxbii Subzone. The upper Lower Cenomanian is documented by the presence of typically M. dixoni zonal ammonites such as Acompsoceras renevieri. Upper Cenomanian and Turonian ammonites have not been found in the upper part of the Debarsu Formation, but micro-biostratigraphic evidence (planktonic foraminifers) from the uppermost part of the formation indicate that the formation ranges into the Turonian. For the development of the major tectonic unconformity at the base of the overlying Haftoman Formation (which yielded Lower Coniacian inoceramids near its base), only 2–3 myr remain, stressing the geodynamic activity of Central Iran during mid-Cretaceous times.

Słowa kluczowe : kreda, taksonomia, biostratygrafia, amonity, Iran, Mid-Cretaceous, Central-East Iranian Microcontinent, taxonomy, biostratigraphy, ammonites,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2013
Numer : Vol. 63, no. 4
Strony : 489 – 513
Bibliografia : 1. Agard, A., Omrani, J., Jolivet, L. and Mouthereau, F. 2005. Convergence history across Zagros (Iran): constrains from collisional and earlier deformation. International Journal of Earth Science, 94, 401–419.
2. Aistov, L., Melnikov, B., Krivyakin, B., Morozov, L. and Kiristaev, V. 1984. Geology of the Khur area (Central Iran). Explanatory text of the Khur quadrangle map 1:250.000. V/O Technoexport, Report, 20, 1–130.
3. Amédro, F. 2008. Support for a Vraconnian Stage between the Albian sensu stricto and the Cenomanian (Cretaceous System). Carnets de Géologie / Notebooks on Geology, Memoir, 2008/02, 1–83.
4. Amédro, F. 2009. Stratigraphie séquentielle des successions Albiennes du Bassin Anglo-Parisien et du Basin de Mons (Belgique). Bulletin d’Information des Géologues du Bassin des Paris, 46, 12–36.
5. Amédro, F., Matrion, B., Tomasson, R., Magniez, F. and Colleté, C. 2004. L’Albien supérieur de Vallentigny dans la région stratotypique (Aube, F.): nouvelles données et révision de l’ammonite Mortoniceras (M.) inflatum (J. Sowerby, 1818). Bulletin de la Société géologique de Normandie et des Amis du Muséum du Havre, 90, 5–28.
6. Atabekian, A.A. 1985. Turrilitids of the Late Albian and Cenomanian of the southern part of USSR. Transactions of the Academy of Sciences of the USSR, 14, 1–112. In Russian
7. Atabekian, A.A. 1992. Ammonites from the Upper Albian and Cenomanian of the southern USSR. Trudy Vserossijskij Nauchno-Issledovatel’skij Geologicheskij Institut, novaya seriya, 350, 201–217. In Russian
8. Bagheri, S. and Stampfli, G.M. 2008. The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: New geological data, relationships and tectonic implications. Tectonophysics, 451, 123–155.
9. Barrier, E. and Vrielynck, B. 2008. Map 6: Cenomanian (99.6–93.5 Ma). In: Barrier, E. and Vrielynck, B. (Eds), Palaeotectonic maps of the Middle East – tectono-sedimentary–palinsspastic maps from the Late Norian to Pliocene. Commission for the Geological Map of the World (CGMW / CCGM), Paris.
10. Bayle, É, 1878. Fossiles principaux des terrains. Explication de la Carte Géologique de France, 4(1), 158 pls (Atlas).
11. Bengtson, P. 1988. Open nomenclature. Palaeontology, 31, 223–227.
12. Berberian, M. and King, G.C.P. 1981. Towards a palaeogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210–265.
13. Bosc, L.A.G., 1801. (An 10). In: Roissy, F. de (ed.), Histoire naturelle générale et particulière, des Mollusques, animaux sans vertèbres et a sang blanc. Ouvrage faisant suit aux Ouvres de Leclerc de Buffon, et partie du Cours complet d’Histoire naturelle, rédigé par C.S. Sonnini, membre de plusieurs Sociétés savants. Continué par F. de Roissy. Deterville, Paris, viii+448+3pp.
14. Breistroffer, R. 1840. Révision des ammonites de l’Albian de Salazac (Gard) et considérations générales sur ce sousétage Albien. Traveux du Laboratoire de l’Institut de Géologie de l’Université de Grenoble, 22 (1938–39), 17–171 (1–101).
15. Cecca, F. 1997. The Late Albian genus Semenoviceras (Hoplitidae, Ammonitina): palaeontologic study of a fauna of the Semenoviceras litschkovi Zone from Mangyshlak (west Khazakstan). Rivista Italiana die Paleontologia e Stratigrafia, 103, 323–342.
16. Cooper, M.R. and Owen, H.G. 2011a. Evolutionary relationships among Schloenbachiidae (Cretaceous Ammonoidea: Hoplitoidea), with a revised classification of the family. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 262, 289–307.
17. Cooper, M.R. and Owen, H.G. 2011b. The phylogeny and classification of primitive Placenticeratidae (Cretaceous Hoplintina, Hoplitoidea). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 260, 331–342.
18. Davoudzadeh, M. 1997. Iran. In: Moores, E.M., Fairbridge, R.M. (Eds), Encyclopedia of European and Asian regional geology, pp. 384–405. Encyclopedia of Earth Sciences Series, Chapman and Hall; London.
19. Davoudzadeh, M., Soffel, H. and Schmidt, K. 1981. On the rotation of the Central-East Iran microplate. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1981, 180–192.
20. Dercourt, J., Zonenshain, L.P., Ricou, L.-E., Kazmin, V.G., Le Pichon, X., Knipper, A.L., Grandjacquet, C., Sbortshikov, I.M., Geyssant, J., Lepvrier, C., Pechersky, D.H., Boulin, J., Sibuet, J.-C., Savostin, L.A., Sorokhtin, O., Westphal, M., Bazhenov, M.L., Lauer, J.P. and Biju-Duval, B. 1986. Geological evolution of the Tethys belt from the Atlantic to the Pamir since the Lias. Tectonophysics, 123, 241–315.
21. Douvillé, H. 1890. Sur la classification des Cératites de la Craie. Bulletin de la Société Géologique de France (series 3), 18, 275–292.
22. Douvillé, H. 1912. Évolution et classification des Pulchelliidés. Bulletin de la Société Géologique de France (series 4), 11, 285–320.
23. Fürsich, F.T., Wilmsen, M., Seyed-Emami, K. and Majidifard, M.R. 2009a. Lithostratigraphy of the Upper Triassic-Middle Jurassic Shemshak Group of northern Iran. In: Brunet, M.-F., Wilmsen, M. and Granath, J. (Eds), South Caspian to central Iran basins. Geological Society London, Special Publication, 312, 129–160.
24. Fürsich, F.T., Wilmsen, M., Seyed-Emami, K. and Majidifard, M.R. 2009b. The Mid-Cimmerian tectonic event (Bajocian) in the Alborz Mountains, northern Iran: Evidence of the break-up unconformity of the South Caspian Basin. In: Brunet, M.-F., Wilmsen, M. and Granath, J. (Eds), South Caspian to central Iran basins. Geological Society London, Special Publication, 312, 189–203.
25. Gale, A.S., Kennedy, W.C., Voigt, S. and Walaszczyk, I. 2005. Stratigraphy of the Upper Cenomanian–Lower Turonian Chalk succession at Eastbourne, Sussex, UK: ammonites, inoceramid bivalves and stable carbon isotopes. Cretaceous Research, 26, 460–487.
26. Gale, A.S., Bown, P., Caron, M., Crampton, J., Crowhurst, S.J., Kennedy, W.J., Petrizzo, M.R. and Wray, D.S. 2011. The uppermost Middle and Upper Albian succession at the Col de Palluel, Hautes-Alpes, France: An integrated study (ammonites, inoceramid bivalves, planktonic foraminifera, nannofossils, geochemistry, stable oxygen and carbon isotopes, cyclostratigraphy). Cretaceous Research, 32, 59–130.
27. Gill, T. 1871. Arrangement of the families of mollusks. Smithonian Miscellaneous Collections, 227, i–xvi, 1–49.
28. Grossouvre, A. de 1894. Recherches sur la Craie supérieure. Deuxième part: Paléontologie. Les ammonites de la Craie supérieure. Memoirs du Service de la Carte Geologique detailée de la France, 1893, 1–264.
29. Hancock, J.M. 1991. Ammonite scales for the Cretaceous system. Cretaceous Research, 12, 259–191.
30. Hyatt, A. 1889. Genesis of the Arietidae. Smithonian Contributions to Knowledge, 673 (vol. 26), i–xi + 1–238.
31. Hyatt, A. 1900. Cephalopoda. In: Zittel, K.A. von (Ed.), Textbook of Palaeontology, pp. 502–592. Macmillan; London and New York.
32. Hyatt, A. 1903. Pseudoceratites of the Cretaceous. United States Geological Survey Monographs, 44, 1–352.
33. Ilyin, V.D. 1975. Ammonites of the family Placenticeratidae Hyatt from the Upper Cretaceous deposits of Central Asia. Trudy Vsesoyuznyi, Nauchno-lssledovatel’skii Geologorazvedochny Neftyanoi Institut, 171, 154–174. In Russian
34. Immel, H. and Seyed-Emami, K. 1985. Die Kreideammoniten des Glaukonitkalkes (O.Alb – O.Cenoman) des Kolah-Qazi-Gebirges südöstlich von Esfahan (Zentraliran). Zitteliana, 12, 87–137.
35. Immel, H., Seyed-Emami, K. and Afshar-Harb, M. 1997. Kreide-Ammoniten aus dem iranischen Teil des Koppeh-Dagh (NE-Iran). Zitteliana, 21, 159–190.
36. Kaplan, U., Kennedy, W.J., Lehmann, J. and Marcinowski, R. 1998. Stratigraphie und Ammonitenfaunen des westfälischen Cenoman. Geologie und Paläontologie in Westfalen, 51, 1–236.
37. Kennedy, W.J. 1984. Ammonite faunas and the „standard zones“ of the Cenomanian to Maastrichtian Stages in their type areas, with some proposals for the definition of the stage boundaries by ammonites. Bulletin of the Geological Society of Denmark, 33, 147–161.
38. Kennedy, W.J. 2013. On variation in Schloenbachia varians (J. Sowerby, 1817) from the Lower Cenomanian of western Kazakhstan. Acta Geologica Polonica, 63, 443–468.
39. Kennedy, W.J. and Juignet, P. 2006. Pseudhelicoceras robertianum. In: Gauthier, H. (Ed.), Révision critique de la Paléontologie Française d’Alcide d’Orbigny. Volume IV, Céphalopodes Crétacés, pp. 169–170. Backhys; Leiden.
40. Kennedy, W. J. and Latil, J.-L. 2007. The Upper Albian ammonite succession in the Montlaux section, Hautes-Alpes, France. Acta Geologica Polonica, 57, 453–478.
41. Kennedy, W.J., Chahida, M.R. and Djafarian, M.A. 1979. Cenomanian cephalopods from the Glauconitic Limestone southeast of Esfahan, Iran. Acta Palaeontologica Polonica, 14, 3–50.
42. Kennedy W.J., Cobban W.A., Gale A.S., Hancock J.M. and Landman N.H. 1998. Ammonites from the Weno Limestone (Albian) in Northeast Texas. American Museum Novitates, 3236, 1–46.
43. Kennedy, W.J., Cobban, W.A, Hancock, J.M. and Gale, A.S. 2005. Upper Albian and Lower Cenomanian ammonites from the Main Street Limestone, Grayson Marl and Del Rio Clay in northeast Texas. Cretaceous Research, 26, 349–428.
44. Kennedy, W.J., King, C. and Ward, D.J. 2008a. The upper Albian and lower Cenomanian succession at Kolbay, eastern Mangyshlak (southwest Kazakhstan). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre, 78, 117–147.
45. Kennedy, W.J., Jagt, J.W.M., Amédro, F. and Robaszynski, F. 2008b. The late Late Albian (Mortoniceras fallax Zone) cephalopod fauna from the Bracquegnies Formation at Strépy-Thieu (Hainaut, southern Belgium). Geologica Belgica, 11, 35–69.
46. Kennedy, W.J, Amédro, F., Robaszynski, F. and Jagt, J.W.M. 2011. Ammonite faunas from condensed Cenomanian-Turonian sections (‘Tourtias’) in southern Belgium and northern France. Netherlands Journal of Geosciences, 90, 209–238.
47. Klein, J. and Vašíček, Z. 2011. Fossilium Catalogus I: Animalia. Pars 148. Lower Cretaceous Ammonites, part V, Desmoceratoidea, 311 pp. Backhuys/Margraf; Weikersheim.
48. Klinger, H. and Kennedy, W.J. 1978. Turrilitidae (Cretaceous Ammonoidea) from South Africa, with a discussion of the evolution and limits of the family. Journal of Molluscan Studies, 44, 1–48.
49. Kossmat, F. 1895–98. Untersuchungen über die Südindische Kreideformation. Beiträge zur Paläontologie und Geologie Österreich-Ungarns, 9 (1895), 97–202 (1–107), pls 15–25 (1–11); 11 (1897), 1–46 (108–153), pls 1–8 (12–19); 11 (1898), 89–152 (154–217), pls 14–19 (20–25).
50. Lamarck, J.-B.P.A. de 1801. Système des animaux sans vertèbres, i–viii + 432pp. Deterville; Paris.
51. Lasswitz, R. 1904. Die Kreideammoniten von Texas (collection F. Foemer). Geologische und Paläontologische Abhandlungen (Neue Serie), 6, 223–259.
52. Luppov, N.P. 1963. New Cenomanian and Lower Turonian ammonites of the genus Placenticeras from Central Asia. Trudy Vsesoyuznogo Nauchno-Issledovatel’skogo Geologicheskogo Instituta, novaya seriya, 109, 135–160. In Russian
53. Marcinowski, R. 1980. Cenomanian ammonites from the German Democratic Republic, Poland, and the Soviet Union. Acta Geologica Polonica, 30, 215–325.
54. Marcinowski, R. 1983. Upper Albian and Cenomanian ammonites from some sections of the Mangyshlak and Tuarkyr regions, Transcaspia, Soviet Union. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1983, 156–180.
55. Marcinowski, R., Walaszczyk, I. and Olszewska-Nejbert, D. 1996. Stratigraphy and regional development of the mid-Cretaceous (Upper Albian through Coniacian) of the Mangyshlak Mountains, Western Kazakstan. Acta Geologic Polonica, 46, 1–60.
56. Meek, F.B. 1876. A report on the invertebrate Cretaceous and Tertiary fossils of the upper Missouri country. In: Hayden, F.V. (Ed.), Report of the United States Geological Survey of the Territories, 9, i–lxiv + 629 pp.
57. Monks, N. 2010. Heteromorph ammonites. In: Young, J.R., Gale, A.S., Knight, R.I. and Smith, A.B. (Eds), Fossils of the Gault. Palaeontological Association Field Guide to Fossils, 12, 194–208.
58. Mosavinia, A. and Wilmsen, M. 2011. Cenomanian Acanthoceratoidea (Cretaceous Ammonoidea) from the Aitamir Formation (Koppeh Dagh, NE Iran): taxonomy and stratigraphic implications. Acta Geologica Polonica, 61, 175–192.
59. Mosavinia, A., Wilmsen, M., Asghar Aryai, A., Chahida, M.R. and Lehmann, J. 2007. Mortoniceratinae (Ammonitina) from the Upper Albian (Cretaceous) of the Atamir Formation, Koppeh Dagh Mountains, NE Iran. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 246, 83–95.
60. Neumayr, M. 1875. Die Ammonitiden der Kreide und die Systematik der Ammonitiden. Zeitschrift der deutschen Geologischen Gesellschaft, 27, 854–942.
61. Ogg, J.G., Hinnov, L.A., 2012. Cretaceous. In: Gradstein, F.M., Ogg, J.G., Schmitz, M., Ogg, G.M. (Eds), The geologic time scale 2012, Volume 2, pp. 793–853. Elsevier; Amsterdam.
62. Orbigny, A. d. 1840-1842. Paléontologie Française. Terrain Crétacé I, Céphalopodes, 662 pp., 148 pls (1–120: 1840; 121–430: 1841; 431–662: 1842). Masson; Paris.
63. Owen, H.G. 2012. The Gault Group (Early Cretaceous, Albian), in East Kent, S.E. England; its lithology and ammonite biozonation. Proceeding of the Geologists’ Association, 123, 742–765.
64. Parona, C.F. and Bonarell, G. 1897. Fossili Albiani d’Escragnolles del Nizzardo e della Ligurias occidentale. Paleontographica Italia, 2, 53–112.
65. Pictet, F.J. and Renevier, E. 1866. Notices géologiques et paléontologiques sur les Alpes Vaudoises et les régions environnantes. IV, Céphalopodes de Cheville. Bulletin de la Societe vaudoise des Sciences Naturelles, 9, 93–114.
66. Robaszynski, F., Juignet, P., Gale, A.S., Amédro, F. and Hardenbol, J. 1998. Sequence stratigraphy in the Cretaceous of the Anglo-Paris Basin, exemplified by the Cenomanian stage. In: Jaquin, T., de Graciansky, P. and Hardenbol, J. (Eds), Mesozoic and Cenozoic sequence stratigraphy of European basins. SEPM (Society for Sedimentary Geology) Special Publication, 60, 363–385.
67. Rosetti, F., Nasrabady, M., Vignaroli, G., Theye, T., Gerdes, A., Razavi, M.H. and Vaziri, M. 2010. Early Cretaceous migmatitic granulites from the Sabzevar range (NE Iran): implications for the closure of the Mesozoic peri-Tethyan oceans in central Iran. Terra Nova, 22, 26–34.
68. Schlüter, C. 1876. Cephalopoden der Oberen Deutschen Kreide. Palaeontographica, 21, 1–24, pl. 1–8.
69. Scholz, G. 1979. Die Ammoniten des Vracon (Oberalb, dispar-Zone) des Bakony-Gebirges (Westungarn) und eine Revision der wichtigsten Vracon-Arten der West-Mediterranen Faunenprovinz. Palaeontographica A, 165, 1–136.
70. Seeley, H.G. 1865. On ammonites from the Cambridge Greensand. Annals and Magazine of Natural History (series 3), 16, 225–247.
71. Semenov, W.P., 1899. The fauna of the Cretaceous deposits of Mangyshlak and some other localities in the Transcaspian province. Travaux de la Société impériale des Naturalistes de St. Pétersbourg (Section Géologie et Minéralogie), 28, 1–178. In Russian
72. Seyed-Emami, K. and Aryai, A.A. 1981. Ammoniten aus dem unteren Cenoman von Nordostiran (Koppeh-Dagh). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, 21, 23–39.
73. Seyed-Emami, K. and Immel, H. 1996. Ammoniten aus dem Alb (höhere Unterkreide) des Zentralirans. Palaeontographica A, 241, 1–26.
74. Seyed-Emami, K., Förster, R. and Mojtehedi, A. 1984. Ammoniten aus dem mittleren Cenoman von Nordostiran (Koppeh-Dagh). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1984, 159–172.
75. Sharpe, D. 1853–1857. Description of the fossil remains of Mollusca found in the Chalk of England. I, Cephalopoda. Palaeontographical Society (London) Monograph, 68 pp., 27 pls (1853, 1–26, pls 1–10; 1855, 27–36, pls 11–16; 1857, 37–68, pls 17–27).
76. Soffel, H., Davoudzadeh, M., Rolf, C. and Schmidt, S. 1996. New palaeomagnetic data from Central Iran and a Triassic palaeoreconstruction. Geologische Rundschau, 85, 293–302.
77. Sowerby, J. 1812-1822. The mineral conchology of Great Britain; or coloured figures and descriptions of those remains of testaceous animals or shells, which have been preserved at various times and depths in the Earth. Parts 1–4. Meredith, London, 383 pls 1, pls 1–9 (1812), pls 10–44 (1813), pls 45–78 (1814), pls 79–102 (1815); 2, pls 103–114 (1815), pls 115–150 (1816), pls 151–186 (1817), pls 187–203 (1818); 3, pls 204–221 (1818), pls 222–253 (1819), pls 254–271 (1820), pls 272–306 (1821); 4, pls 307–318 (1821), pls 319–383 (1822).
78. Spath, L.F. 1922. On Cretaceous Ammonoidea from Angola, collected by Professor J.W. Gregory, D.Sc., F.R.S. Transactions of the Royal Society of Edinburgh, 53, 91–160.
79. Spath, L.F. 1923–1943. A monograph of the Ammonoidea of the Gault. Palaeontographical Society Monographs, 787 pp. 1–72 (1923); 73–110 (1925); 111–146 (1925a); 147–186 (1926a); 187–206 (1927a); 207–266 (1928); 267–311 (1930); 313–378 (1931); 379–410 (1932); 411–442 (1933); 443–496 (1934); 497–540 (1937); 541–608 (1939); 609–668 (1941); 669–720 (1942); 721–787, i–x (1943).
80. Spath, L.F. 1926. On new ammonites from the English Chalk. Geological Magazine, 63, 77–83.
81. Stampfli, G.M. and Borel, G.D. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters, 196, 17–33.
82. Takin, M. 1972. Iranian geology and continental drift in the Middle East. Nature, 235, 147–150.
83. Wiedmann, J. 1966. Stammesgeschichte und System der posttriadischen Ammonoideen, ein Überblick (2. Teil). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 127, 13–81.
84. Wilmsen, M. 2003. Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretaceous Research, 24, 525–568.
85. Wilmsen, M. and Mosavinia, A. 2011. Phenotypic plasticity and taxonomy of Schloenbachia varians (J. Sowerby, 1817). Paläontologische Zeitschrift, 85, 169–184.
86. Wilmsen, M., Fürsich, F.T. and Seyed-Emami, K. 2003. Revised lithostratigraphy of the Middle and Upper Jurassic Magu Group of the northern Tabas Block, east-central Iran. Newsletters on Stratigraphy, 39, 143–156.
87. Wilmsen, M., Wiese, F., Seyed-Emami, K. and Fürsich, F.T. 2005. First record and significance of Cretaceous (Turonian) ammonites from the Shotori Mountains, east-central Iran. Cretaceous Research, 26, 181–195.
88. Wilmsen, M., Niebuhr, B., Wood, C.J. and Zawischa, D. 2007. Fauna and palaeoecology of the Middle Cenomanian Praeactinocamax primus Event at the type locality, Wunstorf quarry, northern Germany. Cretaceous Research, 28, 428–460.
89. Wilmsen, M., Fürsich, F.T., Seyed-Emami, K. and Majidifard, M.R. 2009a. An overview of the lithostratigraphy and facies development of the Jurassic System on the Tabas Block, east-central Iran. In: Brunet, M.-F., Wilmsen, M. and Granath, J. (Eds), South Caspian to central Iran basins. Geological Society London, Special Publication, 312, 323–344.
90. Wilmsen, M., Fürsich, F.T., Seyed-Emami, K., Majidifard, M.R. and Taheri, J. 2009b. The Cimmerian orogeny in northern Iran: tectono-stratigraphic evidence from the foreland. Terra Nova, 21, 211–218.
91. Wilmsen, M., Fürsich, F.T., Seyed-Emami, K., Majidifard, M.R. and Zamani-Pedram, M. 2010. Facies analysis of a large-scale Jurassic shelf-lagoon: The Kamar-e-Mehdi Formation of east-central Iran. Facies, 56, 59–87.
92. Wilmsen, M., Fürsich, F.T. and Majidifard, J. 2011. Cretaceous stratigraphy and facies development of the Yazd Block, Khur area, Central Iran. Darius Newsletter, 2, 9–10.
93. Wilmsen, M., Fürsich, F.T. and Majidifard, M.R. 2012. Porosphaera globularis (Phillips, 1829) (Porifera, Calcarea) from the Maastrichtian Farokhi Formation of Central Iran. Cretaceous Research, 33, 91–96.
94. Wilmsen, M., Fürsich, F.T. and Majidifard, J. 2013. The Shah Kuh Formation, a latest Barremian – early Aptian carbonate platform of Central Iran (Khur area, Yazd Block). Cretaceous Research, 39, 183–194.
95. Wilmsen, M., Storm, M., Fürsich, F.T. and Majidifard, M.R. in prep. Depositional setting of the Upper Albian–Turonian Debarsu Formation (Cretaceous of the Yazd Block, Central Iran). Facies.
96. Wright, C.W. 1952. A classification of the Cretaceous ammonites. Journal of Paleontology, 26, 213–222.
97. Wright, C.W. and Kennedy, W.J. 1984. The Ammonoidea of the Lower Chalk. Part I. The Palaeontographical Society Monograph, 567 (137), 1–126.
98. Wright, C.J. and Kennedy, W.J. 1987. The Ammonoidea of the Lower Chalk. Part II. The Palaeontographical Society Monograph, 573(139), 127–218.
99. Wright, C.J. and Kennedy, W.J. 1996. The Ammonoidea of the Lower Chalk. Part V. The Palaeontographical Society Monograph, 601(150), 320–403.
100. Wright, C.W., Callomon, J.H. and Howarth, M.K. 1996. Cretaceous Ammonoidea. In: Kaesler, R.L. (Ed.), Treatise on Invertebrate Paleontology, Part L, Mollusca 4, 1–362 pp. The Geological Survey of America and University of Kansas.
101. Zittel, K.A. von 1895. Grundzüge der Paläontologie, i–viii + 971 pp. Oldenbourg; München and Leipzig.
DOI :
Cytuj : Kennedy, W. J. ,Walaszczyk, I. ,Kopaevich, L. ,Beniamovski, V. N. ,Wilmsen, M. ,Storm, M. ,Fürsich, F. ,Majidifard, M. , Upper Albian and Cenomanian (Cretaceous) ammonites from the Debarsu Formation (Yazd Block, Central Iran). Acta Geologica Polonica Vol. 63, no. 4/2013
[Top]

Late Maastrichtian foraminiferids and diatoms from the Polish Carpathians (Ropianka Formation, Skole Nappe): a case study from the Chmielnik-Grabówka composite section

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Late Maastrichtian foraminiferids and diatoms from the Polish Carpathians (Ropianka Formation, Skole Nappe): a case study from the Chmielnik-Grabówka composite section

Autorzy :
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland, i.walaszczyk@uw.edu.pl,
Kopaevich, L.
Geological Faculty, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991 Russia,
Beniamovski, V. N.
Geological Institute, Russian Academy of Sciences, Pyzhevski 7, Moscow, 119017, Russia,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D-01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Storm, M.
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom,
Fürsich, F.
GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, D-91054 Erlangen, Germany,
Majidifard, M.
Geological Survey of Iran, Box 131851-1494, Tehran, Iran,
Gasiński, M. A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, adam.gasinski@uj.edu.pl,
Olshtynska, A.
Institute of Geological Sciences, National Academy of Sciences of Ukraine, O. Gonchara str. 55-b, 01601 Kiev, Ukraine, ol-lesia@mail.ru,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Abstrakty : Well-preserved foraminiferids have been found in the Chmielnik-Grabówka section (Skole Nappe, Polish Carpathians). The Abathomphalus mayaroensis (late Maastrichtian) and Racemiguembelina fructicosa (earlylate Maastrichtian) standard planktonic foraminiferal biozones have been recognized, based on the occurrence of their respective index species. Sediments of the R. fructicosa Zone contain diatoms, which are a rare component of Cretaceous flysch microfossil assemblages in the Carpathians. The diatom frustules and some foraminiferid tests are pyritized, probably after burial in the sediment, below the redox boundary or in the oxygen-deficient microenvironment inside the frustules or tests of microfossils; the presence of trace fossils and bioturbational structures in the same bed indicate an oxygenated sea floor.

Słowa kluczowe : Karpaty, płaszczowina skolska, kreda, mikroskamieniałości, plankton, okrzemki, flisz, Carpathians, Skole Nappe, Cretaceous, microfossils, plankton, foraminiferids, diatoms, flysch,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2013
Numer : Vol. 63, no. 4
Strony : 515 – 525
Bibliografia : 1. Arz, J.A. and Molina, E. 2002. Late Campanian and Maastrichtian biostratigraphy and chronostratigraphy based on planktic foraminifera in temperate and subtropical latitudes (Spain, France and Tunisia). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 224, 161–195.
2. Ayyad, S.N., Abed, M.M. and Abu Zied, R.H. 1997. Biostratigraphy of the Upper Cretaceous rocks in Gebel Arif El-Naga, northeastern Sinai, Egypt, based on benthonic foraminifera. Cretaceous Research, 18, 141–159.
3. Cetean, C., Balc, R., Kaminski, M.A. and Sorin, F. 2011. Integrated biostratigraphy and palaeoenvironments of an up per Santonian – upper Campanian succession from the southern part of the Eastern Carpathians, Romania. Cretaceous Research, 32, 575–590.
4. Chlebowski, T., Obułtowicz, J. and Wdowiarz, J. 1937. Badania geologiczne zachodnich Karpat brzeżnych w okolicy Rzeszowa, Tyczyna i Ropczyc. Kosmos A, 62, 669–683.
5. Davies, A. 2006. High resolution palaeoceanography and palaeoclimatology from mid and high latitude Late Cretaceous laminated sediments. Unpublished PhD thesis, University of Southampton, School of Ocean and Earth Science.
6. Friedberg, W. 1900. Studya geologiczne w okolicy Rzeszowa i Łańcuta. Kosmos, 24, 289–311.
7. Friedberg, W. 1903. Atlas Geologiczny Galicyi, Tekst do Zeszytu Szesnastego, 147 pp. Wydawnictwa Komisyi Fizyograficznej Akademii Umiejętności; Kraków.
8. Gasiński, M.A. 1997. Tethyan-Boreal connection: influence on the evolution of mid-Cretaceous planktonic foraminiferids. Cretaceous Research, 18, 505–514.
9. Gasiński, M.A. 1998. Campanian-Maastrichtian palaeoecology and palaeobiogeography of the Andrychów Klippes, Outer Carpathians, Poland. Uniwersytet Jagielloński, Rozprawy Habilitacyjne, 333, 1–90.
10. Gasiński, M.A. and Uchman, A. 2009. Latest Maastrichtian foraminiferal assemblages from the Husów region (Skole Nappe, Outer Carpathians, Poland). Geologica Carpathica, 60, 283–294.
11. Gasiński, M.A. and Uchman, A. 2011a. Foraminiferal assemblages and the Cretaceous- Paleogene Boundary in turbiditic deposits of the Skole Nappe, Polish Carpathians. In: M. Bąk, M.A., Kaminski and A. Waśkowska (Eds), Integrating microfossil records from the oceans and epicontinental seas. Grzybowski Foundation Special Publications, 17, 87-88.
12. Gasiński, M.A. and Uchman, A. 2011b. The Cretaceous- Paleogene boundary in turbiditic deposits identified to the bed: a case study from the Skole Nappe (Outer Carpathians, southern Poland). Geologica Carpathica, 62, 333–343.
13. Geroch, S. 1978. Lower Cretaceous diatoms in the Polish Carpathians. Rocznik Polskiego Towarzystwa Geologicznego, 48, 283–295.
14. Geroch, S., Krysowska-Iwaszkiewicz, M., Michalik, M., Prochazka, K., Radomski, A., Radwański, Z., Unrug, Z., Unrug, R. and Wieczorek, J. 1979. Sedimentation of the Węgierka marls. Annales Societatis Geologorum Poloniae, 49, 105–133. In Polish with English summary
15. Geroch, S. and Nowak, W. 1980. Stratigraphy of the Flysch in the borehole Łodygowice IG-1 (Western Carpathians). Annales Societatis Geologorum Poloniae, 50, 341–390. In Polish with English summary
16. Gradstein, F.M., Ogg, J.G., Smitz, M.D. and Ogg, G.M. 2012. The Geologic Time Scale, Volumes 1–2, 1176 pp. Elsevier; Amsterdam.
17. Harwood, D.M. and Nikolaev, V.A. 1995. Cretaceous diatoms: morphology, taxonomy, biostratigraphy. In: C.D. Blome, P.M. Whalen and K.M. Reed (Eds), Siliceous microfossils, Paleontological Society Short Course, 8, 81–106.
18. Hernandez-Becerril, D.U. and Miranda, N.P. 1994. Morphology and variation of the diatom Aulacodiscus margaritaceus (Bacillariophyta). Acta Botánica Mexicana, 26, 11–19.
19. Huber, B., MacLeod, K.G. and Tur, N.A. 2008. Chronostratigraphic framework for upper Campanian–Maastrichtian sediments on the Blake Nose (subtropical North Atlantic). Journal of Foraminiferal Research, 38, 162–182.
20. Hudson, J.D. 1982. Pyrite in ammonite-bearing shales from the Jurassic of England and Germany. Sedimentology, 29, 639–667.
21. Jones, R.W. and Charnock, M. 1985. “Morphogroups” of agglutinated foraminifera. Their life position and feeding habits and potential applicability in (paleo)ecological studies. Revue de Paléobiologie, 4, 311–320.
22. Lohman, K.E. 1960. The ubiquitous diatom – a brief survey of the present state of knowledge. American Journal of Science, Bradley Volume, 258-A, 180–191.
23. Khalil, H. 1998. Late Cretaceous benthonic foraminiferal biostratigraphy, Sinai, Egypt, with special consideration to the genus Bolivinoides. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 7, 415–431.
24. Kotlarczyk, J. 1978. Stratigraphy of the Ropianka Formation or of Inoceramian Beds in the Skole Unit of the Flysch Carpathians). Prace Geologiczne, Polska Akademia Nauk, Oddział w Krakowie, Komisja Nauk Geologicznych, 108, 1–82. In Polish with English summary
25. Kotlarczyk, J. 1985. An outline of the stratigraphy if marginal tectonic units of the Carpathian Orogen in the Rzeszów – Przemyśl area. In: J. Kotlarczyk, (Ed.), Geotraverse Kraków-Baranów – Rzeszów – Przemyśl – Ustrzyki Dolne – Komańcza – Dukla. Guide to excursion 4. Carpatho-Balkan Geological Association XIII Congress. Cracow, Poland 1985, pp. 39–63. Geological Institute; Warsaw.
26. Kotlarczyk, J. 1988. Outline of the stratigraphy of the marginal tectonic units of the Carpathian orogen In: J. Kotlarczyk, K. Pękala, and S. Gucik, (Eds), Przewodnik 59 Zjazdu Polskiego Towarzystwa Geologicznego, Karpaty przemyskie, 16-18 września 1988, p. 23–62. Wydawnictwo AGH, Kraków. In Polish
27. Koutsoukos, E.A.M. and Hart, M.B. 1990. Cretaceous foraminiferal morphogroup distribution patterns, palaeocommunities and trophic structures: a case study from the Sergipe Basin, Brazil. Transactions Royal Society of Edinburgh, Earth Sciences, 81, 221–246.
28. Kropaczek, B. 1917. Bericht über geologische Ausflüge in der Gegend von Rzeszów. Sprawozdanie Komisyi Fizyograficznej Akademii Umiejętności, 51, 100–105. In Polish with German summary
29. Li, L. and Keller, G. 1998. Maastrichtian climate, productivity and faunal turnovers in planktic foraminifera in South Atlantic DSDP sites 525A and 21. Marine Micropaleontology, 33, 55–86.
30. Malata, T. 2001. Jednostka skolska na E od Rzeszowa. Posiedzenia Naukowe Państwowego Instytutu Geologicznego, 57, 60–63.
31. Maslun, N.V., Selskiy, V.K. and Distryanov, V.M. 1980. Stratigraphic characteristics of the Cretaceous–Paleogene sediments of the first super-deep hole in the Carpathians 1-Shevchenko. Tectonics and Stratigraphy, 18, 72–83. In Russian
32. Murray, J.W. 2006. Ecology and applications of benthic foraminifera, 1–426. Cambridge; University Press Cambridge.
33. Nagy, J. 1992. Environmental significance of foraminiferal morphogroups in Jurassic North Sea deltas. Palaeogeography, Palaeoclimatology, Palaeoecology, 95, 111–134.
34. Nederbragt, A.J. 1991. Late Cretaceous biostratigraphy and development of Heterohelicidae (planktonic foraminifera). Micropaleontology, 37, 329–372.
35. Nikolaev, V.D., Kociolek, J.P., Fourtanier, E., Barron, J. and Harwood, D.M. 2001. Late Cretaceous diatoms (Bacillariophyceae) from the Marca Shale Member of the Moreno Formation, California. Occasional Papers of the California Academy of Sciences, 152, 1–119.
36. Ogg, J.G.and Hinnov, L.A. 2012. Cretaceous. In: F.M Gradstein, J.G. Ogg, M.D. Smitz and G.M. Ogg. The Geologic Time Scale, 793–853. Elsevier; Amsterdam
37. Oreshkina, T., Lygina, A., Vozhzhova, O., Ivanov, A. 2013. Diatoms and silicoflagellates of the Upper Cretaceous from Saratov Region: Biostratigraphy and sedimentation settings. Stratigraphy and Geological Correlation, 21, 222–236. In Russian
38. Pérez-Rodríguez, I., Lees, J.A., Larrasoaña, J.C., Arz, J.A. and Arenillas, I. 2012. Planktonic foraminiferal and calcareous nannofossil biostratigraphy and magnetostratigraphy of the uppermost Campanian and Maastrichtian at Zumaia, northern Spain. Cretaceous Research, 37, 100–26.
39. Peryt, D., Alegret, L. and Molina, E. 2002. The Cretaceous/Palaeogene (K/P) boundary at Aïn Settara, Tunisia: restructuring of benthic foraminiferal assemblages. Terra Nova, 14, 101–107.
40. Premoli-Silva, I. and Verga, D. 2004. Practical manual of Cretaceous planktonic foraminifera. In: D. Verga and R. Rettori (Eds), International School On Planktonic Foraminifera, 3^0 Course: Cretaceous, pp. 1–283. Universites of Pergugia and Milano; Perugia.
41. Proschkina-Lavrenko, A.I. 1950. Diatomovyi analiz, opredelitel’ iskopaemykh i sovremennykh diatomyk vodoroslei Poriadok Pennales. Gosudarstvennoe Izdatelystvo Geologicheskoi Literatury, Moskva-Leningrad 3, 367–398.
42. Rajchel, J. 1990. Lithostratigraphy of the Upper Paleocene and Eocene deposits in the Skole Unit. Zeszyty Naukowe AGH, Geologia, 48, 1–112. In Polish with English summary
43. Robaszynski, F. and Caron, M. 1995. Foraminiferes planctoniques du Crétacé: commentaire de la zonation Europe-Méditerrané. Bulletin de la Société Géologique de France 6, 681–692.
44. Senkovsky, J.M., Grygorchuk, C.G., Hnidets, V.P. and Koltun, Y.V. 2004. Geological Paleoceanography of Tethys (Carpathian – Black Sea segment), 172 pp. Naukova Dumka; Kyiv. In Ukrainian
45. Sims, P., Mann, D.G. and Medlin, L. 2006. Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia, 45, 361–402.
46. Strelnikova, N. 1974. Diatomei pozdnego mela, Izdatel’stvo “Nauka”, Moskva. In Russian.
47. Strelnikova, N., Fourtanier E. and Kociolek P. 2004. Morphological studies of Aulacodiscus species from the “Russian collection” of the California Academy of Sciences. Diatom Research, 19, 238–310.
48. Wdowiarz, S. 1949. Structure géologique des Karpates Marginales au sud-est de Rzeszów. Biuletyn Państwowego Instytutu Geologicznego, 11, 1–51.
49. Witkowski, J., Harwood, D.M. and Chin K. 2011. Taxonomic composition, paleoecology and biostratigraphy of late Cretaceous diatoms from Devon Island, Nunavut, Canadian High Arctic. Cretaceous Research, 32, 277–300.
DOI :
Cytuj : Kennedy, W. J. ,Walaszczyk, I. ,Kopaevich, L. ,Beniamovski, V. N. ,Wilmsen, M. ,Storm, M. ,Fürsich, F. ,Majidifard, M. ,Gasiński, M. A. ,Olshtynska, A. ,Uchman, A. , Late Maastrichtian foraminiferids and diatoms from the Polish Carpathians (Ropianka Formation, Skole Nappe): a case study from the Chmielnik-Grabówka composite section. Acta Geologica Polonica Vol. 63, no. 4/2013
[Top]

Scaphitid ammonites from the Upper Cretaceous of KwaZulu-Natal and Eastern Cape Province, South Africa

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Scaphitid ammonites from the Upper Cretaceous of KwaZulu-Natal and Eastern Cape Province, South Africa

Autorzy :
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland, i.walaszczyk@uw.edu.pl,
Kopaevich, L.
Geological Faculty, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991 Russia,
Beniamovski, V. N.
Geological Institute, Russian Academy of Sciences, Pyzhevski 7, Moscow, 119017, Russia,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D-01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Storm, M.
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom,
Fürsich, F.
GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, D-91054 Erlangen, Germany,
Majidifard, M.
Geological Survey of Iran, Box 131851-1494, Tehran, Iran,
Gasiński, M. A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, adam.gasinski@uj.edu.pl,
Olshtynska, A.
Institute of Geological Sciences, National Academy of Sciences of Ukraine, O. Gonchara str. 55-b, 01601 Kiev, Ukraine, ol-lesia@mail.ru,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Klinger, H.
Natural History Collections Department, Iziko South African Museum, P. O. Box 61, Cape Town, 8000, Republic of South Africa, hkling@telekomsa.net,
Abstrakty : Scaphitid ammonites are described and illustrated from the Upper Cretaceous of the coastal region of north-eastern South Africa. Scaphites kieslingswaldensis Langenhan and Grundey, 1891, Scaphites manasoaensis Collignon, 1965, and Yezoites concinna sp. nov. occur in the Coniacian part of the St Lucia Formation in northern KwaZulu-Natal. A further Yezoites sp. may also be from this level. Argentoscaphites corrugatus sp. nov. occurs in the Santonian to Lower Campanian Mzamba Formation on the northernmost coast of Eastern Cape Province. Yezoites australis sp. nov. occurs in the Upper Santonian part of the St Lucia and Mzamba formations of these areas, and Scaphites reesidei Collignon, 1969, is recorded from the Lower Campanian part of the Mzamba Formation. The scaphitid assemblage includes species previously described from Western Europe and Madagascar, together with Argentoscaphites, previously known only from Patagonia (and possibly South India). Dimorphism is recognised in Scaphites reesidei, Yezoites concinna sp. nov. and Y. australis sp. nov. Argentoscaphites corrugatus sp. nov. and Yezoites sp. are represented by microconchs only. Dimorphism has not been recognised in Scaphites kieslingswaldensis.

Słowa kluczowe : amonity, kreda, Republika Południowej Afryki, scaphitid ammonites, Cretaceous, South Africa,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2013
Numer : Vol. 63, no. 4
Strony : 527 – 543
Bibliografia : 1. Alabushev, A. and Wiedmann, J. 1997. Upper Cretaceous ammonites from southern Sakhalin and northwestern Kamchatka (North-East Russia). Palaeontographica, A224, 1–36.
2. Anderson, F.M. 1902. Cretaceous Deposits of the Pacific Coast. Proceedings of the California Academy of Sciences (3) Geology, 2, 154 p.
3. Blasco De Nullo, G., Nullo, F. and Proserpio, C. 1980. Santoniano-Campaniano: estratigrafia y contenido ammonitifero. Cuenca Austral. Revista Asociación Geológico Argentina, 35, 467–493.
4. Boule, M., Lemoine, P. and Thévenin, A. 1906-1907. Paléontologie de Madagascar III Céphalopodes crétacés des environs de Diego-Suarez. Annales de Paléontologie, 1, 173–192 (1–20); 2, 1–56 (21–76).
5. Cobban, W.A. 1969. The Late Cretaceous ammonites Scaphites leei Reeside and Scaphites hippocrepis (DeKay) in the Western Interior of the United States. U.S. Geological Survey Professional Paper, 619, 27 p.
6. Collignon, M. 1965. Atlas des fossiles caractéristiques de Madagascar (Ammonites), XIII (Coniacien), vii + 88 p. Service Géologique; Tananarive.
7. Collignon, M. 1969. Atlas des fossiles caractéristiques de Madagascar (Ammonites). XV (Campanien inférieur), xi + 216 p. Service Géologique; Tananarive
8. Cooper, M.R. and Greyling, E.H. 1996. Stratigraphy and palaeontology of a temporary exposure of the Mzamba Formation (Upper Cretaceous, Lower Campanian) in the Eastern Cape, South Africa. Durban Museum Novitates, 21, 11–24.
9. Davis, R.A., Landman, N.H., Dommergues, J.-L., Marchand, D. and Bucher, H. 1996. Mature modification and dimorphism in ammonoid cephalopods. Topics in Geobiology, 13, Ammonoid palaeobiology, 464–539
10. DeKay, J.E. 1827. Report on several fossil multilocular shells from the state of Delaware: with observations on a second specimen of the new fossil genus Eurypterus. Annals of the Lyceum of Natural History, 2, 273–278.
11. Diener, C. 1925. Ammonoidea neocretacea. Fossilium Catalogus (1: Animalia), 29, 244 p.
12. Gill, T. 1871. Arrangement of the Families of Mollusks. Smithsonian Miscellaneous Collections, 227, xvi + 49p.
13. Grossouvre, A. de 1894. Recherches sur la craie supérieure, 2, Paléontologie. Les ammonites de la craie supérieure. Mé moires du Service de la Carte Géologique détaillé de la France, 1–264 (misdated 1893).
14. Hoepen, E.C.N. Van, 1921. Cretaceous Cephalopoda from Pondoland. Annals of the Transvaal Museum, 7, 142–147.
15. Hyatt, A. 1903. Pseudoceratites of the Cretaceous. United States Geological Survey Monograph, 44, 351 p.
16. Jimbo, K. 1894. Beiträge zur Kenntniss der Fauna der Kreideformation von Hokkaido. Paläontologische Abhandlungen (N.S.), 2, 147–194.
17. Kaplan, U. and Kennedy, W.J. 1994. Ammoniten des westfälischen Coniac. Geologie und Paläontologie in Westfalen, 31, 1–155.
18. Kaplan, U., Kennedy, W.J. and Wright, C.W. 1987. Turonian and Coniacian Scaphitidae from England and North-Western Germany. Geologisches Jahrbuch Reine A, 103, 5–39.
19. Kennedy, W.J. 1984. Systematic palaeontology and stratigraphic distribution of the ammonite faunas of the French Coniacian. Special Papers in Palaeontology, 31, 160 p.
20. Kennedy, W.J. and Christensen, W.K. 1991. Coniacian and Santonian ammonites from Bornholm, Denmark. Bulletin of the geological Society of Denmark, 38, 203–226.
21. Kennedy, W.J. and Klinger, H.C. 1975. Cretaceous faunas from Zululand and Natal, South Africa. Introduction, Stratigraphy. Bulletin of the British Museum (Natural History) Geology, 25, 263–315.
22. Klinger H.C. and Kennedy, W.J. 1980a. The Umzamba Formation at its type locality, Umzamba Estuary (Pondoland, Transkei), ammonite content and paleogeographical distribution. Annals of the South African Museum, 80, 207–222.
23. Klinger H.C. and Kennedy, W.J. 1980b. Cretaceous faunas from Zululand and Natal, South Africa. The ammonite Subfamily Texanitinae Collignon, 1948. Annals of the South African Museum, 80, 357 pp.
24. Klinger H.C. and Kennedy, W.J. 1986. Worthoceras pacificum Matsumoto & Yokoi, 1987 (Cephalopoda: Ammonoidea) from the Mzinene Formation (Cretaceous), Zululand. South African Journal of Geology, 99, 37–40.
25. Korn, D., Ebbinghausen, V., Bockwinkel J., and Klug, C. 2003. The A-mode ontogeny in prolecanitid ammonites. Palaeontology, 46, 1123–1132.
26. Kossmat, F. 1895-1898. Untersuchungen über die Sudindische Kreideformation. Beiträge zur Paläontologie Ősterreich-Ungarens und des Orients, 9 (1895), 97–203 (1–107); 11 (1897), 1–46 (108–153); 11(1898), 89–152 (154–217).
27. Kullmann, J. and Wiedmann, J. 1970. Significance of sutures in phylogeny of Ammonoidea. University of Kansas, Paleontological Contributions, 42, 1–32.
28. Langenhan, A. and Grundey, M. 1891. Das Kieslingwalder Gestein und Seine Versteinerungen. Jahresberichte Glatzer Gebirgs-Vereins, 10, 12 pp.
29. Machalski, M. 2005. Late Maastrichtian and earliest Danian scaphitid ammonites from central Europe: taxonomy, evolution, extinction. Acta Geologica Polonica, 50, 653–696.
30. Meek, F.B. 1876. A report on the invertebrate Cretaceous and Tertiary fossils of the upper Missouri country. In Hayden, F.V. Report of the United States Geological Survey of the Territories, 9, lxiv + 629 p.
31. Parkinson, J. 1811. Organic remains of a former world, 3, 479 p. J. Robson; London.
32. Reeside, J.B. Jr. 1927. The cephalopods of the Eagle Sandstone and related formations in the Western Interior of the United States. United States Geological Survey Professional Paper, 151, 87 p.
33. Sowerby, J. 1812–1822. The Mineral Conchology of Great Britain. 1, pls 1–9 (1812), pls 10–44 (1813, pls 45–78 (1814), pls 79–102 (1815); 2, pls 103–14 (1815), pls. 115–50 (1816), pls 151–86 (1817), pls 187–203 (1818); 3, pls 204–21 (1818), pls 222–53 (1819), pls 254–71 (1820), pls 272–306 (1821); 4, pls 307–18 (1821), pls 319–83 (1822). The Author; London.
34. Spath, L.F. 1921. On Upper Cretaceous Ammonoidea from Pondoland. Annals of the Durban Museum, 3, 39–56.
35. Spath, L.F. 1922. On the Senonian ammonite fauna of Pondoland. Transactions of the Royal Society of South Africa, 10, 113–147.
36. Stoliczka, F. 1863-1866. The fossil cephalopoda of the Cretaceous rocks of southern India. Ammonitidae with revision of the Nautilidae etc. Memoirs of the Geological Survey of India. (1), Palaeontologica Indica, 3, (1), 41–56(1863); (2–5), 57–106(1864); (6–9), 107–154(1865); (10–13), 155–216(1866).
37. Sturm, F. 1901. Der Sandstein von Kieslingswalde in der Grafschaft Glatz und seine Fauna. Jahresberichte Preussische Geologische Landesanstalt Bergakademie, 21, 39–98.
38. Tanabe, K. 1975. Functional morphology of Otoscaphites puerculus (Jimbo), an Upper Cretaceous ammonite. Transactions and Proceedings of the Palaeontological Society of Japan N.S., 99, 109–132.
39. Tanabe, K. 1977. Functional evolution of Otoscaphites puerculus (Jimbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, 23, 367–407.
40. Venzo, S. 1936. Cefalopodi del Cretaceo medio-superiore dello Zululand. Palaeontographica Italica, 36, 59–133 (1–75).
41. Walaszczyk, I., Kennedy, W.J., Dembicz, K., Gale, A.S., Praszkier, T., Rasoamiaramanana, A.H. and Randrianaly, H. 2014. Ammonite and inoceramid biostratigraphy and biogeography of the Cenomanian through basal Middle Campanian (Upper Cretaceous) of the Morondava Basin, western Madagascar. Journal of African Earth Sciences 89, 79–132.
42. Walaszczyk, I., Marcinowski, R., Praszkier, T., Dembicz, K., and Bieńkowska, M. 2004. Biogeographical and stratigraphic significance of the latest Turonian and Early Coniacian inoceramid/ammonite succession of the Manasoa section on the Onilahy River, south-west Madagascar. Cretaceous Research, 25, 543–576.
43. Wiedmann, J. 1966. Stammesgeschichte und System der posttriadischen ammonoideen; ein Überblick. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 125, 49–79; 127, 13–81.
44. Woods, H. 1906. The Cretaceous fauna of Pondoland. Annals of the South African Museum, 4, 275–350.
45. Wright, C.W. 1952. A classification of the Cretaceous Ammonites. Journal of Paleontology, 26, 213–222.
46. Wright, C.W. 1979. The ammonites of the English Chalk Rock. Bulletin of the British Museum (Natural History) Geology, 31, 281–332.
47. Wright, C.W. 1996. Treatise on Invertebrate Paleontology. Part L, Mollusca 4: Cretaceous Ammonoidea. xx + 1–362 (with contributions by J.H. Calloman (sic) and M.K. Howarth). Geological Society of America and University of Kansas; Lawrence, Kansas and Boulder, Colorado.
48. Yabe, H. 1910. Die Scaphiten aus der Oberkreide von Hokkaido. Beiträge zur Palaeontologie und Geologie Ősterreich-Ungarens und des Orients, 23, 159–174
DOI :
Cytuj : Kennedy, W. J. ,Walaszczyk, I. ,Kopaevich, L. ,Beniamovski, V. N. ,Wilmsen, M. ,Storm, M. ,Fürsich, F. ,Majidifard, M. ,Gasiński, M. A. ,Olshtynska, A. ,Uchman, A. ,Kennedy, W. J. ,Klinger, H. , Scaphitid ammonites from the Upper Cretaceous of KwaZulu-Natal and Eastern Cape Province, South Africa. Acta Geologica Polonica Vol. 63, no. 4/2013
[Top]

Oyster-bioimmured ammonites from the Upper Albian of Annopol, Poland: stratigraphic and palaeobiogeographic implications

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Oyster-bioimmured ammonites from the Upper Albian of Annopol, Poland: stratigraphic and palaeobiogeographic implications

Autorzy :
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland, i.walaszczyk@uw.edu.pl,
Kopaevich, L.
Geological Faculty, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991 Russia,
Beniamovski, V. N.
Geological Institute, Russian Academy of Sciences, Pyzhevski 7, Moscow, 119017, Russia,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D-01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Storm, M.
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom,
Fürsich, F.
GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, D-91054 Erlangen, Germany,
Majidifard, M.
Geological Survey of Iran, Box 131851-1494, Tehran, Iran,
Gasiński, M. A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, adam.gasinski@uj.edu.pl,
Olshtynska, A.
Institute of Geological Sciences, National Academy of Sciences of Ukraine, O. Gonchara str. 55-b, 01601 Kiev, Ukraine, ol-lesia@mail.ru,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Klinger, H.
Natural History Collections Department, Iziko South African Museum, P. O. Box 61, Cape Town, 8000, Republic of South Africa, hkling@telekomsa.net,
Machalski, M.
Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL-00-818 Warszawa, Poland, mach@twarda.pan.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Abstrakty : Ammonites Mortoniceras (Subschloenbachia) sp. are preserved as attachment scars on the oyster shells from the topmost portion of the Albian succession at Annopol, Poland. These oyster-bioimmured ammonites show a closest affinity to the representatives of Mortoniceras (Subschloenbachia) characteristic of the upper Upper Albian Mortoniceras perinflatum Zone. No ammonites indicative of the uppermost Albian–lowermost Cenomanian Praeschloenbachia briacensis Zone are recorded. Thus, the hiatus at the Albian–Cenomanian boundary at Annopol embraces the latter zone. The presence (and dominance) of Mortoniceras in the upper Upper Albian ammonite assemblage of Annopol suggests that the representatives of this Tethyan genus could migrate into the epicratonic areas of Poland directly from the Tethyan Realm, via the Lwów (Lviv) region.

Słowa kluczowe : ostrygi, amonity, alb, kreda, Annopol, Polska, stratygrafia, bioimmuration, oysters, ammonites, Albian, Cretaceous, Annopol, Poland, stratigraphy, palaeobiogeography,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2013
Numer : Vol. 63, no. 4
Strony : 545 – 554
Bibliografia : 1. Amédro, F. 2002. Plaidoyer pour un étage Vraconnien entre l’Albien sensu stricto et le Cénomanien (système Crétacé). Academie Royale de Belgique, Classe des Sciences, 4, 1–128.
2. Amédro, F. and Matrion, B. 2008. Corrélations dans l’Albien de l’Yonne et de l’Aube, France (lithologie et ammonites). Bulletin d’Information des Geologues du Bassin de Paris, 45, 5–11.
3. Breistroffer, M. 1940. Révision des ammonites de l’Albien de Salazac (Gard) et considérations générales sur ce sous-étage Albien. Travaux du Laboratoire de l’Institut de Géologie de l’Université de Grenoble, 22, 17–171 (1-101 in separates).
4. Cieśliński, S. 1959. The Albian and Cenomanian in the northern periphery of the Holy Cross Mountains (stratigraphy based on cephalopods). Prace Instytutu Geologicznego, 28, 1–95. In Polish, with English summary.
5. Cieśliński, S. 1976. Development of the Danish-Polish Furrow in the Góry Świętokrzyskie Region in the Albian, Cenomanian and Lower Turonian. Biuletyn Instytutu Geologicznego, 295, 249–271. In Polish, with English summary
6. Cieśliński, S. 1987. Albian and Cenomanian inoceramids in Poland and their stratigraphic significance. Biuletyn Instytutu Geologicznego, 354, 11–62. In Polish, with English summary
7. Collignon, M. 1979. Ammonites du Crétacé Moyen-Supérieur de l’Angola. Reconhecimento Scientifico de Angola: Estudos de Geologie et Paleontologica e de Micologia. Lisbon, 1977, 1–75.
8. Gale A.S., Kennedy, W.J., Burnett, J.A., Caron, M. and Kidd, B.E. 1996. The Late Albian to Early Cenomanian succession at Mont Risou near Rosans (Drôme, SE France): an integrated study (ammonites, inoceramids, planktonic foraminifera, nannofossils, oxygen and carbon isotopes). Cretaceous Research, 17, 515–606.
9. Hancock, J.M. 1990. Sea-level-changes in the British region during the Late Cretaceous. Proceedings of the Geologists’ Association, 100 (for 1989), 565–594.
10. Hancock, J.M. 1993. Sea-level changes around the Cenomanian-Turonian boundary. Cretaceous Research, 14, 553–562.
11. Hancock, J.M. 2004. The mid-Cenomanian eustatic low. Acta Geologica Polonica, 54, 611–627.
12. Hancock, J.M. and Kauffman, E.G. 1979. The great transgressions of the Late Cretaceous. Journal of the Geological Society of London, 136, 175–186.
13. Juignet, P. 1980. Transgressions-régressions, variations eustatiques et influences tectoniques de l’Aptien au Maastrichtien dans le Bassin de Paris occidental et sur la Bordure du Massif Armoricain. Cretaceous Research, 1, 341–357.
14. Kennedy, W. J. 1971. Cenomanian ammonites from southern England. Special Papers in Palaeontology, 8, 1–133.
15. Kennedy, W.J, Cobban, W.A. and Hook, S.C. 1988. Hourcquia Collignon, 1965 (Cretaceous Ammonoidea) from the upper Turonian of the southern United States, Paläontologische Zeitschrift, 62, 87–93
16. Kennedy, W.J. and Delamette, M. 1994. Lyelliceratidae and Flickiidae (Ammonoidea) from the Upper Albian and Cenomanian of the Helvetic Shelf (Western Alps, France and Switzerland). Journal of Paleontology, 68, 263–1284.
17. Kennedy, W.J., Gale, A.S., Lees, J.A. and Caron, M. 2004. The Global Boundary Stratotype Section and Point for the base of the Cenomanian Stage, Mont Risou, Hautes-Alpes, France. Episodes, 27, 21–32.
18. Kennedy, W.J., Jagt, J.W.M., Amédro, F. and Robaszynski, F. 2008. The late Late Albian (Mortoniceras fallax Zone) cephalopod fauna from the Bracquegnies formation at Strépy-Thieu (Hainaut, southern Belgium). Geologica Belgica, 11, 35–69.
19. Kennedy, W. J. and Latil, J.-L. 2007 The Upper Albian ammonite succession in the Montlaux section, Hautes-Alpes, France. Acta Geologica Polonica, 57, 453–478.
20. Kutek, J. and Marcinowski, R. 1996. The Mid-Cretaceous Boreal/Tethyan biogeographical boundary in the Carpatho-Balkan area. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, 77, 141–147.
21. Lewy, Z. 1972. Xenomorphic growth in ostreids. Lethaia, 5, 347–353.
22. Machalski, M. 1998. Oyster life positions and shell beds from the Upper Jurassic of Poland. Acta Palaeontologica Polonica, 43, 609–634.
23. Malchus, N. 1990. Revison der Kreide-Austern (Bivalvia: Pteriomorphia) Ägyptens (Biostratigraphie, Systematik). Berliner Geowissenshaftliche Abhandlungen, A125, 1–194.
24. Marcinowski, R. 1980. Cenomanian ammonites from German Democratic Republic, Poland, and the Soviet Union. Acta Geologica Polonica, 30, 215–325.
25. Marcinowski, R. and Radwański, A. 1983. The mid-Cretaceous transgression onto the Central Polish Uplands (marginal part of the Central European Basin). Zitteliana, 10, 65–96.
26. Marcinowski, R. and Radwański, A. 1989. A biostratigraphic approach to the mid-Cretaceous transgressive sequence of the central Polish Uplands. Cretaceous Research, 10, 153–172.
27. Marcinowski, R. and Walaszczyk, I. 1985. Middle Cretaceous deposits and biostratigraphy of the Annopol section, Central Polish Uplands. Österreichische Akademie der Wissenschaft, Schriftenreihe der Erdwissenschaftlichen Komissionen, 7, 27–41.
28. Marcinowski, R. and Wiedmann, J. 1985. The Albian ammonite fauna of Poland and its palaeogeographical significance. Acta Geologica Polonica, 35, 199–219.
29. Marcinowski, R. and Wiedmann, J. 1990. The Albian ammonites of Poland. Palaeontologia Polonica, 50, 1–94.
30. Meek, F.B. 1876. A report on the invertebrate Cretaceous and Tertiary fossils of the upper Missouri country. In: Hayden F.V. Report of the United States Geological Survey of the Territories 9, lxiv + 629 p.
31. Owen, H.G. 1988. The ammonite zonal sequence and ammonite taxonomy in the Douvilleiceras mammilatum Superzone (Lower Albian). Bulletin of the British Museum of Natural History (Geology), 44, 177–231.
32. Owen, H.G. 2007. Ammonite biostratigraphy of the Albian in the Kirchrode II borehole, Hannover, Germany. Cretaceous Research, 28, 921–938.
33. Owen, H.G. 2012. The Gault Group (Early Cretaceous, Albian), in East Kent, SE England: its lithology and ammonite zonation. Proceedings of the Geologists’ Association, 123, 742–765.
34. Peryt, D. 1983. Planktonic foraminiferal zonation of Mid-Cretaceous of the Annopol Anticline (Central Poland). Zitteliana, 10, 575–583.
35. Pożaryski, W. 1947. A phosphate deposit of the north-eastern margin of the Holy Cross Mountains. Biuletyn Państwowego Instytutu Geologicznego, 27, 1–56. In Polish, English summary
36. Renz, O. 1968. Die Ammonoidea im Stratotyp des Vraconnien bei Sainte-Croix (Kanton Waadt). Schweizerische Palaontologische Abhandlungen, 87, 1–99.
37. Robaszynski, F., Gale, A., Juignet, P., Amédro, F. and Hardenbol, J. 1998. Sequence stratigraphy in the Upper Cretaceous series of the Anglo-Paris basin: exemplified by the Cenomanian stage. In: Graciansky, Ch., Hardenbol, J. Jacquin, T., Vail, P.R. (Eds), Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Special Publication, 60, 363–386
38. Samsonowicz, J. 1925. Esquisse géologique des environs de Rachów sur la Vistule et les transgressions de l’Albien et du Cénomanien dans les sillon nord-européen. Sprawozdania Państwowego Instytutu Geologicznego, 3, 45–118. In Polish, with French summary
39. Samsonowicz, J. 1934. Explication de la feuille Opatów (zone 45, colonne 33). Service géologique de Pologne, Carte Géologique Générale de la Pologne au 100.000-e, 1–97. Warszawa.
40. Seeley, H.G. 1865. On Ammonites from the Cambridge Greensand. Annals and Magazine of Natural History, (3), 16, 225–24.
41. Seeling, J. and Bengtson, P. 1999. Cenomanian oysters from the Sergipe Basin, Brazil. Cretaceous Research, 20, 747–765.
42. Stenzel, H. 1971. Oysters. In: Moore R.C. (Ed.), Treatise on lnvertebrate Paleontology, (N) Mollusca 6 (3), pp. 954–1224, Geological Society of America and University of Kansas Press.
43. Spath, L.F. 1921. On Cretaceous Cephalopoda from Zululand. Annals of the South African Museum, 12, 217–321
44. Spath, L.F. 1931. A monograph of the Ammonoidea of the Gault. Palaeontographical Society Monograph, Part 8, 313–378.
45. Spath, L.F. 1932. A monograph of the Ammonoidea of the Gault. Palaeontographical Society Monograph, Part 9, 379–410.
46. Spath, L.F. 1933. A monograph of the Ammonoidea of the Gault. Palaeontographical Society Monograph, Part 10, 411–422.
47. Taylor, P.D. 1990. Preservation of soft-bodied and other organisms by bioimmuration – a review. Palaeontology, 33, 1–17.
48. Walaszczyk, I. 1984. Geology of the Annopol anticline. Unpublished graduate paper, Geology Department of the University of Warsaw, 1–72. Warszawa. In Polish
49. Walaszczyk, I. 1987. Mid-Cretaceous events at the marginal part of the Central European Basin (Annopol-on-Vistula section, Central Poland). Acta Geologica Polonica, 37, 61–74.
50. Walaszczyk, I. 1992. Turonian through Santonian deposits of the Central Polish Upland; their facies development, inoceramid paleontology and stratigraphy. Acta Geologica Polonica, 42, 1–122.
51. Wilmsen, M. 2003. Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretaceous Research, 24, 525–568.
52. Wilmsen, M. and Voigt, T. 2006. The Middle-Upper Cenomanian of Zilly (Sachsen–Anhalt, northern Germany) with remarks on the Pycnodonte Event. Acta Geologica Polonica, 56, 17–31.
53. Woods, H. 1913. A monograph of the Cretaceous Lamellibranchia of England. Palaeontographical Society, London, 2, 1–473.
54. Wright, C.W. and Kennedy, W.J. 1978. The ammonite Stoliczkaia from the Cenomanian of England and northern France. Palaeontology, 21, 393–409.
55. Wright, C.W. and Kennedy, W.J. 1994. Evolutionary relationships among Stoliczkaiinae (Cretaceous ammonites) with an account of some species from the English Stoliczkaia dispar Zone. Cretaceous Research, 15, 547–582.
DOI :
Cytuj : Kennedy, W. J. ,Walaszczyk, I. ,Kopaevich, L. ,Beniamovski, V. N. ,Wilmsen, M. ,Storm, M. ,Fürsich, F. ,Majidifard, M. ,Gasiński, M. A. ,Olshtynska, A. ,Uchman, A. ,Kennedy, W. J. ,Klinger, H. ,Machalski, M. ,Kennedy, W. J. , Oyster-bioimmured ammonites from the Upper Albian of Annopol, Poland: stratigraphic and palaeobiogeographic implications. Acta Geologica Polonica Vol. 63, no. 4/2013
[Top]

Silicified sea life – Macrofauna and palaeoecology of the Neuburg Kieselerde Member (Cenomanian to Lower Turonian Wellheim Formation, Bavaria, southern Germany)

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Silicified sea life – Macrofauna and palaeoecology of the Neuburg Kieselerde Member (Cenomanian to Lower Turonian Wellheim Formation, Bavaria, southern Germany)

Autorzy :
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland, i.walaszczyk@uw.edu.pl,
Kopaevich, L.
Geological Faculty, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991 Russia,
Beniamovski, V. N.
Geological Institute, Russian Academy of Sciences, Pyzhevski 7, Moscow, 119017, Russia,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D-01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Storm, M.
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom,
Fürsich, F.
GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, D-91054 Erlangen, Germany,
Majidifard, M.
Geological Survey of Iran, Box 131851-1494, Tehran, Iran,
Gasiński, M. A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, adam.gasinski@uj.edu.pl,
Olshtynska, A.
Institute of Geological Sciences, National Academy of Sciences of Ukraine, O. Gonchara str. 55-b, 01601 Kiev, Ukraine, ol-lesia@mail.ru,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Klinger, H.
Natural History Collections Department, Iziko South African Museum, P. O. Box 61, Cape Town, 8000, Republic of South Africa, hkling@telekomsa.net,
Machalski, M.
Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL-00-818 Warszawa, Poland, mach@twarda.pan.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Schneider, S.
CASP, University of Cambridge, West Building, 181A Huntingdon Road, Cambridge, CB3 0DH, UK and GeoZentrum Nordbayern, Paleobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany, simon.schneider@casp.cam.ac.uk,
Jäger, M.
Lindenstr. 53, 72348 Rosenfeld, Germany, langstein.jaeger@web.de,
Kroh, A.
Natural History Museum Vienna, Geology-Palaeontology, Burgring 7, 1010 Wien, Austria, andreas.kroh@nhm-wien.ac.at,
Mitterer, A.
Hoffmann Mineral GmbH, Münchener Str. 75, 86633 Neuburg an der Donau, Germany, agnes.mitterer@sonax.de,
Niebuhr, B.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Paläozoologie, Königsbrücker Landstr. 159, 01109 Dresden, Germany, niebuhr.birgit@googlemail.com,
Vodrážka, R.
Academy of Sciences of the Czech Republic, Institute of Geology, Rozvojová 269, 16502 Praha 6, Czech Republic, radek.vodrazka@seznam.cz,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Paläozoologie, Königsbrücker Landstr. 159, 01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Wood, C. J.
Scops Geological Services Ltd., 31 Periton Lane, Minehead, Somerset TA24 8AQ, UK, chrisjwood@btinternet.com,
Zágoršek, K.
Department of Paleontology, National Museum, Vaclavske nam. 68, 11579 Praha 1, Czech Republic, kamil_zagorsek@nm.cz,
Abstrakty : With approximately 100 species, the invertebrate macrofauna of the Neuburg Kieselerde Member of the Wellheim Formation (Bavaria, southern Germany) is probably the most diverse fossil assemblage of the Danubian Cretaceous Group. Occurring as erosional relicts in post-depositional karst depressions, both the Cretaceous sediments and fossils have been silicified during diagenesis. The Neuburg Kieselerde Member, safely dated as Early Cenomanian to Early Turonian based on inoceramid bivalve biostratigraphy and sequence stratigraphy, preserves a predominantly soft-bottom community, which, however, is biased due to near-complete early diagenetic loss of aragonitic shells. The community is dominated by epifaunal and semi-infaunal bivalves as well as sponges that settled on various (bio-) clasts, and may widely be split into an early bivalve-echinoid assemblage and a succeeding sponge-brachiopod assemblage. In addition to these groups we document ichnofauna, polychaete tubes, nautilids and bryozoans. The fauna provides evidence of a shallow to moderately deep, calm, fully marine environment, which is interpreted as a largescale embayment herein. The fauna of the Neuburg Kieselerde Member is regarded as an important archive of lower Upper Cretaceous sea-life in the surroundings of the Mid-European Island.

Słowa kluczowe : kreda, makrobezkręgowce, facja, krzemionka diageneza, stratygrafia, Late Cretaceous, Danubian Cretaceous Group, macroinvertebrates, facies, Silica diagenesis, stratigraphy,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2013
Numer : Vol. 63, no. 4
Strony : 555 – 610
Bibliografia : 1. Agassiz, L. and Desor, P.J.E. 1847. Catalogue raisonné des espèces, des genres, et des familles d’échinides. Annales des Sciences Naturelles, Troisième Série, Zoologie, 8, 5–35, 355–380.
2. Archiac, A. d’ 1843. Description géologique du Département de l’Aisne. Mémoires de la Société Géologique de France, 1ère serie, 5, 129–418.
3. Bassler, R.S. 1953. Bryozoa. In: R.C. Moore (Ed.), Treatise on Invertebrate Paleontology, Part G, pp. G1–G253. Geological Society of America and University of Kansas Press; Boulder, CO, Lawrence, KA.
4. Bengtson, P. 1988. Open nomenclature. Palaeontology, 31, 223–227.
5. Blainville, H.M.D. de 1825. Manuel de malacologie et de conchyliologie, pp. 1–647. F.G. Levrault; Paris.
6. Bock, P. 2013. Recent and Fossil Bryozoa. Available from: http://www.bryozoa.net/ last accessed 24/04/2013.
7. Bromley, R.G. 1996. Trace fossils. Biology, taphonomy and applications. Second edition, pp. 1–361. Chapman & Hall; London.
8. Brongniart, A. 1822. Description géologique des environs de Paris, Nouvelle edition, pp. 1–427. Dufour and d’Ocagne; Paris.
9. Brünnich Nielsen, K. 1931. Serpulidae from the Senonian and Danian deposits of Denmark. Meddelelser fra Dansk Geologisk Forening, 8, 71–113.
10. Bucaille, E. 1883. Etude sur des échinides fossiles du Département de la Seine-Inférieure. Bulletin de la Société Géologique de Normandie et des Amis du Muséum du Havre, 8, 16–39.
11. Buge, E. 1952. Classe des Bryozoaires. Traité de Paléontologie, 1, 688–749.
12. Caron, M. 1985. Cretaceous planktic foraminifera. In: H.M. Bolli, J.B. Saunders and K. Perch-Nielsen (Eds), Plankton Stratigraphy, pp. 17–86. Cambridge University Press; Cambridge.
13. Carson, G.A. 1987. Silicification fabrics from the Cenomanian and basal Turonian of Devon, England: isotopic results. In: J.D. Marshall (Ed.), Diagenesis of Sedimentary Sequences. Geological Society Special Publication, 36, 87–102.
14. Carter, J.G., Altaba, C.R., Anderson, L.C., Araujo, R., Biakov, A.S., Bogan, A.E., Campbell, D.C., Campbell, M., Chen Jin-hua, Cope, J.C.W., Delvene, G., Dijkstra, H.H., Fang Zong-jie, Gardner, R.N., Gavrilova, V.A., Goncharova, I., Harries, P.J., Hartman, J.H., Hautmann, M., Hoeh, W.R., Hylleberg, J., Jiang Bao-yu, Johnston, P., Kirkendale, L., Kleemann, K., Koppka, J., Kříž, J., Machado, D., Malchus, N., Márquez-Aliaga, A., Masse, J.-P., McRoberts, C.A., Middelfart, P.U., Mitchell, S., Nevesskaja, L.A., Özer, S., Pojeta, J. Jr., Polubotko, I.V., Pons, J.M., Popov, S., Sánchez, T., Sartori, A.F., Scott, R.W., Sey, I.I., Signorelli, J.H., Silantiev, V.V., Skelton, P.W., Steuber, T., Waterhouse, J.B., Wingard, G.L. and Yancey, T. 2011. A synoptical classification of the Bivalvia (Mollusca). Paleontological Contributions, 4, 1–47.
15. Carter, R.M. 1968. Functional studies on the Cretaceous oyster Arctostrea. Palaeontology, 11, 458–485.
16. Crick, R.E. and Mann, K.O. 1987. Biomineralization and systematic implications. In: W.B. Saunders, and N.H. Landman (Eds), Topics in Geobiology, 6, 115–134. Plenum Press, New York.
17. Dacqué, E. 1939. Die Fauna der Regensburg–Kelheimer Oberkreide (mit Ausschluß der Spongien und Bryozoen). Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Abteilung, Neue Folge, 45, 1–218.
18. Dapples, E.C. 1959. The behavior of silica in diagenesis. In: Silica in sediments: a symposium with discussions. SEPM Special Publication, 7, 26–54.
19. Davidson, T. 1852–54. A monograph of the British fossil Brachiopoda. Volume 1, Part 2. The Cretaceous Brachiopoda. Monographs of the Palaeontographical Society, 6 (16), 1–54 1852, 8 (26), 55–117 1854.
20. Defrance, M. 1820. Gervillie, Gervillia. In: F.G. Levrault (Ed.), Dictionnaire des sciences naturelles, 18, 502–503. F.G. Levrault, Le Normant; Strasbourg, Paris.
21. Defrance, M. 1827. Serpule. In: F.G. Levrault (Ed.), Dictionnaire des sciences naturelles, 48, 549–572. F.G. Levrault, Le Normant; Strasbourg, Paris.
22. Dhondt, A. 1971. Systematic revision of Entolium, Propeamussium (Amusiidae) and Syncyclonema (Pectinidae, Bivalvia, Mollusca) of the European boreal Cretaceous. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la terre, 47 (32), 1–95.
23. Dhondt, A.V. 1972. Systematic revision of the Chlamydinae (Pectinidae, Bivalvia, Mollusca) of the European Cretaceous. Part 1: Camptonectes. Bulletin de l’Institut Royal de Sciences Naturelles de Belgique, Sciences de la terre, 48 (3), 1–60.
24. Dhondt, A.V. 1973a. Systematic revision of the Chlamydinae (Pectinidae, Bivalvia, Mollusca) of the European Cretaceous. Part 3: Chlamys and Mimachlamys. Bulletin de l’Institut Royal de Sciences Naturelles de Belgique, Sciences de la terre, 49 (1), 1–134.
25. Dhondt, A.V. 1973b. Systematic revision of the subfamily Neitheinae (Pectinidae, Bivalvia, Mollusca) of the European Cretaceous. Mémoires, Institut Royal de Sciences Naturelles de Belgique, 176, 1–101.
26. Dhondt, A.V. 1976 for 1975. Systematic revision of the Chlamydinae (Pectinidae, Bivalvia, Mollusca) of the European Cretaceous. Part 4: Merklinia. Bulletin de l’Institut Royal de Sciences Naturelles de Belgique, Sciences de la terre, 51 (7), 1–38.
27. Dhondt, A.V. 1987. Bivalves from the Hochmoos Formation (Gosau-Group, Oberösterreich, Austria). Annalen des Naturhistorischen Museums in Wien, Reihe A, 88, 41–101.
28. Dhondt, A.V. 1989. Late Cretaceous Limea (Pseudolimea) species of Europe. Bulletin de l’Institut Royal de Sciences Naturelles de Belgique, Sciences de la terre, 59, 105–125.
29. Dobner, A., Poschlod, K., Wagner, S. and Weinig, H. 2002. Geowissenschaftliche Landesaufnahme in der Planungsregion 10 Ingolstadt. Erläuterungen zur Rohstoffgeologischen Karte 1:100000, pp. 1–121. Bayerisches Geologisches Landesamt; München.
30. Doppler, G., Fiebig, M. and Meyer, R.K.F. 2002. Geowissenschaftliche Landesaufnahme in der Planungsregion 10 Ingolstadt. Erläuterungen zur Geologischen Karte 1:100000, pp. 1–172. Bayerisches Geologisches Landesamt; München.
31. Dzik J. 1984. Phylogeny of the Nautiloidea. Palaeontologia Polonica, 45, 1–220.
32. Fitton, W.H. 1836. Observations on some of the strata between the Chalk and the Oxford Oolite in the south-east of England. Transactions of the Geological Society of London, Second Series, 4, 103–388.
33. Forbes, E. 1846. Report on the fossil Invertebrata from Southern India, collected by Mr. Kaye and Mr. Cunliffe. Transactions of the Geological Society of London, Second Series, 7, 97–147.
34. Frank, J. 2008. Problematic determination of ribbed Cretaceous nautiloids, for example Eutrephoceras columbinum (Fritsch, 1872) vs. Cymatoceras atlas (Whiteaves, 1876). In: M. Pisera, M.A. Bitner and A.T. Halamski (Eds), 9th Paleontological Conference, Warszawa 9–11 October. Abstract volume, 25–26. Warszawska Drukarnia Naukowa PAN; Warsaw.
35. Frank, J. 2010. Taxonomy and palaeoecology of Cretaceous nautilids Angulithes galea (Fritsch in Fritsch and Schlönbach, 1872) and Angulithes westphalicus (Schlüter, 1872). Bulletin of Geosciences, 85, 487–496.
36. Frank, J., Wilmsen, M. and Košťák, M. 2013. The endemic and morphologically remarkable nautilid genus Deltocymatoceras Kummel, 1956 from the Late Cretaceous of Central Europe. Bulletin of Geosciences, 88 (4), 793-812.
37. Fritsch, A. 1872. Cephalopoden der böhmischen Kreideformation, pp. 1–52. Published by the author; Prague.
38. Gall, H., Müller, D. and Yamani, A. 1973. Zur Stratigraphie und Paläogeographie der Cenoman-Ablagerungen auf der südwestlichen Frankenalb (Bayern). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 143, 1–22.
39. Goldfuss, A. 1826–1844. Petrefacta Germaniae, 1 (1), I–VIII + 1–76, pls 1–25 1826, 1 (2): 77–164, pls 26–50 1829, 1 (3), 165–240, pls 51–71 1831, 1 (4), 241–252 1833, 2 (1), 1–68, pls 72–96 1833, 2 (2), 69–140, pls 97–121 1835, 2 (3), 141–224, pls 122–146 1837, 2 (4), I–III + 225–312, pls 147–165 1841, 3 (1), 1–20, pls 166–171 1841, 3 (2), 21–28, pls 172–195 1844, 3 (3), I–IV, 29–128, pls 196–200 1844. Arnz & Co.; Düsseldorf.
40. Göske, J. and Kachler, W. 2008. Morphology, physicochemistry and phase analysis of Neuburg Siliceous Earth. Microscopy and Analysis, 22 (5), 23–24.
41. Gradstein, F., Ogg, J., Schmitz, M. and Ogg, G. 2012. The geologic time scale 2012, pp. 1–1176. Elsevier; Amsterdam.
42. Groiss, J.T. 1964. Eine Mikrofauna aus der albüberdeckenden Kreide der südlichen Frankenalb. Erlanger geologische Abhandlungen, 53, 1–23.
43. Grünberg, K. 1987. Geologische, sedimentpetrographische und geochemische Untersuchungen im Kieselerde-Tagebau “Pfaffengrund” bei Neuburg/Donau. Diploma thesis TU München, pp. 1–97, München. unpublished
44. Gründel, J. 1982. Ostreen (Bivalvia) aus der Sächsischen Oberkreide II. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden, 31, 151–161.
45. Gümbel, C.W. von 1889. Kurze Erläuterungen zu dem Blatte Ingolstadt (Nr. XV) der geognostischen Karte des Königreichs Bayern, pp. 1–34. Theodor Fischer; Cassel.
46. Gümbel, C.W. von 1891. Geognostische Beschreibung des Koenigreichs Bayern. 4. Abtheilung, Geognostische Beschreibung der Fränkischen Alb (Frankenalb) mit dem anstossenden Fränkischen Keupergebiete, pp. 1–763. Theodor Fischer; Kassel.
47. Hagenow, F. von 1851. Die Bryozoen der Maastrichter Kreidebildung. pp. i–xvi + 1–111. Theodor Fischer; Cassel.
48. Hasselmann, F. 1894. Neuburg a. D. und seine Umgebung mit seinen Mineralien, in Bezug auf Abbau von Kalk, Dolomit und Kreide, nebst einem historischen Rückblick auf seine Vergangenheit. Kollectaneen-Blatt für die Geschichte Bayerns, insbesondere des ehemaligen Herzogtums Neuburg, 58, supplement, 1–47.
49. Hasselmann, F. 1895a. Neuburg a. D. und seine Umgebung mit seinen Mineralien, in Bezug auf Abbau von Kalk, Dolomit und Kreide, nebst einem historischen Rückblick auf seine Vergangenheit. Der Deutsche Steinbildhauer und Steinmetz, 11, 1–25.
50. Hasselmann, F. 1895b. Neuburg a. D. und seine Umgebung mit seinen Mineralien, in Bezug auf Abbau von Kalk, Dolomit und Kreide, nebst einem historischen Rückblick auf seine Vergangenheit. Zweite Auflage, pp. 1–47. Grießmayer; Neuburg a. d. Donau.
51. Hillmer, G. 1971. Bryozoen (Cyclostomata) aus dem Unter-Hauterive von Nordwestdeutschland. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, 40, 5–106.
52. Hoffmann, M., Kempcke, E., Neuwirth, E. and Pierucini, R. 1955. Die Neuburger Kieselerde. Berichte der Deutschen Keramischen Gesellschaft, 32, 297–303.
53. Hoffmann Mineral GmbH & Co. KG 2003. 100 Jahre Hoffmann Mineral. 1903–2003, pp. 1–100, Neuburg an der Donau.
54. Hoffmann Mineral GmbH & Co. KG 2008. Hoffmann Mineral – Qualität hat viele Gesichter, pp. 1–38, Neuburg an der Donau.
55. Holcová, K. and Zágoršek, K. 2008. Bryozoa, Foraminifera and calcareous nannoplankton as environmental proxies of the “bryozoan event” in the Middle Miocene of the Central Paratethys (Czech Republic). Palaeogeography, Palaeoclimatology, Palaeoecology, 267, 216–234.
56. House, M.R. 1987. Geographic distribution of Nautilus shells. In: W.B. Saunders, and N.H. Landman (Eds), Topics in Geobiology, 6, 53–64, Plenum Press, New York.
57. ICZN 1999. International Code of Zoological Nomenclature online, 4th edition. International Trust for Zoological Nomenclature. Available from: http://www.nhm.ac.uk/hosted-sites/iczn/code/.
58. Ippolitov, A.P. 2007. Contribution to the revision of some Late Callovian serpulids (Annelida, Polychaeta) of Central Russia: Part 1. Paleontological Journal, 41 (3), 260–267.
59. Jäger, M. 1983. Serpulidae (Polychaeta sedentaria) aus der norddeutschen höheren Oberkreide – Systematik, Stratigraphie, Ökologie. Geologisches Jahrbuch, Reihe A, 68, 3–219.
60. Jäger, M. 2005 for 2004. Serpulidae und Spirorbidae (Polychaeta sedentaria) aus Campan und Maastricht von Norddeutschland, den Niederlanden, Belgien und angrenzenden Gebieten. Geologisches Jahrbuch, Reihe A, 157, 121–249.
61. Juignet, P., Kennedy, W.J. and Wright, C.W. 1973. La limite Cénomanien – Turonien dans la région du Mans (Sarthe): stratigraphie et paléontologie. Annales de Paléontologie, 59, 209–242.
62. Kalkowski, E. 1897 or 1902. Gutachten über die Lager von Kieselkreide aus dem Besitztum der Fa. “Vereinigte Neuburger Kreidewerke Schulz & Philipp” zu Neuburg. Expertise, Technische Hochschule in Dresden, cited in Schneider 1933 and Prokopowicz 1951
63. Kauffman, E.G., Herm, D., Johnson, C.C., Harries, P., Höfling, R. 2000. The ecology of Cenomanian lithistid sponge frameworks, Regensburg area, Germany. Lethaia, 35, 214–235.
64. Keller, S. 1982. Die Oberkreide der Sack-Mulde bei Alfeld (Cenoman–Unter-Coniac), Lithologie, Biostratigraphie, Inoceramen. Geologisches Jahrbuch, Reihe A, 64, 3–171.
65. Kempcke, E. 1958a. Ein Beitrag zur Genese der Neuburger Kieselerde und ihrer fossilen Fauna. Keramische Zeitschrift, 10 (9–11), 1–10.
66. Kempcke, E. 1958b. Fossilium Catalogus Neuburgensis. Unpublished typescript with glued-in photographs, pp. 1–42.
67. Kennedy, W.J. 2002. Nautiloids. In: A.B. Smith and D.J. Batten (Eds), Fossils of the Chalk. Palaeontological Association Field Guide to Fossils, 2 (2nd edition), 219–231.
68. Kirchdörfer, K.-H., Pflanz, L. and Wiedemann, P. 1983. Die Neuburger Kieselerde – neuere Erkenntnisse und neue Entwicklungen. Gummi, Asbest, Kunststoffe, 36, 297–298, 397–399.
69. Košťák, M., Vodrážka, R., Frank, J., Mazuch, M. and Marek, J. 2010. Late Cretaceous nautilid beaks from nearshore/shallow water deposits of the Bohemian Cretaceous Basin (Czech Republic). Acta Geologica Polonica, 60, 417–428.
70. Kroh, A. and Smith, A.B. 2010. The phylogeny and classification of post-Palaeozoic echinoids. Journal of Systematic Palaeontology, 8, 147–212.
71. Krumbeck, L. 1917 for 1916–1917. Beiträge zur Geologie von Nordbayern. IV. Bemerkungen zur Entstehung der oberkretazischen Neuburger Kieselkreide. Sitzungsberichte der Physikalisch-Medizinischen Sozietät zu Erlangen, 48/49, 373–389.
72. Kummel, B. 1956. Post-Triassic nautiloid genera. Bulletin of the Museum of Comparative Zoology at Harvard College in Cambridge, 114, 319–494.
73. Kummel, B. 1964. Nautiloidea–Nautilida. In: R.C. Moore (Ed.), Treatise on Invertebrate Paleontology, Part K, Mollusca 3. Geological Society of America and University of Kansas Press; Boulder, CO, Lawrence, KA, K383–K457.
74. Lamarck, J.B. 1801. Systême des animaux sans vertèbres; ou, Tableau géneral des classes, des ordres et des genres de ces animaux, pp. 1–432. Deterville; Paris.
75. Lamarck, J.P.B.A. de Monet de 1819. Histoire naturelle des animaux sans vertèbres, présentant les caractères généraux et particuliers de ces animaux, leur distribution, leurs classes, leurs familles, leurs genres, et la citation des principales espèces qui s’y rapportent; précédée d’une introduction offrant la détermination des caractères essentiels de l’animal, sa distinction du végétal et des autres corps naturels, enfin, l’exposition des principes fondamentaux de la zoologie, Tome sixième, 1re partie, pp. 1–232. Deterville and Verdiere; Paris.
76. Lehner, L. 1924. Die Gliederung der fränkischen albüberdeckenden Kreide. Ein vorläufiger Bericht. Centralblatt für Mineralogie, Geologie und Paläontologie, Abteilung B, 6, 176–181.
77. Lehner, L. 1933. Beobachtungen an Cenomanrelikten der südlichen Frankenalb. Studien über die fränkische albüberdeckende Kreide, II. Centralblatt für Mineralogie, Geologie und Paläontologie, Abteilung B, 8, 458–470.
78. Lehner, L. 1937a. Fauna und Flora der Fränkischen Albüberdeckenden Kreide. I. Die Lamellibranchiaten (ohne Inoceramen), herausgegeben von R. Dehm. Palaeontographica, A 85, 115–228.
79. Lehner, L. 1937b. Fauna und Flora der Fränkischen Albüberdeckenden Kreide. II. Fauna 2. Teil und Flora, herausgegeben von R. Dehm. Palaeontographica, A 87, 158–230.
80. Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata, tomus I, 1–824. Holmiae.
81. Linnaeus, C. 1767. Systema naturae, per regna tria naturae, secundum classes, ordines, genera, species cum characteribus, differentiis, synonymis, locis. Editio duodecima reformata, tomus I, pars II, 533–1328. Laurentii Salvii; Holmiae.
82. Lommerzheim, A. 1979. Monographische Bearbeitung der Serpulidae (Polychaeta sedentaria) aus dem Cenoman (Oberkreide) am Südwestrand des Münsterländer Beckens. Decheniana, 132, 110–195.
83. Mantell, G. 1822. The fossils of the South Downs; or illustrations of the geology of Sussex, pp. 1–320. Lupton Relfe; London.
84. Matsumoto, T., Miyauchi, T., Kanie, Y., Miyata, Y and Ueda, Y. 1984. Cretaceous nautiloids from Hokkaido, Part 5–7. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 134, 335–346.
85. McKinney, F.K. and Jackson, J.B.C. 1989. Bryozoan evolution. Special Topics in Paleontology, 2, 1–238. Unwin Hyman; Boston.
86. Mergl, M. 2010. Silicification of fossils in the Silurian and Devonian of the Barrandian, Czech Republic. Journal of the National Museum (Prague), Natural History Series, 179 (13), 139–145.
87. Meyer, R. 1981. Kreide nördlich der Alpen. In: Erläuterungen zur Geologischen Karte von Bayern 1:500000, 3rd edition. Bayerisches Geologisches Landesamt; München, 68–78.
88. Meyer, R.K.F. 1996. Kreide. In: Erläuterungen zur Geologischen Karte von Bayern 1:500000, 4th edition. Bayerisches Geologisches Landesamt; München, 112–125.
89. Meyer, R.K.F. 2000. Außeralpine Kreide in Süddeutschland (Regensburger Kreide). In: Stratigraphische Kommission Deutschland (ed.): Stratigraphie von Deutschland III. Die Kreide der Bundesrepublik Deutschland. Courier Forschungsinstitut Senckenberg, 226, 141–147.
90. Mitterer, A. 2010. Geologisch-lagerstättenkundliche Kartierung im Maßstab 1:10 000 am Hainberg bei Rennertshofen (Lks. Neuburg-Schrobenhausen) und Untersuchungen zur Entstehung der Neuburger Kieselerde. Diploma thesis TU München, pp. 1–215. München. unpublished
91. Mörs, T. 1991. Zur Petrographie, Sedimentologie und Stratigraphie der Wellheimer Kreide (Südliche Frankenalb, Bayern). Archaeopteryx, 9, 73–81.
92. Mörtel, H. and Paetsch, D. 1975. Natürlicher Quarz ohne DTA-Effekt. Berichte der Deutschen Keramischen Gesellschaft, 52, 8–10.
93. Mortimore, R.N., Wood, C.J and Gallois, R.W. 2001. British Upper Cretaceous Stratigraphy. Geological Conservation Review Series 23, 1–558. Joint Nature Conservation Committee; Peterborough.
94. Nekvasilová, O. 1974. Genus Cretirhynchia and Orbirhynchia (Brachiopoda) from the Upper Cretaceous of North-West Bohemia. Sbornik geologickych ved, Paleontologie, 16, 35–67.
95. Neubauer, W. 1979. Sedimentpetrographische Untersuchungen am Neuburger Weiß am Beispiel des Tagebaus Pfaffengrund bei Neuburg a. d. Donau. Diploma thesis University München, pp. 1–95, München. unpublished
96. Niebuhr, B. 2005. Geochemistry and time-series analyses of orbitally forced Upper Cretaceous marl-limestone rhythmites (Lehrte West Syncline, northern Germany). Geological Magazine, 142, 31–55.
97. Niebuhr, B. 2011a. Vergessene Kreide – Verkieselungen in der “lehmigen Albüberdeckung” der Südlichen Frankenalb (Bayern). Freiberger Forschungshefte, C 540, 47–63.
98. Niebuhr, B. 2011b. Die Bohrung Pfakofen LAM B2/09 südlich von Regensburg (Turonium / Coniacium-Grenzbereich) – ein Beitrag zur Stratigraphie der Danubischen Kreide-Gruppe (Bayern, Süd-Deutschland). Geologische Blätter für Nordost-Bayern und angrenzende Gebiete, 61, 97–116.
99. Niebuhr, B., Pürner, T. and Wilmsen, M. 2009. Lithostratigraphie der außeralpinen Kreide Bayerns. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 65, 1–58.
100. Niebuhr, B., Richardt, N. and Wilmsen, M. 2012. Facies and integrated stratigraphy of the Upper Turonian (Upper Cretaceous) Großberg Formation south of Regensburg (Bavaria, southern Germany). Acta Geologica Polonica, 62, 595–615.
101. Niebuhr, B., Volkmann, R. and Schönfeld, J. 1997. Das obercampane polyplocum-Event der Lehrter Westmulde (Oberkreide, N-Deutschland): Bio-/ Litho-/ Sequenzstratigraphie, Fazies-Entwicklung und Korrelation. Freiberger Forschungshefte, C 468, 211–244.
102. Niebuhr, B., Wilmsen, M., Chellouche, P., Richardt, N. and Pürner, T. 2011. Stratigraphy and facies of the Turonian (Upper Cretaceous) Roding Formation at the southwestern margin of the Bohemian Massif (southern Germany, Bavaria). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 62, 295–316.
103. Nilsson, S. 1827. Petrificata Suecana formationis Cretaceae descripta et iconibus illustrata. Pars prior, Vertebrata et Mollusca sistens, pp. 1–39. Officina Berlingiana; Londini Gothorum.
104. Nye, O.B. Jr. 1976. Generic revision and skeletal morphology of some cerioporid cyclostomes (Bryozoa). Bulletins of American Paleontology, 69, 1–222.
105. Orbigny, A. d’ 1840–1860. Paléontologie Française. Description zoologique et géologique de tous les Animaux Mollusques et Rayonnés fossiles de la France, comprenant leur application ą la reconnaissance des couches. Terrains Crétacés. Tome Première, Céphalopodes. pp. 1–662 1840–1842. Tome Deuxième, Gastéropodes. pp. 1–456 1842–1843. Tome Troisième, Lamellibranches. pp. 1–807 1844–1847. Tome Quatrième, Brachiopodes. pp. 1–390 1848–1849. Tome Cinquième, Bryozoaires. pp. 1–1191 1851–1854. Tome Sixième, Échinodermes. pp. 1–596 1854–1860. Victor Masson; Paris.
106. Orbigny, A. d’ 1850. Note sur quelques espéces nouvelles de Bryozoaires fossiles des terrains crétacés de la France. Especes de I’étage cénomanien ou de la craie chloritée. Revue et Magazine de Zoologie pure et appliquée, 2, 170–181.
107. Oschmann, F. 1958. Geologische Karte von Bayern 1:25000, Erläuterungen zum Blatt Nr. 7038 Bad Abbach, pp. 1–184.
108. Bayerisches Geologisches Landesamt; München. Owen, E.F. 1962. The brachiopod genus Cyclothyris. Bulletin of the British Museum (Natural History), Geology, 7 (2), 2–63.
109. Owen, E.F. 1968. A further study of some Cretaceous rhynchonelloid brachiopods. Bulletin of the Indian Geologists Association, 1, 17–32.
110. Owen, E.F. 1978. The distribution of Brachiopods within the Cenomanian of northwest and central Europe. Géologie Méditerranéenne, 5, 147–154.
111. Owen, E.F. 1988. Cenomanian brachiopods from the Lower Chalk of Britain and northern Europe. Bulletin of the British Museum (Natural History), Geology, 44, 65–175.
112. Owen, E.F. 2002. Brachiopods. In: A.B. Smith and D.J. Batten (Eds), Fossils of the Chalk. Palaontological Association Field Guide to Fossils, 2 (2nd edition), 219–231.
113. Parsch, K.O.A. 1956. Die Serpuliden-Fauna des südwestdeutschen Jura. Palaeontographica, A 107, 211–240.
114. Perkins, T.H. 1991. Calcisabella piloseta, a new genus and species of Sabellinae (Polychaeta: Sabellidae). Bulletin of Marine Sciences, 48, 261–267.
115. Peron, A. 1877. Observations sur la faune des Calcaires à Echinides de Rennes-les-Bains et sur quelques fossiles du terrain crétacé supérieur. Bulletin de la Société Géologique de France, Troisième Série, 5, 499–535.
116. Pitt, L.J. and Taylor, P.D. 1990. Cretaceous Bryozoa from the Faringdon Sponge Gravel (Aptian) of Oxfordshire. Bulletin of the British Museum (Natural History), Geology, 46, 61–152.
117. Pożaryska, R. 1952. The sedimentological problems of the Upper Maastrichtian and Danian of the Pulawy environment (Middle Vistula). Biuletyn Państwowego Instytutu Geologicznego, 81, 1–104.
118. Prokopowicz, N.P. 1951. Das Neuburger Weiß, seine Natur und Entstehung. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 93, 1–22.
119. Read, G. and Fauchald, K. 2013. Calcisabella Perkins, 1991. In: G. Read and K. Fauchald (Eds), World Polychaeta database. Available from:http://www.marinespecies.org/aphia.php?p=taxdetails&id=325070 last accessed 19/11/2013.
120. Regenhardt, H. 1961. Serpulidae (Polychaeta sedentaria) aus der Kreide Mitteleuropas, ihre ökologische, taxionomische und stratigraphische Bewertung. Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg, 30, 5–115.
121. Reid, R.E.H. 1968. Bathymetric distributions of Calcarea and Hexactinellida in the present and the past. Geological Magazine, 105, 546–559.
122. Richardt, N., Wilmsen, M. and Niebuhr, B. 2013. Late Cenomanian–Early Turonian facies development and sea-level changes in the Bodenwöhrer Senke (Danubian Cretaceous Group, Bavaria, Germany). Facies, 59, 803-827.
123. Rigby, J.K., Finks, R.M. and Reid, R.E.H. 2004. Treatise on Invertebrate Paleontology, Part E, Porifera, revised. Volume 3 (Demospongea, Hexactinellida, Heteractinida, Calcarea). pp. E1–E872. Geological Society of America and University of Kansas Press; Boulder, CO, Lawrence, KA.
124. Roemer, F.A. 1839. Die Versteinerungen des norddeutschen Oolithengebirges. Ein Nachtrag, pp. 1–59. Hahn’sche Hofbuchhandlung; Hannover.
125. Sahni, M.R. 1929. A monograph of the Terebratulidae of the British Chalk. Monographs of the Palaeontographical Society, 81 (372), 1–62.
126. Saunders, W.B. and Ward, P.D. 1987. Ecology, distribution, and population characteristics of Nautilus. In: W.B. Saunders, and N.H. Landman (Eds), Topics in Geobiology, 6, 137–162. Plenum Press; New York.
127. Schlotheim, E.F. von 1813. Beiträge zur Naturgeschichte der Versteinerungen in geognostischer Hinsicht. Leonhard’s Taschenbuch für die gesammte Mineralogie, 7, 3–134.
128. Schlotheim, E.F. von 1820. Die Petrefactenkunde auf ihrem jetzigen Standpunkte, pp. i–lxii + 1–437, pls 1–29. Becker; Gotha.
129. Schneid, T. 1914. Die Geologie der fränkischen Alb zwischen Eichstätt und Neuburg a.D., 1. Stratigraphischer Teil. Geognostische Jahreshefte, 27, 59–172.
130. Schneid, T. 1915. Die Geologie der fränkischen Alb zwischen Eichstätt und Neuburg a.D., 1. Stratigraphischer Teil, zweite Hälfte. Geognostische Jahreshefte, 28, 1–61.
131. Schneider, M. 1933. Die Kieselerde von Neuburg a. d. D. und ihre Industrie, pp. 1–94. Mößl; München.
132. Schneider, S., Niebuhr, S., Wilmsen, M. and Vodrážka, R. 2011. Between the Alb and the Alps – The fauna of the Upper Cretaceous Sandbach Formation (Passau region, southeast Germany). Bulletin of Geosciences, 86, 785–816.
133. Schnitzer, W.A. 1953. Sedimentpetrographische Untersuchungen an den postjurassischen Überdeckungsbildungen der mittleren, südlichen Frankenalb. Geologische Blätter für Nordost-Bayern und angrenzende Gebiete, 3, 121–134.
134. Seeling, J. and Bengtson, P. 2003. The bivalve Pinna cretacea (Schlotheim, 1813) from the Cretaceous of Brazil. Acta Palaeontologica Polonica, 48, 475–480.
135. Shimansky, V.N. 1975. Cretaceous Nautiloids. Trudy Paleontologičeskogo Instituta Akademii Nauk SSSR, 150, 1–208. In Russian
136. Simonson, C. 1991. Spurenelemente in Kaolinen als genetische Indikatoren (mit einem Beitrag zur Neuburger Kieselerde). Berliner geowissenschaftliche Abhandlungen, Reihe A, 130, 1–93.
137. Smith, A.B. 2004. Phylogeny and systematics of holasteroid echinoids and their migration into the deep-sea. Palaeontology, 47 (1), 123–150.
138. Smith, A.B. and Kroh, A. (Eds) 2012. The Echinoid Directory. Available from: http://www.nhm.ac.uk/research-curation/projects/echinoid-directory last accessed 15/01/2013.
139. Smith, A.B. and Wright, C.W. 2003. British Cretaceous echinoids. Part 7, Atelostomata, 1. Holasteroida. Monographs of the Palaeontographical Society, 156 (619), 440–568.
140. Smith, A.B. and Wright, C.W. 2008. British Cretaceous echinoids. Part 8, Atelostomata, 2. Spatangoida (1). Monographs of the Palaeontographical Society, 162 (630), 569–635.
141. Sowerby, J. 1812–1822. The mineral conchology of Great Britain; or coloured figures and descriptions of those remains of testaceous animals or shells, which have been preserved at various times and depths in the Earth. 1, pp. 1–32, pls 1–9 1812, pp. 33–96, pls 10–44 1813, pp. 97–178, pls 45–78 1814, pp. 179–234, pls 79–102 1815, 2, pp. 1–28, pls 103–114 1815, pp. 29–116, pls 115–150 1816, pp. 117–194, pls 151–186 1817, pp. 195–235, pls 187–203 1818, 3, pp. 1–40, pls 204–221 1818, pp. 41–98, pls 222–253 1819, pp. 99–126, pls 254–271 1820, pp. 127–184, pls 272–306 1821, 4, pp. 1–16, pls 307–318 1821, pp. 17–114, pls 319–383 1822, Benjamin Meredith, London.
142. Sowerby, J. de C. 1823–1845. The mineral conchology of Great Britain; or coloured figures and descriptions of those remains of testaceous animals or shells, which have been preserved at various times and depths in the Earth. 4, pp. 115–148, pls 384–407, 5, pp. 1–64, pls 408–443 1823, pp. 65–138, pls 444–485, 1824, pp. 139–168, pls 486–503 1825, 6, pp. 1–86, pls 504–544 1826, pp. 87–156, pls 545–580 1827, pp. 157–200, pls 581–597 1828, pp. 201–230, pls 598–609 1829, 7, pp. 1–8, pls 610–618 1840, pp. 9–16, pls 619–623 1841, pp. 17–24, pls 624–628 1843, pp. 25–56, pls 629–643 1844, pp. 57–80, pls 644–648 1845, The Author; London.
143. Spath, L.F. 1927. Revision of the Jurassic cephalopod fauna of Kachh (Cutch). Memoirs of the Geological Survey of India, Palaeontologia Indica, New series, 9 (2), 1–84.
144. Stenzel, H.B. 1971. Oysters. In: R.C. Moore (Ed.), Treatise on Invertebrate Paleontology, Part N, Mollusca 6, Volume 3. Geological Society of America and University of Kansas Press; Boulder, CO, Lawrence, KA, N953–N1224.
145. Streit, R. 1978. Kreide. In: Geologische Karte von Bayern 1:25000, Erläuterungen zum Blatt Nr. 7232 Burgheim Nord, pp. 78–106, Bayerisches Geologisches Landesamt; München.
146. Streit, R. 1987. Neuburger Kieselerde (Kieselkreide). Geologica Bavarica, 91, 153–158.
147. Swineford, A. and Franks, P.C. 1959. Opal in the Ogallala Formation in Kansas. In: Silica in sediments: A symposium with discussions. SEPM Special Publication, 7, 111–120.
148. Taylor, P.D. 1994. Systematics of the melicerititid cyclostome bryozoans; introduction and the genera Elea, Semielea and Reptomultelea. Bulletin of the British Museum (Natural History), Geology, 50, 1–103.
149. Taylor, P.D. 2005. Bryozoans and palaeoenvironmental interpretation. Journal of the Palaeontological Society of India, 50, 1–11.
150. Taylor, P.D. and Sequeiros, L. 1982. Toarcian bryozoans from Belchite in north-east Spain. Bulletin of the British Museum (Natural History), Geology, 36, 117–129.
151. Taylor, P.D. and Zágoršek, K. 2011. Operculate cyclostome bryozoans (Eleidae) from the Bohemian Cretaceous. Paläontologische Zeitschrift, 85, 407–432.
152. Teichert, K. 1964. Morphology of hard parts. In: R.C. Moore (Ed.), Treatise on Invertebrate Paleontology, Part K, Mollusca 3. Geological Society of America and University of Kansas Press; Boulder, CO, Lawrence, KA, K13–K53.
153. Tillmann, H. 1964. Kreide. In: Erläuterungen zur Geologischen Karte von Bayern 1:500000, 2nd edition, pp. 141–161, Bayerisches Geologisches Landesamt; München.
154. Tröger, K.-A. 1967. Zur Paläontologie, Biostratigraphie und faziellen Ausbildung der unteren Oberkreide (Cenoman bis Turon). Teil I. Paläontologie und Biostratigraphie der Inoceramen des Cenomans und Turons Mitteleuropas. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie Dresden, 12, 3–207.
155. Tröger, K.-A., Niebuhr, B. and Wilmsen, M. 2009. Inoceramen aus dem Cenomanium bis Coniacium der Danubischen Kreide-Gruppe (Bayern, Süd-Deutschland). Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 65, 59–110.
156. Trusheim, F. 1935. Die geologische Geschichte Süddeutschlands während der Unterkreide und des Cenomans. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Beilagen-Band, Abteilung B, 75, 1–109.
157. Vodrážka, R. and Crame, A. 2011. First fossil sponge from Antarctica and its palaeobiogeographical significance. Journal of Paleontology, 85, 48–57.
158. Voigt, E. 1953. Revision von: H.Hamm „Die Bryozoen des Maastrichter Obersenon“ (1881). Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg, 22, 32–75.
159. Wagner, W. 1963. Die Schwammfauna der Oberkreide von Neuburg (Donau). Palaeontographica, A 122, 166–250.
160. Whiteaves, J.F. 1876. Invertebrates from the coalbearing rocks of the Queen Charlotte Islands. Geological Survey of Canada, Mesozoic Fossils, 1 (1), 1–92.
161. Wiedmann, J. 1960. Zur Stammesgeschichte jungmesozoischer Nautiliden unter besonderer Berücksichtigung der iberischen Nautilinae d’Orb. Palaeontographica, A 115, 144–206.
162. Wilmsen, M. 2000. Late Cretaceous nautilids from northern Cantabria, Spain. Acta Geologica Polonica, 50, 29–43.
163. Wilmsen, M. 2003. Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretaceous Research, 24, 525–568.
164. Wilmsen, M. 2008. An Early Cenomanian (Late Cretaceous) maximum flooding bioevent in NW Europe: correlation, sedimentology and biofacies. Palaeogeography, Palaeoclimatology, Palaeoecology, 258, 317–333.
165. Wilmsen, M. and Esser, K. 2004. Latest Campanian to Early Maastrichtian (Cretaceous) nautiloids from the white chalk of Kronsmoor, northern Germany. Acta Geologica Polonica, 54, 489–498.
166. Wilmsen, M. and Niebuhr, B. 2010. On the age of the Upper Cretaceous transgression between Regensburg and Neuburg an der Donau (Bavaria, southern Germany). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 256, 267–278.
167. Wilmsen, M. and Richardt, N. 2012. Biofacies, depositional environment and stratigraphy of the Oberhäslich Formation (lower Upper Cenomanian, Saxonian Cretaceous Basin, Germany). Terra Nostra, 2012 (3), 199–200.
168. Wilmsen, M. and Yazykova, E.A. 2003. Campanian (Late Cretaceous) nautiloids from Sakhalin, Far East Russia. Acta Palaeontologica Polonica, 48, 481–490.
169. Wilmsen, M., Niebuhr, B. and Wood, C.J. 2001. Early Cenomanian (Cretaceous) inoceramid bivalves from the Kronsberg Syncline (Hannover area, Lower Saxony, northern Germany): stratigraphic and taxonomic implications. Acta Geologica Polonica, 51, 121–136.
170. Wilmsen, M., Wood, C.J., Niebuhr, B. and Kaplan, U. 2009. Cenomanian–Coniacian ammonoids of the Danubian Cretaceous Group (Bavaria, southern Germany). Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 65, 111–124.
171. Wilmsen, M., Niebuhr, B., Chellouche, P., Pürner, T. and Kling, M. 2010. Facies pattern and sea-level dynamics of the early Late Cretaceous transgression: a case study from the lower Danubian Cretaceous Group (Bavaria, southern Germany). Facies, 56, 483–507.
172. Woods, H. 1899–1903. A monograph of the Cretaceous Lamellibranchia of England. Part 1. Monographs of the Palaeontographical Society London, 53 (249), 1–72 1899; 54 (252), 73–112 1900; 55 (257), 113–144 1901; 56 (264), 145–196 1902; 57 (267), 197–232 1903.
173. Woods, H. 1904–1913. A monograph of the Cretaceous Lamellibranchia of England. Part 2. Monographs of the Palaeontographical Society London, 58 (273), 1–56 1904; 59 (279), 57–96 1905; 60 (285), 97–132 1906; 61 (293), 133–180 1907; 62 (302), 181–216 1908; 63 (309), 217–260 1909; 64 (314), 261–284 1911; 65 (321), 285–340 1912; 66 (325), 341–473 1913.
174. Zágoršek, K., Radwańska, U. and Radwański, A. 2012. Bryozoa from the Korytnica Basin (Middle Miocene; Holy Cross Mountains, Central Poland). Bulletin of Geosciences, 87, 201–218.
175. Ziegler, P.A. 1990. Geological atlas of western and central Europe, pp. 1–239. Shell Internationale Petroleum Maatschappij BV; The Hague.
176. Žítt, J. and Vodrážka, R. 2013. Terebella phosphatica Leriche (Polychaeta) associated with phosphatic crusts and particles (Lower Turonian, Bohemian Cretaceous Basin, Czech Republic). Cretaceous Research, 41, 111–126.
177. Žítt, J., Vodrážka, R., Hradecká, L., Svobodová, M. and Zágoršek, K. 2006. Late Cretaceous environments and communities as recorded at Chrtníky (Bohemian Cretaceous Basin, Czech Republic). Bulletin of Geosciences, 81, 43–79.
DOI :
Cytuj : Kennedy, W. J. ,Walaszczyk, I. ,Kopaevich, L. ,Beniamovski, V. N. ,Wilmsen, M. ,Storm, M. ,Fürsich, F. ,Majidifard, M. ,Gasiński, M. A. ,Olshtynska, A. ,Uchman, A. ,Kennedy, W. J. ,Klinger, H. ,Machalski, M. ,Kennedy, W. J. ,Schneider, S. ,Jäger, M. ,Kroh, A. ,Mitterer, A. ,Niebuhr, B. ,Vodrážka, R. ,Wilmsen, M. ,Wood, C. J. ,Zágoršek, K. , Silicified sea life – Macrofauna and palaeoecology of the Neuburg Kieselerde Member (Cenomanian to Lower Turonian Wellheim Formation, Bavaria, southern Germany). Acta Geologica Polonica Vol. 63, no. 4/2013
[Top]

The trace fossil Lepidenteron lewesiensis (Mantell, 1822) from the Upper Cretaceous of southern Poland

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : The trace fossil Lepidenteron lewesiensis (Mantell, 1822) from the Upper Cretaceous of southern Poland

Autorzy :
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland, i.walaszczyk@uw.edu.pl,
Kopaevich, L.
Geological Faculty, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991 Russia,
Beniamovski, V. N.
Geological Institute, Russian Academy of Sciences, Pyzhevski 7, Moscow, 119017, Russia,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D-01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Storm, M.
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom,
Fürsich, F.
GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, D-91054 Erlangen, Germany,
Majidifard, M.
Geological Survey of Iran, Box 131851-1494, Tehran, Iran,
Gasiński, M. A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, adam.gasinski@uj.edu.pl,
Olshtynska, A.
Institute of Geological Sciences, National Academy of Sciences of Ukraine, O. Gonchara str. 55-b, 01601 Kiev, Ukraine, ol-lesia@mail.ru,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Klinger, H.
Natural History Collections Department, Iziko South African Museum, P. O. Box 61, Cape Town, 8000, Republic of South Africa, hkling@telekomsa.net,
Machalski, M.
Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL-00-818 Warszawa, Poland, mach@twarda.pan.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Schneider, S.
CASP, University of Cambridge, West Building, 181A Huntingdon Road, Cambridge, CB3 0DH, UK and GeoZentrum Nordbayern, Paleobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany, simon.schneider@casp.cam.ac.uk,
Jäger, M.
Lindenstr. 53, 72348 Rosenfeld, Germany, langstein.jaeger@web.de,
Kroh, A.
Natural History Museum Vienna, Geology-Palaeontology, Burgring 7, 1010 Wien, Austria, andreas.kroh@nhm-wien.ac.at,
Mitterer, A.
Hoffmann Mineral GmbH, Münchener Str. 75, 86633 Neuburg an der Donau, Germany, agnes.mitterer@sonax.de,
Niebuhr, B.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Paläozoologie, Königsbrücker Landstr. 159, 01109 Dresden, Germany, niebuhr.birgit@googlemail.com,
Vodrážka, R.
Academy of Sciences of the Czech Republic, Institute of Geology, Rozvojová 269, 16502 Praha 6, Czech Republic, radek.vodrazka@seznam.cz,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Paläozoologie, Königsbrücker Landstr. 159, 01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Wood, C. J.
Scops Geological Services Ltd., 31 Periton Lane, Minehead, Somerset TA24 8AQ, UK, chrisjwood@btinternet.com,
Zágoršek, K.
Department of Paleontology, National Museum, Vaclavske nam. 68, 11579 Praha 1, Czech Republic, kamil_zagorsek@nm.cz,
Jurkowska, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a; 30-063 Kraków, Poland, jurkowska.a@gmail.com,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a; 30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Abstrakty : Lepidenteron lewesiensis (Mantell, 1822) is an unbranched trace fossil lined with small fish scales and bones, without a constructed wall. It is characteristic of the Upper Cretaceous epicontinental, mostly marly sediments in Europe. In the Miechów Segment of the Szczecin-Miechów Synclinorium in southern Poland, it occurs in the Upper Campanian–Lower Maastrichtian deeper shelf sediments, which were deposited below wave base and are characterized by total bioturbation and a trace fossil assemblage comprising Planolites, Palaeophycus, Thalassinoides, Trichichnus, Phycosiphon, Zoophycos and Helicodromites that is typical of the transition from the distal Cruziana to the Zoophycos ichnofacies. L. lewesiensis was produced by a burrowing predator or scavenger of fishes. The tracemaker candidates could be eunicid polychaetes or anguillid fishes.

Słowa kluczowe : ichnofosylium, bioturbacja, kreda górna, Wyżyna Miechowska, ichnofossils, bioturbation, Terebella, Upper Cretaceous, Miechów Upland,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2013
Numer : Vol. 63, no. 4
Strony : 611 – 623
Bibliografia : 1. Abel, O. 1935. Vorzeitlichte Lebensspuren, pp. 1–644. Gustav Fischer; Jena.
2. Agassiz, L. 1833-1843. Recherches sur les poissons fossiles, tome 2, pp. 1–337. Imprimerie de Petitpierre; Neuchâtel.
3. Arnold, H. 1956. Terebella lutensis Bather in der Münsterländer Oberkreide. Paläontologische Zeitschrift, 30, 58.
4. Arnold, H. 1964. Fossilliste für die Münsterländer Oberkreide. Fortschritte in der Geologie von Rheinland und Westfalen, 7, 309–330.
5. Brown, G.E. and Chivers, D.P. 2005. Learning as an adaptive response to predation. P. Barbosa and I. Castellanos (Eds), Ecology of Predator-Prey Interactions, pp. 34–54. Oxford University Press.
6. Bather, F.A. 1911. Upper Cretaceous terebelloids from England. Geological Magazine, 8, 481–487 and 549–556.
7. Belouza, A., Gayet, M. and Atallach, C. 2003. Les premiers Anguilliformes: I. Révision des genres cénomaniens Anguillavus Hay, 1903 et Luenchelys nov. gen. Geobios, 36, 241–273.
8. Bertling, M., Braddy, S., Bromley, R.G., Demathieu, G.D., Genise, J.F., Mikuláš, R., Nielsen, J.K., Nielsen, K.S.S., Rindsberg, A.K., Schlirf, M. and Uchman, A. 2006: Names for trace fossils: a uniform approach. Lethaia, 39, 265–286.
9. Breton, G. 2002. Baronichnus armatus igen. nov., isp. nov. un fouisseur du tuffeau turonien de Touraine arme son terrier de bryozoaires. Bulletin trimestriel de la Société Géologique de Normandie et des Amis du Muséum du Havre, 87, 29–37.
10. Bromley, R.G. 1996. Trace Fossils: Biology, Taphonomy and Applications, 2nd edition, pp. 1–361. Chapman & Hall; London.
11. Buatois, L.A. and Mángano, M.G. 2011. Ichnology: Organisms-Substrate Interactions in Space and Time, pp. 1–358. Cambridge University Press; Cambridge.
12. Caldwell, R.L. 2007. Stomatopoda. In: J.T. Carlton (Ed.), Intertidal invertebrates from central California to Oregon, 4th edition, pp. 630–631. University of California Press; Berkley.
13. Dadlez, R., Marek, S. and Pokorski, J. 2000. Geological Map of Poland without Cainozoic Deposits. Ministerstwo Środowiska i Państwowy Instytut Geologiczny; Warszawa.
14. Davies, W. 1879. On some fish exuviae from the Chalk, Generally referred to Dercetis elongatus AG; And on the new species of fossil Annelide, Terebella lewesiensis. Geological Magazine, 6, 145–148.
15. Ettensohn, F.R. 1981. Crininicaminus haneyensis, a new agglutinated worm tube from the Chesterian of East-Central Kentucky. Journal of Paleontology, 55, 479–482.
16. Fauchald, K. and Bellan, G. 2013. Eunice aphroditois (Pallas, 1788). In: G. Read and K. Fauchald (Ed.), World Polychaeta Database World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=130053; 13.07. 2013.
17. Fauchald, K. and Jumars, P.A. 1979. The diet of worms: a study of polychaete stud guilds. Oceanography and Marine Biology, Annual Review, 17, 193–284.
18. Ferrero, E. 1989. Biology of stomatopods: proceedings of the 1st International Workshop on Stomatopod Biology, Trieste, September, 2-13, 1985, pp. 1–303. Mucchi; Modena.
19. Frič, A. 1869. Paläontologische Untersuchungen der einzelnen Schichten in der böhmischen Kreideformation. Arbeiten der geologischen Section für Landesdurchforschung von Böhmen, 1, 1–282. Prague.
20. Frič, A. 1877. Paläontologische Untersuchungen der einzelnen Schichten, II: Die Weissenberger und Malnitzer Schichten. Studien im Gebiete der Böhmischen Kreideformation. Archiv für die Naturwissenschaftliche Landesdurchforschung von Böhmen, 4, 1–153. Prague.
21. Frič, A. 1878. Die Reptilien und Fische der Böhmischen Kreideformation, pp. 1–46. Fr. Řivnáč, Prague.
22. Frič, A. 1883. Palaeontologische Untersuchungen der einzelnen Schichten, III; Die Iserschichten. Studien im Gebiete der Böhmischen Kreideformation. Archiv für die Naturwissenschaftliche Landesdurchforschung von Böhmen, 5 (2), 1–140. Prague.
23. Frič, A. 1889. Palaeontologische Untersuchungen der einzelnen Schichten, IV; Die Teplitzer Schichten – Studien im Gebiete der Böhmischen Kreideformation. Archiv für die Naturwissenschaftliche Landesdurchforschung von Böhmen, 7 (2), 1–120. Prague.
24. Frič, A. 1893. Palaeontologische Untersuchungen der einzelnen Schichten, V. Studien im Gebiete der Böhmischen Kreideformation. Archiv für die Naturwissenschaftliche Landesdurchforschung von Böhmen, 9 (1), 1–136. Prague.
25. Friedman, M. 2012. Ray-finned fishes (Osteichthyes, Actinopterygii) from the type Maastrichtian, the Netherlands and Belgium. In: J.W.M Jagt, S.K. Donovan and E.A. Jagt-Yazykova (Eds), Fossils of the type Maastrichtian (Part 1). Scripta Geologica Special Issue, 8, 113–142.
26. Fuchs, B. 1935. Terebellen aus dem Weissjura Schwabens. Zentralblatt für Mineralogie, Geologie und Paläontologie, Abteilung B, 210–215.
27. Fürsich, F.T. 1974. On Diplocraterion Torell 1870 and the significance of morphological features in vertical, spreitenbearing, U-shaped trace fossils. Journal of Paleontology, 48, 952–962.
28. Gayle, D. 2012. Skinny dipping will never seem like a good idea again: The 10ft-long rainbow ‘bobbit worm’ that uses scissors to slice prey in two http://www.dailymail.co.uk/sciencetech/article-2221813/Eunice-aphroditois; 13.07.2013
29. Geinitz, H.B. 1850. Das Quadersandsteingebirge oder Kreidegebirge in Deutschland, pp. 1–345. Craz & Gerlach; Freiberg.
30. Gibert, J.M. de 1996. Diopatrichnus odlingi n. isp. (annelid tube) and associated ichnofabrics in the White Limestone (M. Jurassic) of Oxfordshire: sedimentological and palaeoecological significance. Proceedings of the Geologists’ Association, 107, 189–198.
31. Grönwall, K. A. 1912. Maskrör frän Kopingesandestenen. Geologiska föreningen i Stockholm Förhandlingar, 34, 215–220.
32. Haller, W. 1963. Zur Makrofauna der Oberkreidesedimente im Gebiet Spremberg-Weisswasser. Berliner Geologische Gesellschaft DDR, 8, 152–162.
33. Häntzschel, W. 1931.Über Sternspuren von Krebsen und Köcherbauten von Würmern in der sächsischen Kreide. Sitzungsberichte und Abhandlungen der Naturwissenschaftlichen Gesellschaft ISIS zu Dresden, 1931, 1–18.
34. Hof, C.H.J. 1998. Fossil stomatopods (Crustacea: Malacostraca) and their phylogenetic impact. Journal of Natural History, 32, 1567–1576.
35. Hölder, H. 1989. Spuren auf der Spur. Palichnologische und verwandte Notizen über Teredolites, Entobia, Nummipera nov. gen. und einiges andere. Münsterische Forschungen zur Geologie und Paläontologie, 69, 13–30.
36. Howell, B.F. 1962. Worms. In: R.C Moore (Ed.), Treatise on Invertebrate Paleontology, Part W, pp. W144–W177. Geological Society of America, University of Kansas; New York, Kansas.
37. Jach, R., Machaniec, E. and Uchman, A. 2012 (for 2011). The trace fossil Nummipera eocenica from the Eocene nummulitic limestones, Tatra Mts., Poland: morphology and palaeoenvironmental implications. Lethaia, 45, 342–355.
38. Jagt, J.W.M., Walaszczyk, I., Yazykova, E.A. and Zatoń, M. 2004. Linking southern Poland and northern Germany: Campanian cephalopods, inoceramid bivalves and echinoids. Acta Geologica Polonica, 54, 573–586.
39. Kaminski, M.A. and Wetzel, A. 2004. A tubular protozoan predator: A burrow selectively filled with tubular agglutinated protozoans (Xenophyophorea, Foraminifera) in the abyssal South China Sea. In: M. Bubík and M.A. Kaminski (Eds), Proceedings of the Sixth International Workshop on Agglutinated Foraminifera. Grzybowski Foundation Special Publication, 8, 277–283.
40. Kern, J.P. 1978. Paleoenvironment of new trace fossils from the Eocene Mission Valley Formation, California. Journal of Paleontology, 52, 186–194.
41. Kielan-Jaworowska, Z. 1966. Polychaete jaw apparatuses from the Ordovician and Silurian of Poland and a comparison with modern forms. Palaeontologia Polonica, 16, 1–152.
42. Knox, G.A. and Green, K.M. 1972. The polychaetes of New Zealand. Part 4. Eunicidae. Journal of the Royal Society of New Zealand, 2, 459–470.
43. Kowalski, W.C. 1948. Geological outline of Cretaceous deposits in the environs of Solca. Biuletyn Państwowego Instytutu Geologicznego, 51, 5–53. In Polish with English summary
44. Kukuk, P. 1938. Geologie des Niederrheinisch-Westfälischen Steinkohlengebietes, pp. 1–706. Springer; Heidelberg.
45. Mantell, G.A. 1822. The fossils of the South Downs or Illustrations of the geology of Sussex, pp. 1–327. Lupton Relfe; London.
46. Mantell, G.A. 1844. The Medals of Creation, or First Lessons in Geology, and in the Study of Organic Remains Volume 2, pp. 1–658. Henry G. Bohn; London.
47. Mantell, G.A. 1851. Petrifaction and their Teaching, or a Handbook to the Gallery of Organic Remains of the British Museum pp. 1–496. Henry G. Bohn; London.
48. Marcinowski, R. 1974. The transgressive Cretaceous (Upper Albian through Turonian) deposits of the Polish Jura Chain. Acta Geologica Polonica, 24, 117– 217.
49. Marcinowski, R. and Radwański, A. 1983. The Mid-Cretaceous transgression onto the Central Polish Uplands (marginal part of the Central European Basin). Zitteliana, 10, 65–95.
50. Marcinowski, R. and Radwański, A. 1989. A biostratigraphic approach to the mid-Cretaceous transgressive sequence of the Central Polish Uplands. Cretaceous Research, 10, 153–172.
51. McCosker, J.E. and Castle, P.H.J. 1986. Ophichthidae. In: M.M. Smith and P.C. Heemstra (Eds), Smiths’ Sea Fishes, pp. 176–186. Springer; Berlin.
52. Monaco, P. and Garassino, A. 2001. Burrows and body fossil of decapod crustaceans in the Calcari Grigi, Lower Jurassic, Trento Platform (Italy). Geobios, 34, 291–301.
53. Monaco, P. and Giannetti, A. 2002. Three-dimensional burrow system and taphofacies in shallow-upward parasequences, Lower Jurassic carbonate platform (Calcare Grigi. Southern Alps, Italy). Facies, 47, 13–16.
54. Monaco, P., Gianetti, A., Caracuel, J.E. and Yébenes, A. 2005. Lower Cretaceous (Albian) shall-armoured and associated echinoid trace fossils from the Sácaras Formation, Serra Gelada area, southeast Spain. Lethaia, 38, 333–344.
55. Pemberton, G.S., Spila, M., Pulham, A.J., Saunders, T., MacEachern, J.A., Robbins, D. and Sinclair, I.K. 2001. Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis and Avalon Reservoirs, Jeanne D’Arc Basin. Geological Association of Canada, Short Course Notes, 15, 1–343.
56. Pożaryski, W. 1960. An outline of stratigraphy and palaeogeography of the Cretaceous in the Polish Lowland. Prace Instytutu Geologicznego, 30, 377–418.
57. Ravn, J.P.J. 1915. Om fossile Terebellide-Rør fran Danmark. Meddelelser fra Dansk Geologiske Forening, 4, 224–227.
58. Reaka, M.L., Camp, D.K., Álvarez, F., Gracia, A G., Ortiz, M., and Vázquez-Bader, A.R. 2009. Stomatopoda (Crustacea) of the Gulf of Mexico. In: D.L Felder and D.K. Camp (Eds), Gulf of Mexico–Origins, Waters, and Biota. Biodiversity, pp. 901–921. Texas A&M University Press.
59. Roll, A. 1931. Die Stratigraphie des Oberen Malm in Lauchertgebiet als Unterlage für tektonische Untersuchungen. Abhandlungen der Preussischen Geologischen Landesanstalt, 135, 1–22.
60. Rosenkrantz, A. 1920. Craniankalk fra Kjøbenhavn Sydhaven. Danmarks Geologiske Undersøgelse, II Raekke, 36, 1–79.
61. Rosenkrantz, A. 1967. “Terebella” lewesiensis (Mantell) fra det danske skrivekridt. Meddelelser fra Dansk Geologisk Forening, 17, 194–195.
62. Rutkowski, J. 1965. Senonian in the area of Miechów, southern Poland. Rocznik Polskiego Towarzystwa Geologicznego, 35, 1–47. In Polish with English summary
63. Santini, F., Kong, X., Sorenson, L. Carnevale, G., Mehta, R.S. and Alfaro, M.E. 2013. A multi-locus molecular timescale for the origin and diversification of eels (Order: Anguilliformes). Molecular Phylogenetics and Evolution (in press). http://dx.doi.org/10.1016/j.ympev.2013.06.016
64. Suhr, P. 1988. Taxonomie und Ichnologie fossiler Wohnröhren terebelloider Würmer. Freiberger Forschungshefte, 419, 81–87.
65. Sujkowski, Z. 1926. Sur le Jurassique, le Crétacé‚ et le Quaternaire des environs de Wolbrom. Sprawozdania Polskiego Instytutu Geologicznego, 3, 382–467. In Polish with French summary
66. Sujkowski, Z. 1934. Roches crétacées entre les villes Pilica et Szczekociny. Sprawozdania Polskiego Instytutu Geologicznego, 8, 39–74. In Polish with French summary
67. Świerczewska-Gładysz, E. and Jurkowska, A. 2013. Occurrence and paleoecological significance of lyssacinosid sponges in the Upper Cretaceous deposits of southern Poland. Facies, 59, 763–777.
68. Tesch, F.-W. 2003. The Eel, 3rd edition, pp. 408. Blackwell Science; Oxford.
69. Voigt, E. 1928. Köcherbauten von Würmern in Sedimentärgeschieben. Zeitschrift für Geschiebeforschung, 4, 97–104.
70. Zapfe, H. 1949. Eine rhätische Fauna aus dem Gebiet des Eibenberges bei Ebensee in Oberösterreich. Jahrbuch des Oberösterreichischen Musealvereines, 94, 235–257.
71. Żeleźniewicz, A., Aleksandrowski, P., Buła, Z., Karnkowski, P.H., Konon, A., Oszczypko, N., Ślączka, A., Żaba, J. and Żytko, K. 2011. Regionalizacja tektoniczna Polski pp. 1–60. Komitet Nauk Geologicznych PAN; Wrocław.
72. Ziegler, P.A. 1988, Evolution of the Arctic-North Atlantic and the Western Tethys. American Association Petroleum Geologists Memoir, 43, 1–198.
DOI :
Cytuj : Kennedy, W. J. ,Walaszczyk, I. ,Kopaevich, L. ,Beniamovski, V. N. ,Wilmsen, M. ,Storm, M. ,Fürsich, F. ,Majidifard, M. ,Gasiński, M. A. ,Olshtynska, A. ,Uchman, A. ,Kennedy, W. J. ,Klinger, H. ,Machalski, M. ,Kennedy, W. J. ,Schneider, S. ,Jäger, M. ,Kroh, A. ,Mitterer, A. ,Niebuhr, B. ,Vodrážka, R. ,Wilmsen, M. ,Wood, C. J. ,Zágoršek, K. ,Jurkowska, A. ,Uchman, A. , The trace fossil Lepidenteron lewesiensis (Mantell, 1822) from the Upper Cretaceous of southern Poland. Acta Geologica Polonica Vol. 63, no. 4/2013
[Top]

Lower and Middle Cenomanian ammonites from the Morondava Basin, Madagascar

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Lower and Middle Cenomanian ammonites from the Morondava Basin, Madagascar

Autorzy :
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland, i.walaszczyk@uw.edu.pl,
Kopaevich, L.
Geological Faculty, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991 Russia,
Beniamovski, V. N.
Geological Institute, Russian Academy of Sciences, Pyzhevski 7, Moscow, 119017, Russia,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D-01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Storm, M.
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom,
Fürsich, F.
GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, D-91054 Erlangen, Germany,
Majidifard, M.
Geological Survey of Iran, Box 131851-1494, Tehran, Iran,
Gasiński, M. A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, adam.gasinski@uj.edu.pl,
Olshtynska, A.
Institute of Geological Sciences, National Academy of Sciences of Ukraine, O. Gonchara str. 55-b, 01601 Kiev, Ukraine, ol-lesia@mail.ru,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Klinger, H.
Natural History Collections Department, Iziko South African Museum, P. O. Box 61, Cape Town, 8000, Republic of South Africa, hkling@telekomsa.net,
Machalski, M.
Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL-00-818 Warszawa, Poland, mach@twarda.pan.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Schneider, S.
CASP, University of Cambridge, West Building, 181A Huntingdon Road, Cambridge, CB3 0DH, UK and GeoZentrum Nordbayern, Paleobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany, simon.schneider@casp.cam.ac.uk,
Jäger, M.
Lindenstr. 53, 72348 Rosenfeld, Germany, langstein.jaeger@web.de,
Kroh, A.
Natural History Museum Vienna, Geology-Palaeontology, Burgring 7, 1010 Wien, Austria, andreas.kroh@nhm-wien.ac.at,
Mitterer, A.
Hoffmann Mineral GmbH, Münchener Str. 75, 86633 Neuburg an der Donau, Germany, agnes.mitterer@sonax.de,
Niebuhr, B.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Paläozoologie, Königsbrücker Landstr. 159, 01109 Dresden, Germany, niebuhr.birgit@googlemail.com,
Vodrážka, R.
Academy of Sciences of the Czech Republic, Institute of Geology, Rozvojová 269, 16502 Praha 6, Czech Republic, radek.vodrazka@seznam.cz,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Paläozoologie, Königsbrücker Landstr. 159, 01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Wood, C. J.
Scops Geological Services Ltd., 31 Periton Lane, Minehead, Somerset TA24 8AQ, UK, chrisjwood@btinternet.com,
Zágoršek, K.
Department of Paleontology, National Museum, Vaclavske nam. 68, 11579 Praha 1, Czech Republic, kamil_zagorsek@nm.cz,
Jurkowska, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a; 30-063 Kraków, Poland, jurkowska.a@gmail.com,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a; 30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland,
Gale, A.
Department of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL. United Kingdom,
Dembicz, K.
Spirifer Geological Society, Warszawa, Poland,
Praszkier, T.
Spirifer Geological Society, Warszawa, Poland,
Abstrakty : Lower and Middle Cenomanian ammonite assemblages have been collected on a bed-by-bed basis from localities at Vohipaly and Mahaboboka, Madagascar, as well as from outcrops around Berekata, all in the Morondava Basin, southwest Madagascar. These collections demonstrate the presence of the upper Lower Cenomanian Mantelliceras dixoni Zone and the lower Middle Cenomanian Cunningtoniceras inerme Zone of the north-western European standard sequence. These records indicate that the striking anomalies in the zonal assemblages of the classic divisions of the Madagascan Cenomanian are based on mixed assemblages, rather than a succession that differs radically from that elsewhere in the world. The dixoni Zone fauna is: Desmoceras cf. latidorsatum (Michelin, 1838), Pachydesmoceras kossmati Matsumoto, 1987, Forbesiceras sp., F. baylissiWright & Kennedy, 1984, F. largilliertianum (d'Orbigny, 1841), Mantelliceras cantianum Spath, 1926a, M. dixoni Spath, 1926b, M. mantelli (J. Sowerby, 1814), M. picteti Hyatt, 1903, M. saxbii (Sharpe, 1857), Sharpeiceras sp., S. falloti (Collignon, 1931), S. mocambiquense (Choffat, 1903), S. cf. florencae Spath, 1925, Acompsoceras renevieri (Sharpe, 1857), A. tenue Collignon, 1964, Calycoceras sp., Mrhiliceras lapparenti (Pervinquičre, 1907), Mariella (Mariella) stolizcai (Collignon, 1964), Hypoturrilites taxyfabreae (Collignon, 1964), Turrilites scheuchzerianus Bosc, 1801, Sciponoceras cucullatum Collignon, 1964, and Sciponoceras antanimangaensis (Collignon, 1964). The presence of Calycoceras in a Lower Cenomanian association represents a precocious appearance of a genus typically Middle and Upper Cenomanian in occurrence, and matches records from Tunisia. The inerme Zone yields a more restricted assemblage: Pachydesmoceras kossmati, Forbesiceras baylissi, Acanthoceras sp. juv., Cunningtoniceras cunningtoni (Sharpe, 1855) and Hypoturrilites taxyfabreae.

Słowa kluczowe : Madagaskar, dorzecze, cenoman, amonit, sukcesja, podział na strefy, chronostratygrafia, Madagascar, Morondava Basin, cenomanian, ammonite succession, ammonite zonation, ahronostratigraphy,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2013
Numer : Vol. 63, no. 4
Strony : 625 – 655
Bibliografia : 1. Aly, F., Abdel-Gawad and Gabir, M.A. 2005. Uppermost Albian-basal Cenomanian ammonites from North Sinaia, Egypt. Egyptian Journal of Palaeontology, 5, 347–385.
2. Amédro, F., Cobban, W.A., Breton, G. and Rogron, P. 2002. Metengonoceras teigenense Cobban et Kennedy, 1989: une ammonite exotique d’origine Nord-Américaine dans le Cénomanien inférieur de Basse-Normandie (France). Bulletin Trimestrielle de la Société Géologique de Normandie et Amis du Muséum du Havre, 87, 5–25. for 2000
3. Atabekian, AA. 1985. Turrilitids of the late Albian and Cenomanian of the southern part of the USSR. Trudy Mezhvedomstvennogo Stratigraficheskogo Komiteta SSSR, 14, 112 pp. In Russian
4. Besairie, H. and Collignon, M. 1960. Lexique Stratigraphique International, 4, 2, Madagascar (supplément), 1–190.
5. Böhm, J. 1895. Review of A. de Grossouvre: Recherches sur la craie supérieure. 2nd part. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 1895, 360–366.
6. Bosc, L.A.G. 1801. (An. 13). In Roissy, F. Histoire Naturelle générale et particulière, des Mollusques, Animaux sans vertebrès et à sang blanc. Ouevrage faisant suit aux Oeuvres de Leclerc de Buffon, et partie du Cours complet d’Histoire naturelle, rédigé par C.S. Sonnini, membre de plusiers Sociétés savants. Continué par. F. de Roissy. viii + 448 + 3 p. Déterville; Paris.
7. Breistroffer, M. 1947. Sur les zones d’ammonites dans l’Albien de France et d’Angleterre. Travaux du Laboratoire de Géologie de l’Université de Grenoble, 26, 17–104. 1–88 in separates
8. Brongniart, A. 1822. Sur quelques terrains de Craie hors du Bassin de Paris, 80–101. In: Cuvier, G. and Brongniart, A. Description géologique des environs de Paris, 3rd edn. 428 pp. Dufour and d’Ocagne; Paris.
9. Choffat, P. 1903. Contributions à la connaissance géologique des colonies portugaises d’Afrique. I, le Crétacique de Conducia. Commission du Service Géologique de Portugal, 32 pp.
10. Collignon, M. 1931. Paléontologie de Madagascar, XVI. La faune du Cénomanien à fossiles pyriteux du nord de Madagascar. Annales de Paléontologie, 20, 43–104 (1–64).
11. Collignon, M. 1937. Ammonites Cénomaniennes du sudouest de Madagascar. Annales géologiques du Service des Mines de Madagascar, 8, 29–72.
12. Collignon, M. 1961. Ammonites néocrétacées du Menabe (Madagascar). VII, Les Desmoceratidae. Annales Géologiques du Service des Mines de Madagascar, 31, 115 pp.
13. Collignon, M. 1964. Atlas des fossiles caracteristiques de Madagascar (Ammonites), XI Cenomanien: xi + 152 pp. Service Géologique; Tananarive.
14. Coquand, H. 1862. Géologie et paléontologie de la région de la Province de Constantine. Mémoires de la Société d’Émulation de la Provence, 2, 1–341.
15. Delamette, M. and Kennedy, W.J. 1991. Cenomanian ammonites from the condensed deposits of the Helvetic Domain. Journal of Paleontology, 65, 435–465.
16. Diener, C. 1925. Ammonoidea neocretacea. Fossilium Catalogus (1: Animalia), 29, 244 pp.
17. Dixon, F. 1850. The Geology and Fossils of the Tertiary and Cretaceous Formations of Sussex. 1st Edn., xxxii + 423 pp. W.J. Smith; Brighton.
18. Dubourdieu, G. 1953. Ammonites nouvelles des Monts du Mellègue. Bulletin du Service de la Carte Géologique de l’Algerie. 1e série, Paléontologie, 16, 76 pp.
19. Gale, A.S., Bown, P., Caron, M., Crampton, J., Crowhurst, S. J., Kennedy, W.J., Petrizzo, M.R. and Wray, D.S. 2011. The uppermost Middle and Uppper Albian succession at the Col de Palluel, Hautes-Alpes, France: an integrated study (ammonites, inoceramid bivalves, planktonic foraminifera, nannofossils, geochemistry, stable oxygen and carbon isotopes, cyclostratigraphy). Cretaceous Research, 37, 59–130.
20. Gauthier, H. 2006. Révision Critique de la Paléontologie Française d’Alcide d’Orbigny, 6, Céphalopodes Crétacés. 1–292 +1–662. Backhuys; Leiden.
21. Gill, T. 1871. Arrangement of the Families of Mollusks. Smithsonian Miscellaneous Collections, 227, xvi + 49 pp.
22. Grossouvre, A. de 1894. Recherches sur la craie supérieure, 2, Paléontologie. Les ammonites de la craie supérieure. Mémoires du Service de la Carte Géologique détaillée de la France, 1–264 (mislabeled 1893).
23. Hayakawa, H. and Nishino, T. 1999. Cenomanian ammonite fauna from Nakagawa, Hokkaido, Japan. Bulletin of Nakagawa Museum of Natural History, 2, 1–40.
24. Hayakawa, H. and Takahashi, T. 2000. Sharpeiceras (Cretaceous acanthoceratid) from Nakagawa, Hokkaido. Bulletin of the Nagakawa Museum of Natural History, 3, 7–14.
25. Howarth, M.K. 1985. Cenomanian and Turonian ammonites from the Novo Redondo area, Angola. Bulletin of the British Museum (Natural History) Geology, 39, 73–105.
26. Hyatt, A. 1894. Phylogeny of an Acquired Characteristic. Proceedings of the American Philosophical Society, 32, 349–647.
27. Hyatt, A. 1900. Cephalopoda, pp. 502–604. In: Zittel, K.A. von 1896–1900, Textbook of Palaeontology, transl. Eastman, C.R. Macmillan; London and New York.
28. Hyatt, A.1903. Pseudoceratites of the Cretaceous. United States Geological Survey Monograph, 44, 1–351.
29. Immel, H. and Seyed-Emami, K. 1985. Die Kreideammoniten des Glaukonitkalkes (O. Alb- O. Cenoman) des Kolah – Qazi – Gebirges sudöstlich von Esfahan (Zentral Iran). Zitteliana, 12, 87–137.
30. Jukes-Browne, A.J. 1896. VI. Critical remarks on some of the fossils. In: Jukes-Browne, A.J. and Hill, W. A delimitation of the Cenomanian: being a comparison of the corresponding beds in southwestern England and northern France. Quarterly Journal of the Geological Society of London, 52, 99–178.
31. Kaplan, U., Keller, S. and Wiedmann, J. 1984. Ammoniten – und Inoceramen – Gliederung des Norddeutschen Cenoman. Schriftenreihe Erdwissenchaftlichte Komission, 7, 307–347.
32. Kaplan, U., Kennedy, W.J., Lehmann, J., and Marcinowski, R. 1998. Stratigraphie und Ammonitenfaunen des westfälischen Cenoman. Geologie und Paläontologie in Westfalen, 51, 236 pp.
33. Kawabe, F., Takashima, R., Wani, R., Nishi, H. and Moriya, K. 2003. Upper Albian to Lower Cenomanian biostratigraphy in the Oyubari area, Hokkaido, Japan: towards a Cretaceous biochronology for the North Pacific. Acta Geologica Polonica, 53, 81–91.
34. Kennedy, W.J. 1971. Cenomanian ammonites from southern England. Special Papers in Palaeontology, 8, v + 133 pp.
35. Kennedy, W.J. 1994. Cenomanian ammonites from Cassis, Bouches-du-Rhône, France. Palaeopelagos, Special Volume, 1, 209–254.
36. Kennedy, W.J., Amédro, F., Robaszynski, F. and Jagt, J.W.M. 2011. Ammonite faunas from condensed Cenomanian-Turonian sections (‘Tourtias’) in southern Belgium and northern France. Netherlands Journal of Geosciences, 90, 209–223.
37. Kennedy, W.J. and Bilotte, M. 2009. A revision of the cephalopod fauna of the ‘niveau rouge’ of the Selva de Bonansa, Huesca Province, northern Spain. Bulletin of the Moscow Society of Naturalists, 84, 39–70.
38. Kennedy, W.J. and Juignet, P. 1993. A revision of the ammonite faunas of the type Cenomanian. 4. Acanthoceratinae (Acompsoceras, Acanthoceras, Protacanthoceras, Cunningtoniceras and Thomelites). Cretaceous Research, 14, 145–190.
39. Kennedy, W.J., Juignet, P. and Wright, C.W. 1986. A revision of the ammonite fauna of the type Cenomanian. 3. Mantelliceratinae. Cretaceous Research, 7, 19–62.
40. Kennedy, W.J. and Latil, J.-L. 2007. The Upper Albian ammonite succession in the Montlaux section, Hautes-Alpes, France. Acta Geologica Polonica, 57, 453–478.
41. Kennedy, W. J. and Wright, C.W. 1985. Mrhiliceras gen. nov. (Cretaceous Ammonoidea), a new Cenomanian mantellicerine. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1985, 513–526.
42. Klinger, H.C. and Kennedy, W.J. 1997. Cretaceous faunas from Zululand and Natal, South Africa. The ammonite family Baculitidae Gill, 1871 (Excluding the genus Eubaculites). Annals of the South African Museum, 105, 1–206.
43. Klinger, H.C. and Kennedy, W.J. 2001. Stratigraphic and geographic distribution, phylogenetic trends and general comments on the ammonite family Baculitidae Gill, 1871 (with an annotated list of species referred to the family). Annals of the South African Museum, 107, 1–290.
44. Korn, D., Ebbighausen, V., Bockwinkel J. and Klug, C. 2003. The A-mode ontogeny in prolecanitid ammonites. Palaeontology, 46, 1123–1132.
45. Kossmat, F. 1895–1898. Untersuchungen über die Sudindische Kreideformation. Beiträge zur Paläontologie Österreich-Ungarens und des Orients, 9 (1895), 97–203 (1–107); 11 (1897), 1–46 (108–153); 11(1898), 89–152 (154–217).
46. Kullmann, J. and Wiedmann, J. 1970. Significance of sutures in phylogeny of Ammonoidea. University of Kansas, Paleontological Contributions, 42, 1–32.
47. Lamarck, J.P.B.A. de M. de 1801. Système des Animaux sans vertebrès. vii + 432 pp. The author; Deterville, Paris.
48. Langius C.N. Lang K. 1708. Historia lapidum figuratorum Helvetiae. 165 pp. Haeredes Gottofredi Hautt and Joannem Jodocum Halter; Lucerne.
49. Lewy, Z. and Raab, M. 1978. Mid-Cretaceous stratigraphy of the Middle East. Annales du Muséum d’Histoire Naturelle de Nice, 4 (for 1976), XXXII, 14 pp.
50. Mantell, G.A. 1822. The fossils of the South Downs; or illustrations of the geology of Sussex. xvi + 327 pp. Lupton Relfe; London.
51. Marcinowski, R. and Wiedmann, J. 1990. The Albian ammonites of Poland. Palaeontologica Polonica, 50, 94 pp.
52. Matheron, P. 1842. Catalogue méthodique et descriptif des corps organisés fossiles du département des Bouches-du-Rhône et lieux circonvoisins. Répetoire des travaux de la Société de Statistique de Marseille, 6, 269 pp.
53. Matsumoto, T. 1987. Note on Pachydesmoceras, a Cretaceous ammonite genus. Proceedings of the Japan Academy, series B, 63, 5–8.
54. Matsumoto, T. 1988. A monograph of the Puzosiidae (Ammonoidea) from the Cretaceous of Hokkaido. Palaeontological Society of Japan Special Papers, 30, 1–179.
55. Matsumoto, T., Hayakawa, H. and Toshimitsu, S. 1999. An ammonite species of Sharpeiceras from Madagascar. Bulletin of the Mikasa City Museum, 3, 17–21.
56. Matsumoto, T. and Kawashita, Y. 1998. Two ammonite species of the genus Sharpeiceras from the Cretaceous of Hokkaido. Paleontological Research, 2, 89–95.
57. Matsumoto, T. and Nishida, T. 2002. A study of Mrhiliceras (Cretaceous Ammonoidea). Proceedings of the Japan Academy, series B, 78, 185–189.
58. Matsumoto, T. and Toshimitsu, S. 1998. On some species of Sharpeiceras (Ammonoidea) from the Cretaceous of Hokkaido. Bulletin of the Geological Survey of Japan, 49, 621–631.
59. Matsumoto, T. and Toshimitsu, S. 2005. Additional notes on some species of Mantelliceras (Ammonoidea) from Central Hokkaido, North Japan. Bulletin of the Geological Survey of Japan, 56, 31–36.
60. Michelin, H. 1838. Note sur une argile dépendant du Gault, observée au Gaty, commune de Gérodot, département de l’Aube. Mémoires de la Société Géologique de France, (1), 3, 97–103.
61. Mosavina, A. and Wilmsen, M. 2011. Cenomanian Acanthoceratoidea (Cretaceous Ammonoidea) from the Koppeh Dagh, NE Iran: taxonomy and stratigraphic implications. Acta Geologica Polonica 61, 175–192.
62. Neumayr, M. 1875. Die Ammoniten der Kreide und die systematik der Ammonitiden. Zeitschrift der Deutschen Geologischen Gesellschaft, 27, 854–942.
63. Nishida, T., Matsumoto, T., Yokoi, K., Kawashita, Y., Kyuma, Y., Egashira, N., Aizawa, J., Maiya, S., Ikuji, Y. and Yao, A. 1996. Biostratigraphy of the Cretaceous Middle Yezo Group in the Soeushinai area of Hokkaido-with special reference to the transitional part from the Lower to Upper Cretaceous. Journal of the Faculty of Education, Saga University, 44, 65–149. In Japanese with English abstract
64. Nowak, J. 1908. Untersuchungen über Cephalopoden der Oberen Kreide in Polen. I. Teil, Genus Baculites. Bulletin International de l’Academie des Sciences de Cracovie Classe des Sciences Mathématiques et Naturelles, Série B: Sciences Naturelles for 1908, 326–353.
65. Nowak, J. 1916. Über die bifiden Loben der oberkretazischen Ammoniten und ihre Bedeutung für die Systematik. Bulletin International de l’Académie des Sciences de Cracovie. Classe des Sciences Mathématiques et Naturelles, Série B: Sciences Naturelles for 1915, 1–13.
66. Orbigny, A. d’. 1840-1842. Paléontologie française: Terrains crétacés. 1. Céphalopodes. 1–120 (1840); 121–430 (1841); 431–662 (1842). Masson; Paris.
67. Passy, A. 1832. Description géologique du département de la Seine-inférieure. xvi + 371 pp. Nicétas Periaux; Rouen.
68. Pervinquière, L. 1903. Étude géologique de la Tunisie centrale. Carte Géologique de la Tunisie, viii + 359 pp. de Rudeval; Paris.
69. Pervinquière, L. 1907. Études de paléontologie tunisienne. 1. Céphalopodes des terrains secondaires. Carte Géologique de la Tunisie, v + 438pp.
70. Pictet, F. J. and Campiche, G. 1858-1864. Description des fossiles du terrain crétacé des environs de Saint-Croix part 2 (1). Description des fossiles. Matériaux pour la Paléontologie Suisse (2) part 1, 1–380; part 2, 1–752.
71. Reboulet, S., Giraud, F., Colombié, C. and Carpentier, A. 2013. Integrated stratigraphy of the Lower and Middle Cenomanian in a Tethyan section (Blieux, southeast France) and correlations with the Boreal basins. Cretaceous Research, 40, 170–189.
72. Robaszynski, F., Caron, M., Amédro, F., Dupuis, C., Hardenbol, J. Gonzáles Donoso, J.M., Linares, D. and Gartner, S. 1994. Le Cénomanien de la région de Kalaat Senan (Tunisie Centrale). Révue de Paléobiologie, 12, 351–505.
73. Schlüter, C. 1871-1876. Cephalopoden der oberen deutschen Kreide. Palaeontographica, 21, 1–24, (1871); 21, 25–120(1872); 24, 1–144 (121–264) + x(1876).
74. Sharpe, D. 1853-57. Description of the fossil remains of Mollusca found in the Chalk of England. I, Cephalopoda. Palaeontographical Society Monographs. 68 pp. 1–26 (1853); 27–36 (1855); 37–68 (1857).
75. Shumard, B.F. 1860. Observations upon the Cretaceous strata of Texas. Transactions of the Academy of Sciences of St. Louis, 1, 582–590.
76. Sornay, J. 1965. La faune d’inocérames du Cénomanien et du Turonien du Sud-Ouest de Madagascar. Annales de Paléontologie, Invertebrès, 51, 1-18.
77. Sowerby, J. 1812-1822. The Mineral Conchology of Great Britain. 1, pls 1–9 (1812), pls 10–44 (1813, pls 45–78 (1814), pls 79–102 (1815); 2, pls 103–14 (1815), pls 115–50 (1816), pls 151–86 (1817), pls 187–203 (1818); 3, pls 204–21 (1818), pls 222–53 (1819), pls 254–71 (1820), pls 272–306 (1821); 4, pls 307–18 (1821), pls 319–83 (1822). The Author; London,
78. Spath, L.F. 1922 On the Senonian ammonite fauna of Pondoland. Transactions of the Royal Society of South Africa, 10, 113–147.
79. Spath, L.F. 1925. On Upper Albian Ammonoidea from Portuguese East Africa, with an appendix on Upper Cretaceous ammonites from Maputoland. Annals of the Transvaal Museum, 11, 179–200.
80. Spath, L.F. 1926a. On new ammonites from the English Chalk. Geological Magazine, 63, 77–83.
81. Spath, L.F. 1926b. On the zones of the Cenomanian and the uppermost Albian. Proceedings of the Geologists’ Association, 37, 420–432.
82. Stoliczka, F. 1863-1866. The fossil cephalopoda of the Cretaceous rocks of southern India. Ammonitidae with revision of the Nautilidae etc. Memoirs of the Geological Survey of India. (1), Palaeontologica Indica, 3, (1), 41–56(1863); (2–5), 57–106(1864); (6–9), 107–154(1865); (10–13), 155–216(1866).
83. Szives, O. 2007. Albian Stage. Geologica Hungarica, 57, 75–122.
84. Thomel, G. 1972. Les Acanthoceratidae Cénomaniens des châines subalpines méridionales. Mémoires de la Société Géologique de France, (N.S.), 116, 204 pp.
85. Thomel, G. 1992. Ammonites du Cénomanien et du Turonien du Sud-Est de la France. 1, 1–422; 2, 1–383. Editions Serre; Nice.
86. Venzo, S. 1936. Cefalopodi del Cretaceo medio-superiore dello Zululand. Palaeontographia Italica, 36, 59–133 (1–75).
87. Walaszczyk, I., Kennedy, W.J., Dembicz, K., Gale, A.S., Praszkier, T., Rasoamiaramanana, A.H. and Randrianaly, H. 2014. Ammonite and inoceramid biostratigraphy and biogeography of the Cenomanian through basal Middle Campanian (Upper Cretaceous) of the Morondava Basin, western Madagascar. Journal of African Earth Sciences 89, 79–132.
88. Wiedmann, J. 1966. Stammesgeschichte und System der posttriadischen Ammonoideen; ein Überblick. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 125, 49–79; 127, 13–81.
89. Wiedmann, J. and Dieni, I. 1968. Die Kreide Sardiniens und ihre Cephalopoden. Palaeontographia Italica, 64, 1–171.
90. Wiedmann, J. and Schneider, H.L. 1979. Cephalopoden und Alter der Cenoman-Transgression von Mülheim-Broich, SW-Westfalen. In: Wiedmann, J. (Ed.), Aspekte der Kreide Europas, International Union of Geological Sciences (A), 6, 645–680.
91. Wilmsen, M. 1997. Some notes on the Cenomanian cephalopod fauna of the North Cantabrian Basin. Freiberger Forschungsheft, C468, 319–331.
92. Wilmsen, M., Wood, C. J. Niebuhr, B. and Kaplan, U. 2009. Cenomanian-Coniacian ammonoids of the Danubian Cretaceous Group (Bavaria, southern Germany). Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 65, 111–124.
93. Wright, C.W. 1952. A classification of the Cretaceous Ammonites. Journal of Paleontology, 26, 213–222.
94. Wright, C.W. and Kennedy, W.J. 1984. The Ammonoidea of the Lower Chalk. Part 1. Palaeontographical Society Monographs, 1–126.
95. Wright, C.W. and Kennedy, W.J. 1987. The Ammonoidea of the Lower Chalk. Part 2. Palaeontographical Society Monographs, 127–218.
96. Wright, C.W. and Kennedy, W.J. 1995. The Ammonoidea of the Lower Chalk. Part 4. Palaeontographical Society Monographs, 295–319.
97. Wright, C.W. and Kennedy, W.J. 1996. The Ammonoidea of the Lower Chalk. Part 5. Palaeontographical Society Monographs, 320–403.
98. Wright, C.W. and Wright, E.V. 1951. A survey of the fossil Cephalopoda of the Chalk of Great Britain. Palaeontographical Society Monographs, 1–40.
99. Zaborski, P.M.P. 1985. Upper Cretaceous ammonites from the Calabar region, southeast Nigeria. Bulletin of the British Museum (Natural History) Geology, 39, 1–72.
100. Zittel, K.A. Von. 1884. Handbuch der Palaeontologie. 1, Abt. 2; Lief 3, Cephalopoda. p. 329–522. R. Oldenbourg; Munich & Leipzig.
101. Zittel, K.A. Von. 1895. Grundzüge der Palaeontologie (Palaeozoologie). vii + 972 pp. R. Oldenbourg; Munich & Leipzig.
DOI :
Cytuj : Kennedy, W. J. ,Walaszczyk, I. ,Kopaevich, L. ,Beniamovski, V. N. ,Wilmsen, M. ,Storm, M. ,Fürsich, F. ,Majidifard, M. ,Gasiński, M. A. ,Olshtynska, A. ,Uchman, A. ,Kennedy, W. J. ,Klinger, H. ,Machalski, M. ,Kennedy, W. J. ,Schneider, S. ,Jäger, M. ,Kroh, A. ,Mitterer, A. ,Niebuhr, B. ,Vodrážka, R. ,Wilmsen, M. ,Wood, C. J. ,Zágoršek, K. ,Jurkowska, A. ,Uchman, A. ,Kennedy, W. J. ,Walaszczyk, I. ,Gale, A. ,Dembicz, K. ,Praszkier, T. , Lower and Middle Cenomanian ammonites from the Morondava Basin, Madagascar. Acta Geologica Polonica Vol. 63, no. 4/2013
[Top]

Vojnovskytesidae – a new family of Mississippian Rugosa (Anthozoa)

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Vojnovskytesidae – a new family of Mississippian Rugosa (Anthozoa)

Autorzy :
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland, i.walaszczyk@uw.edu.pl,
Kopaevich, L.
Geological Faculty, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991 Russia,
Beniamovski, V. N.
Geological Institute, Russian Academy of Sciences, Pyzhevski 7, Moscow, 119017, Russia,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D-01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Storm, M.
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom,
Fürsich, F.
GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, D-91054 Erlangen, Germany,
Majidifard, M.
Geological Survey of Iran, Box 131851-1494, Tehran, Iran,
Gasiński, M. A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, adam.gasinski@uj.edu.pl,
Olshtynska, A.
Institute of Geological Sciences, National Academy of Sciences of Ukraine, O. Gonchara str. 55-b, 01601 Kiev, Ukraine, ol-lesia@mail.ru,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Klinger, H.
Natural History Collections Department, Iziko South African Museum, P. O. Box 61, Cape Town, 8000, Republic of South Africa, hkling@telekomsa.net,
Machalski, M.
Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL-00-818 Warszawa, Poland, mach@twarda.pan.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Schneider, S.
CASP, University of Cambridge, West Building, 181A Huntingdon Road, Cambridge, CB3 0DH, UK and GeoZentrum Nordbayern, Paleobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany, simon.schneider@casp.cam.ac.uk,
Jäger, M.
Lindenstr. 53, 72348 Rosenfeld, Germany, langstein.jaeger@web.de,
Kroh, A.
Natural History Museum Vienna, Geology-Palaeontology, Burgring 7, 1010 Wien, Austria, andreas.kroh@nhm-wien.ac.at,
Mitterer, A.
Hoffmann Mineral GmbH, Münchener Str. 75, 86633 Neuburg an der Donau, Germany, agnes.mitterer@sonax.de,
Niebuhr, B.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Paläozoologie, Königsbrücker Landstr. 159, 01109 Dresden, Germany, niebuhr.birgit@googlemail.com,
Vodrážka, R.
Academy of Sciences of the Czech Republic, Institute of Geology, Rozvojová 269, 16502 Praha 6, Czech Republic, radek.vodrazka@seznam.cz,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Paläozoologie, Königsbrücker Landstr. 159, 01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Wood, C. J.
Scops Geological Services Ltd., 31 Periton Lane, Minehead, Somerset TA24 8AQ, UK, chrisjwood@btinternet.com,
Zágoršek, K.
Department of Paleontology, National Museum, Vaclavske nam. 68, 11579 Praha 1, Czech Republic, kamil_zagorsek@nm.cz,
Jurkowska, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a; 30-063 Kraków, Poland, jurkowska.a@gmail.com,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a; 30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland,
Gale, A.
Department of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL. United Kingdom,
Dembicz, K.
Spirifer Geological Society, Warszawa, Poland,
Praszkier, T.
Spirifer Geological Society, Warszawa, Poland,
Fedorowski, J.
Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, Pl-61-606 Poznań, Poland, jerzy@amu.edu.pl,
Kullmann, J.
Mathematisch-Naturwissenschaften Faculty, Geowissenschaften University, Tübingen, Hölderlinstrasse 12, Germany, juergen.kullmann@uni-tuebingen.de,
Abstrakty : Two new species of the genus Vojnovskytes Fedorowski, 2009, namely V. marcinowskii and V. arcuatus, and a new genus, Vojnimitor, based on the new species V. proiectus, all from Mississippian strata of northern Spain, are described. Vojnovskytes variabilis (Vojnovsky-Krieger, 1934), the type species for the genus from the lowermost Viséan strata of southern Urals, also is discussed and illustrated. Characters displayed by the taxa mentioned permit introduction of a new family Vojnovskytesidae.

Słowa kluczowe : koralowce, Vojnovskytesidae, taksonomia, missisip, Hiszpania, Rugosa (Anthozoa), New family Vojnovskytesidae, taxonomy, Mississippian, Spain,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2013
Numer : Vol. 63, no. 4
Strony : 657 – 679
Bibliografia : 1. Belka, Z. and Korn, D. 1994. Re-evaluation of the Early Carboniferous conodont succssion in the Esla Area of the Cantabrian Zone (Cantabrian Mountains, Spain). Courier Forschungsinstitut Senckenberg, 168, 183–193.
2. Belka, Z. and Lehmann, J. 1998. Late Viséan/early Namurian condont succession from the Esla area of the Cantabrian Mountains Spain. Acta Geologica Polonica, 48, 31–41.
3. Budinger, P. and Kullmann, J. 1964. Zur Frage von Sedimentationsunterbrechunngen im Goniatiten- und Conodontenführenden Oberdevon und Karbon des Kantabrischen Gebirges (Nordspanien). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 7, 414–429.
4. Fedorowski, J. 1974. The Upper Palaeozoic tetracoral genera Lophophyllidium and Timorphyllum. Palaeontology, 17, 441–473.
5. Fedorowski, J. 1986. Permian rugose corals from Timor (Remarks on Schouppé & Stacul’s collections and publications from 1955 and 19599). Palaeontographica, Abteilung A, 191, 173–226.
6. Fedorowski, J. 1997. Remarks on the palaeobiology of Rugosa. Geologos, 2, 5–58.
7. Fedorowski, J. 2009a. On Pentamplexus Schindewolf, 1940 (Anthozoa, Rugosa) and its possible relatives and analogues. Palaeontology, 52, 297–322.
8. Fedorowski, J. 2009b. Morphogenesis and taxonomic value of the circum-axial skeleton in Rugosa (Anthozoa). Lethaia, 42, 232–247.
9. Higgins, A.C. and Wagner-Gentis, C.H.T. 1982. Conodonts, Goniatites and the biotratigraphy of the earlier Carboniferous from the Cantabrian Mountains. Palaeontology, 25, 313–350.
10. Kullmann, J. 1961. Die Goniatiten des Unterkarbons im Kantabrischen Gebirge (Nordspanien). I. Stratigraphie, Paläontologie der U.O. Goniatitina Hyatt. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 113, 219–326.
11. Kullmann, J. 1962. Die Goniatiten der Namur-Stufe (Oberkarbon) im Kantabrischen Gebirge, Nordspanien. Abhandlungen der Akademie der Wissenschaften und Literatur, mathematisch-naturwissenschaftliche Klasse, 1962 (6), 1–119.
12. Menéndez-Álvarez, J.R. 1978. Conodontos de la formación Genicera en el Corte de Entrago, (Teverga, Asturias). Breviora Geologica Asturica, 22, 1–7.
13. Raven, J.G.M. 1983. Conodont biostratgraphy and depositional history of the middle Devonian to Lower Carboniferous in the Cantabrian Zone (Cantabrian Mountains, Spain). Leidse geologische Mededelingen, 52, 265–339.
14. Sánchez de Posada, L.C., Martínez-Chacón, M.L., Méndez-Fernández, C., Menéndez-Álvarez, J.R., Truyols, J. and Villa, E. 1990. Carboniferous Pre-Stephanian rocks of the Asturian-Leonese Domain (Cantabrian Zone), In: R. Dalmeyer and E. Martínez-García (Eds), Pre-Mesozoic Geology of Iberia, pp. 24–33. Springer Verlag; Berlin.
15. Sánchez de la Torre, L., Águeda, J., Colmenero, J.R., García-Ramos, J.C. and González-Lastra, J. 1983. Evolución sedimentaria y paleogeográfica del Carbonífero de la Cordillera Cantábrica. In: Carbonífero y Pérmico de España. X International Congress on Carboniferous Stratigraphy and Geology. Madrid, pp. 133–150.
16. Sanz-López, J., Blanco-Ferrera, S., Sánchez de Posada, L.C. and García-López, S. 2007. Serpukhovian conodonts from northern Spain and their biostratigraphic application, Palaeontology, 50, 883–904.
17. Schindewolf, O.H. 1942. Zur Kenntnis der Polycoelien und Plerophyllen. Eine Studie über den Bau der “Tetrakorallen” und ihre Beziehungen zu den Madreporarien. Abhandlungen des Reichsamtes für Bodenforschung, 204, 1–324.
18. Schouppé, A. von and Stacul, P. 1959. Säulchenlose Pterocorallia aus dem Perm von Indonesisch Timor mit ausnahme der Poilycoeliidae. Palaeontographica, Supplement Band 4, Abteilung 5, 197–359.
19. Stolarski, J. 2003. Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: A biocalcification proxy. Acta Palaeontologica Polonica, 48, 497–530.
20. Suarez del Rio, L. M., Calleja-Escudero, L., Diaz-Sarriá, I., Gómez-Ruiz de Argandoña, V., Rodriguez-Rey, A.M., and Alonso-Rodriguez, F. J. 2003. La caliza Griotte de Asturias como roca ornamental, Boletin Geológico y Minero, 114, 463–471,
21. Sutherland, P.K. 1965. Henryhouse rugose corals. Oklahoma Geological Survey, Bulletin, 109, 1–92.
22. Vojnovsky-Krieger, K.G. 1934. Lower Carboniferous corals from the environs of the Archangelski works on the Western slope of South Urals. Trudy Vsesoyuznogo Geologo-Razvedochnogo obedinenya NKTI SSSR, 107, 1–64. In Russian with English summary
23. Weyer, D. 1981. Korallen der Devon/Karbon Grenze aus hemipelagischer Cephalopoden-Fazies im mitteleuropäischen variszischen Gebirge – Bathybalva n. g., Thuriantha n. g. (Rugosa). Freiberger Forschungshefte, C-363, 111–125.
24. Weyer, D. 2002. Korallen im Unterkarbon Deutschlands. Abhandlungen und Berichte für Naturkunde, 23, 57–91. for 2000
DOI :
Cytuj : Kennedy, W. J. ,Walaszczyk, I. ,Kopaevich, L. ,Beniamovski, V. N. ,Wilmsen, M. ,Storm, M. ,Fürsich, F. ,Majidifard, M. ,Gasiński, M. A. ,Olshtynska, A. ,Uchman, A. ,Kennedy, W. J. ,Klinger, H. ,Machalski, M. ,Kennedy, W. J. ,Schneider, S. ,Jäger, M. ,Kroh, A. ,Mitterer, A. ,Niebuhr, B. ,Vodrážka, R. ,Wilmsen, M. ,Wood, C. J. ,Zágoršek, K. ,Jurkowska, A. ,Uchman, A. ,Kennedy, W. J. ,Walaszczyk, I. ,Gale, A. ,Dembicz, K. ,Praszkier, T. ,Fedorowski, J. ,Kullmann, J. , Vojnovskytesidae – a new family of Mississippian Rugosa (Anthozoa). Acta Geologica Polonica Vol. 63, no. 4/2013
[Top]

Experimental method for estimation of compaction in the Oxfordian bedded limestones of the southern Kraków-Częstochowa Upland, Southern Poland

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Experimental method for estimation of compaction in the Oxfordian bedded limestones of the southern Kraków-Częstochowa Upland, Southern Poland

Autorzy :
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland, i.walaszczyk@uw.edu.pl,
Kopaevich, L.
Geological Faculty, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991 Russia,
Beniamovski, V. N.
Geological Institute, Russian Academy of Sciences, Pyzhevski 7, Moscow, 119017, Russia,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D-01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Storm, M.
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom,
Fürsich, F.
GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, D-91054 Erlangen, Germany,
Majidifard, M.
Geological Survey of Iran, Box 131851-1494, Tehran, Iran,
Gasiński, M. A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, adam.gasinski@uj.edu.pl,
Olshtynska, A.
Institute of Geological Sciences, National Academy of Sciences of Ukraine, O. Gonchara str. 55-b, 01601 Kiev, Ukraine, ol-lesia@mail.ru,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Klinger, H.
Natural History Collections Department, Iziko South African Museum, P. O. Box 61, Cape Town, 8000, Republic of South Africa, hkling@telekomsa.net,
Machalski, M.
Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL-00-818 Warszawa, Poland, mach@twarda.pan.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Schneider, S.
CASP, University of Cambridge, West Building, 181A Huntingdon Road, Cambridge, CB3 0DH, UK and GeoZentrum Nordbayern, Paleobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany, simon.schneider@casp.cam.ac.uk,
Jäger, M.
Lindenstr. 53, 72348 Rosenfeld, Germany, langstein.jaeger@web.de,
Kroh, A.
Natural History Museum Vienna, Geology-Palaeontology, Burgring 7, 1010 Wien, Austria, andreas.kroh@nhm-wien.ac.at,
Mitterer, A.
Hoffmann Mineral GmbH, Münchener Str. 75, 86633 Neuburg an der Donau, Germany, agnes.mitterer@sonax.de,
Niebuhr, B.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Paläozoologie, Königsbrücker Landstr. 159, 01109 Dresden, Germany, niebuhr.birgit@googlemail.com,
Vodrážka, R.
Academy of Sciences of the Czech Republic, Institute of Geology, Rozvojová 269, 16502 Praha 6, Czech Republic, radek.vodrazka@seznam.cz,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Paläozoologie, Königsbrücker Landstr. 159, 01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Wood, C. J.
Scops Geological Services Ltd., 31 Periton Lane, Minehead, Somerset TA24 8AQ, UK, chrisjwood@btinternet.com,
Zágoršek, K.
Department of Paleontology, National Museum, Vaclavske nam. 68, 11579 Praha 1, Czech Republic, kamil_zagorsek@nm.cz,
Jurkowska, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a; 30-063 Kraków, Poland, jurkowska.a@gmail.com,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a; 30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland,
Gale, A.
Department of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL. United Kingdom,
Dembicz, K.
Spirifer Geological Society, Warszawa, Poland,
Praszkier, T.
Spirifer Geological Society, Warszawa, Poland,
Fedorowski, J.
Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, Pl-61-606 Poznań, Poland, jerzy@amu.edu.pl,
Kullmann, J.
Mathematisch-Naturwissenschaften Faculty, Geowissenschaften University, Tübingen, Hölderlinstrasse 12, Germany, juergen.kullmann@uni-tuebingen.de,
Kochman, A.
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Al. A. Mickiewicza 30; 30-059 Kraków, Poland, kochman@geol.agh.edu.pl,
Matyszkiewicz, J.
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Al. A. Mickiewicza 30; 30-059 Kraków, Poland, jamat@geol.agh.edu.pl,
Abstrakty : The Upper Jurassic carbonates exposed in the southern part of the Kraków-Częstochowa Upland are well known for their significant facies diversity related to the presence of microbial and microbial-sponge carbonate buildups and bedded detrital limestone in between. Both the buildups and detrital limestones revealed differential susceptibility to compaction which, apart from differential subsidence of the Palaeozoic basement and synsedimentary faulting, was one of the factors controlling seafloor palaeorelief in the Late Jurassic sedimentary basin. The compaction of the detrital limestones has been estimated with an experimental oedometric method in which specially prepared mixtures made of ground limestones from a quarry in the village of Żary were subjected to oedometer tests. The diameters of the detrital grains and their percentages in the limestones were determined by microscopic examinations of thin sections. The diameters were assigned to predetermined classes corresponding to the Udden-Wentworth scale. The rock samples were then ground down to the grain sizes observed in thin sections. From such materials, mixtures were prepared of grain size distributions corresponding to those observed in thin sections. After adding water the mixtures were subjected to oedometer tests. Analysis of the compression of such mixtures under specific loads enabled preparation of a mathematical formula suitable for the estimation of mechanical compaction of the limestone. The obtained values varied from 27.52 to 55.53% for a load corresponding to 300 metres burial depth. The most significant effect of mechanical compaction was observed for loads representing only 2 metres burial depth. Further loading resulted in a much smaller reduction in sample height. The results of the oedometer tests cannot be used directly to determine compaction of the detrital limestones. Mainly because microscopic observations of thin sections of the experimental material show that chemical compaction was also an important factor influencing thickness reduction of the limestones.

Słowa kluczowe : kompakcja, badania edometryczne, analiza, dorzecze, mikrofacje, jura późna, Wyżyna Krakowsko-Częstochowska, differential compaction, oedometer test, basin analysis, microfacies, Upper Jurassic, Kraków-Częstochowa Upland,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2013
Numer : Vol. 63, no. 4
Strony : 681 – 696
Bibliografia : 1. Aagaard, P. and Jahren, J. 2010. Special issue introduction: Compaction processes – Porosity, permeability and rock properties evolution in sedimentary basins. Marine and Petroleum Geology, 27, 1681–1683.
2. Aplin, A.C., Yang, Y. and Hansen, S. 1995. Assessment of β, the compression coefficient of mudstones and its relationship with detailed lithology. Marine and Petroleum Geology, 12, 995–963.
3. Audet, D.M. 1995. Modelling of porosity evolution and mechanical compaction of calcareous sediments. Sedimentology, 42, 355–373.
4. Bathurst, R.G.C. 1975. Carbonate Sediments and their Diagenesis, 658 pp. Elsevier; Amsterdam.
5. Bathurst, R.G.C. 1987. Diagenetically enhanced bedding in argillaceous platform limestone: stratified cementation and selective compaction, Sedimentology, 34, 749–779.
6. Bathurst, R.G.C. 1991. Pressure-dissolution and limestone bedding: the influence of stratified cementation. In: G. Einsele, W. Ricken and A. Seilacher (Eds), Cycles and Events in Stratigraphy, pp. 450–463. Berlin.
7. Bausch, W.M. 1996. Noncarbonates as controlling factor in reef growth and as a tool in reef stratigraphy (examples from the Upper Jurassic of Southern Germany). In: J. Reitner, F. Neuweiler and F. Gunkel (Eds), Global and regional controls on biogenic sedimentation. I. Reef Evolution. Research Reports – Göttinger Arbeiten Geologie und Paläontologie, Sb2, 203–205.
8. Bjørlykke, K. 2010. Compaction of sedimentary rocks including shales, sandstones and carbonates, In: K. Bjørlykke (Ed.), Petroleum Geoscience: From Sedimentary Environments to rock Physics, pp. 329–337. Springer; Berlin-Heidelberg.
9. Braithwaite, C.J.R. 1989. Stylolites as open fluid conduits. Marine and Petroleum Geology, 6, 93–96.
10. Broichhausen, H., Littke, R. and Hantschel, T. 2005. Mudstone compaction and its influence on overpressure generation, elucidated by a 3D case study in the North Sea. International Journal of Earth Sciences, 94, 956–978.
11. Budd, D.A. 2002. The relative roles of compaction and early cementation in the destruction of permeability in carbonate grainstones: a case study from the Paleogene of westcentral Florida, USA. Journal of Sedimentary Research, 72, 116–128.
12. Buxton, T.M. and Sibley, D.F. 1981. Pressure solution features in a shallow buried limestone. Journal of Sedimentary Petrology, 51, 19–26.
13. Chanda, S.K., Bhattacharyya, A. and Sarkar, S. 2011. Deformation of ooids by compaction in the Precambrian Bhander Limestone, India: Implications for lithification. Geological Society of America Bulletin, 88, 1577–1585.
14. Clari, P. and Martire, L. 1996. Interplay of cementation, mechanical compaction, and chemical compaction in nodular limestones of the Rosso Ammonitico Veronese (Middle-Upper Jurassic, northeastern Italy). Journal of Sedimentary Reasearch, 66, 447–458.
15. Coogan, A.H. 1970. Measurement of compaction in oolitic grainstone. Journal of Sedimentary Petrology, 40, 921–929.
16. Croizé, D., Ehrenberg, S.N., Bjørlykke, K., Renard, F. and Jahren, J. 2010. Petrophysical properties of bioclastic platform carbonates: implications for porosity controls during burial, Marine and Petroleum Geology, 27, 1765–1774.
17. Czerniakowski, L.A., Lohmann, K.C. and Wilson, J.L. 1984. Closed-system marine burial diagenesis: isotopic data from the Austin Chalk and its components. Sedimentology, 31, 863–877.
18. Doglioni, C. and Goldhammer, R.K. 1988. Compaction-induced subsidence in the margin of a carbonate platform. Basin Research, 1, 237–246.
19. Dunham, R.J. 1962. Classification of carbonate rocks according to depositional texture. In: W.E. Ham (Ed.), Classification of carbonate rocks. American Association of Petroleum Geologists Memoir, 1, 108–121.
20. Dunnington, H.V. 1967. Aspects of diagenesis and shape hange in stylolitic limestone reservoirs. Proceeding of the Seventh World Petroleum Congress, pp. 337–352. Mexico.
21. Dżułyński, S. 1952. The origin of the Upper Jurassic limestone in the Cracow area. Rocznik Polskiego Towarzystwa Geologicznego, 21, 125–180. In Polish with Russian and English summaries
22. Flügel, E. 2004. Microfacies of Carbonate Rocks, Analysis, Interpretation and Application, 1–976. Springer; New York.
23. Garrison, R.E. 1981. Diagenesis of oceanic carbonate sediments: a review of the DSDP perspective. In: R.E. Warme, R.G. Douglas and E.L. Winterer (Eds), The Deep Sea Drilling Project: A Decade of Progress. Special Publication of Society of Economic Paleontologists and Mineralogists, 32, 181–207.
24. Glazer, Z. and Malinowski, J. 1991. Geologia i geotechnika dla inżynierów budownictwa,1–392. Wydawnictwo Naukowe PWN; Warszawa.
25. Goldhammer, R.K. 1997. Compaction and decompaction algorithms for sedimentary carbonates. Journal of Sedimentary Reasearch, 67, 26–35.
26. Gómez, J.J. and Fernández-López, S. 1994. Condesation processes in shallow platforms. Sedimentary Geology, 92, 147–159.
27. Gołębiowska, B., Pieczka, A., Rzepa, G., Matyszkiewicz, J. and Krajewski, M. 2010. Iodargyrite from Zalas (Cracow area, Poland) as an indicator of Oligocene-Miocene aridity in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 296, 130–137.
28. Gradziński, R. 2009. Geological map of Krakow region without Quaternary and terrestrial Tertiary deposits. Wydawnictwo Instytutu Nauk Geologicznych PAN; Kraków.
29. Gwinner, M.P. 1976. Origin of the Upper Jurassic Limestones of the Swabian Alb (Southern Germany). Contributions to Sedimentology, 5, 1–76.
30. Heydari, E. 2000. Porosity loss, fluid flow, and mass transfer in limestone reservoirs: application to the Upper Jurassic Smackover Formation, Mississipi. American Association of Petroleum Geologists Bulletin, 84, 100–118.
31. Holcomb, D., Rudnicki, J.W., Issen, K.A. and Sternlof, K. 2007. Compaction localization in the Earth and the laboratory: state of the research and research directions. Acta Geotechnica, 2, 1–15.
32. Huber, S. 1987. Drucklösungserscheinungen in Karbonaten des Oxford 1 und Kimmeridge 1 der Bohrung TB-3 Saulgau (Oberschwaben). Facies, 17, 109–120.
33. Hunt, D., Fitchen, W.M., Swarbrick, R. and Allsop, T. 1995. Differential compaction as a primary control of sequence architecture and development in the Permian Basin: geological significance and potential as a hydrocarbon exploration model. In: R.F. Garber and R.F. Lindsay (Eds), Wolfcampian–Leonardian Shelf Margin Facies of the Sierra Diablo: Seismic Models for Subsurface Exploration. West Texas Geological Society Publications, 95–97, 83–104.
34. Katsman, R. and Aharonow, E. 2006. A study of compaction bands originating from crack, notches and compacted defects. Journal of Structural Geology, 28, 508–518.
35. Kenter, J.A.M., Fouke, B.W. and Reinders, M. 1997. Effects of differential cementation on the sonic velocities of upper Cretaceous skeletal grainstones (southeastern Netherlands). Journal of Sedimentary Research, 67, 178–185.
36. Kochman, A. 2010. Wpływ kompakcji na architekturę facjalną późnojurajskiego basenu południowej części Wyżyny Krakowsko-Częstochowskiej. Ph.D. Thesis, AGH University of Science and Technology, Kraków, Poland.
37. Kochman, A. and Matyszkiewicz, J. 2012. Microbial laminites with coprolites from Upper Jurassic carbonate buildups complex (Kraków-Częstochowa Upland; Poland). Annales Societatis Geologorum Poloniae, 82, 331–347.
38. Krajewski, M. 2000. Lithology and morphology of Upper Jurassic carbonate buildups in the Będkowska Velley, Kraków region, southern Poland. Annales Societatis Geologorum Poloniae, 70, 151–163.
39. Krajewski, M. 2001. Upper Jurassic chalky limestones in the Zakrzówek Horst, Kraków, Kraków-Wieluń Upland (South Poland). Annales Societatis Geologorum Poloniae, 71, 43–51.
40. Krajewski, M. and Matyszkiewicz, J. 2004. Rozwój i architektura facjalna górnojurajskich kompleksów budowli węglanowych w SW części Wyżyny Krakowskiej. In: J. Partyka (Ed.), Zróżnicowanie i przemiany środowiska przyrodniczo-kulturowego Wyżyny Krakowsko-Częstochowskiej, Tom I, Przyroda, pp. 27–34. Ojców.
41. Kutek, J. 1994. Jurassic tectonic events in south-eastern cratonic Poland. Acta Geologica Polonica, 44, 167–221.
42. Lasemi, Z., Sandberg, P.A. and Boardman, M.H. 1990. New microtextural criterion for differentiation of compaction and early cementation in fine-grained limestones. Geology, 18, 370–373.
43. Logan, B.W. and Semeniuk, V. 1976. Dynamic metamorphism process and products in Devonian carbonate rocks, Canning basin, western Australia. Geological Society of Australia, Special Publication, 6, 1–138.
44. Lucia, F. 1999. Carbonate Reservoir Characterization, 1–226. Springer; New York.
45. Łuczyński, P. 2001. Pressure-solution and chemical compaction of condensed Middle Jurassic deposits, High-Tatric series, Tatra Mountains. Geologica Carpathica, 52, 91–102.
46. Marcinowski, R. 1970. Turbidites in Upper Oxfordian limestones at Jaskrów in the Polish Jura Chain. Bulletin of the Polish Academy of Sciences-Earth Sciences, 18, 219–225.
47. Martire, L. 1996. Stratigraphy, facies and synsedimentary tectonics in the Jurassic Rosso Ammonitico Veronese (Altopiano di Asiago, NE Italy). Facies, 35, 209–236.
48. Martire, L. and Clari, P. 1994. Evaluation of sedimentation rates in Jurassic-Cretaceous pelagic facies of the Trento Plateau: relevance of discontinuities and compaction. Giornale di Geologia, 56,193–209.
49. Matyszkiewicz, J. 1989. Sedimentation and diagenesis of the Upper Oxfordian cyanobacterial-sponge limestones in Piekary near Kraków, Annales Societatis Geologorum Poloniae, 59, 201–232.
50. Matyszkiewicz, J. 1994. Remarks on the Deposition of Pseudonodular Limestones in the Cracow Area (Oxfordian, Southern Poland). Berliner Geowissenschaftliche Abhandlungen, E13, 419–439.
51. Matyszkiewicz, J. 1996. The Significance of Saccocoma-calciturbidites for the analysis of the Polish Epicontinental Late Jurassic Basin: an example from the Southern Cracow-Wieluń Upland (Poland). Facies, 34, 23–40.
52. Matyszkiewicz, J. 1997. Microfacies, sedimentation and some aspects of diagenesis of Upper Jurassic sediments from the elevated part of the Northern peri-Tethyan Shelf, a comprative study on the Lochen area (Schwäbische Alb) and the Cracow area (Cracow-Wielun Upland, Poland). Berliner Geowissenschaftliche Abhandlungen, E21, 1–111.
53. Matyszkiewicz, J. 1999. Sea-bottom relief versus differential compaction in ancient platform carbonates: a critical reassessment of an example from Upper Jurassic of the Cracow-Wieluń Upland. Annales Societatis Geologorum Poloniae, 69, 63–79.
54. Matyszkiewicz, J. and Krajewski, M. 1996. Lithology and sedimentation of Upper Jurassic massive limestones near Bolechowice, Kraków-Wieluń Upland, south Poland. Annales Societatis Geologorum Poloniae, 66, 285–301.
55. Matyszkiewicz, J. and Krajewski, M. 2007. Litologia i zróżnicowanie ofacjalne wapieni górnojurajskich okolic dolin Szklarki i Będkowskiej. Tomy Jurajskie, 4, 87–94.
56. Matyszkiewicz, J., Kochman, A. and Duś, A. 2012. Influence of local sedimentary conditions on development of microbialites in the Oxfordian carbonate buildups from the southern part of the Kraków-Częstochowa Upland (south Poland). Sedimentary Geology, 263–264, 109–132.
57. Matyszkiewicz, J., Krajewski, M. and Żaba, J. 2006. Structural control on the distribution of Upper Jurassic carbonate buildups in the Kraków-Wieluń Upland (South Poland). Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 3, 182–192.
58. Moore, C.H. 2001. Carbonate Reservoirs, Porosity Evolution and Diagenesis in Sequence Stratigraphic Framework, 1–460. Elsevier; Amsterdam.
59. Myślińska, E. 1998. Laboratoryjne badania gruntów, 1–278. Wydawnictwo Naukowe PWN; Warszawa.
60. Nichols, G. 1999. Sedimentology and Stratigraphy, 1–420. Wiley-Blackwell; Chichester.
61. Perrier, R. and Quiblier, J. 1974. Thickness changes in sedimentary layers during compaction history; methods for quantitative evaluation. American Association of Petroleum Geologists Bulletin, 58, 507–520.
62. Pratt, B.R. 1982. Stromatolitic framework of carbonate mudmounds. Journal of Sedimentary Petrology, 52, 1203–1227.
63. Railsback, L.B. 1993. Contrasting styles of chemical compaction in the Upper Pennsylvanian Dennis Formation in the Midcontinent region, USA. Journal of Sedimentary Petrology, 63, 61–72.
64. Ricken, W. 1986. Diagenetic Bedding, A Model for Marl-limestone Alternations, 1–210. Springer; Berlin.
65. Ricken, W. 1987. The carbonate compaction law: a new tool. Sedimentology, 34, 571–584.
66. Rusciadelli, G. and Di Simone, S. 2007. Differential compaction as a control on depositional architectures across the Maiella carbonate platform margin (central Apennines, Italy). Sedimentary Geology, 196, 133–155.
67. Saller, A.H. 1996. Differential compaction and basinward tilting of the prograding Capitan reef complex, Permian, west Texas and southeast New Mexico, USA. Sedimentary Geology, 101, 21–30.
68. Sandberg, P.A. 1983. An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature, 305, 19–22.
69. Sandberg, P.A. 1985. Aragonite cements and their occurrence in ancient limestones. In: N. Schneidermann and P.M. Harris (Eds.), Carbonate Cements. Special Publication of the Society of Economic Paleontologists and Mineralogists, 36, 33–57.
70. Schlanger, S.O. and Douglas, R.G. 1974. The pelagic oozechalk-limestone transition and its implications for marine stratigraphy. In: K.J. Hsü and H.C. Jenkyns (Eds), Pelagic Sediments. Special Publication of the International Association of Sedimentologists, 1, 117–148.
71. Schmid, D.U. 1996. Marine Mikrobolithe und Mikroinkrustierer aus dem Jura. Profil, 9, 101–251.
72. Sellwood, B.W. 1992. Principle of carbonate diagenesis. In: A. Parker and B.W. Sellwood (Eds), Quantitative diagenesis: recent developments and applications to reservoir geology. NATO Advanced Study Institute, Reading, 1–25.
73. Shinn, E.A. and Robbin, D.M. 1983. Mechanical and chemical compaction in fine-grained shallow-water limestones. Journal of Sedimentary Petrology, 53, 595–618.
74. Suetnova, E. and Vasseur, G. 2000. 1-D modelling rock compaction in sedimentary basins using a visco-elastic rheology, Earth and Planetary Science Letters, 178, 373–383.
75. Tucker, M.E. and Wright, V.P. 2004. Carbonate Sedimentology, 1–491. Blackwell Science; Oxford.
76. Wanless, H.R. 1979. Limestone response to stress: pressure solution and dolomitization. Journal of Sedimentary Petrology, 49, 437–462.
77. Wentworth, C.K. 1922. A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377–392.
78. Westphal, H. 1997. Carbonate Platform Slopes –A Record of Changing Conditions, The Pliocene of the Bahamas, 1–197. Springer; Berlin–Heidelberg–New York.
79. Westphal, H. and Munnecke, A. 1997. Mechanical compaction versus early cementation in fine-grained limestones: differentiation by the preservation of organic microfossils. Sedimentary Geology, 112, 33–42.
80. Ziółkowski, P. 2005. Deformacje skamieniałości śladowych a proces kompakcji w wapieniach mikrytowych górnej jury okolic Korzkwi (Wyżyna Krakowska). Tomy Jurajskie, 3, 55–61.
DOI :
Cytuj : Kennedy, W. J. ,Walaszczyk, I. ,Kopaevich, L. ,Beniamovski, V. N. ,Wilmsen, M. ,Storm, M. ,Fürsich, F. ,Majidifard, M. ,Gasiński, M. A. ,Olshtynska, A. ,Uchman, A. ,Kennedy, W. J. ,Klinger, H. ,Machalski, M. ,Kennedy, W. J. ,Schneider, S. ,Jäger, M. ,Kroh, A. ,Mitterer, A. ,Niebuhr, B. ,Vodrážka, R. ,Wilmsen, M. ,Wood, C. J. ,Zágoršek, K. ,Jurkowska, A. ,Uchman, A. ,Kennedy, W. J. ,Walaszczyk, I. ,Gale, A. ,Dembicz, K. ,Praszkier, T. ,Fedorowski, J. ,Kullmann, J. ,Kochman, A. ,Matyszkiewicz, J. , Experimental method for estimation of compaction in the Oxfordian bedded limestones of the southern Kraków-Częstochowa Upland, Southern Poland. Acta Geologica Polonica Vol. 63, no. 4/2013
[Top]

Quartz c-axis fabrics in constrictionally strained orthogneisses: implications for the evolution of the Orlica-Śnieżnik Dome, the Sudetes, Poland

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Quartz c-axis fabrics in constrictionally strained orthogneisses: implications for the evolution of the Orlica-Śnieżnik Dome, the Sudetes, Poland

Autorzy :
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland, i.walaszczyk@uw.edu.pl,
Kopaevich, L.
Geological Faculty, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991 Russia,
Beniamovski, V. N.
Geological Institute, Russian Academy of Sciences, Pyzhevski 7, Moscow, 119017, Russia,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D-01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Storm, M.
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom,
Fürsich, F.
GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, D-91054 Erlangen, Germany,
Majidifard, M.
Geological Survey of Iran, Box 131851-1494, Tehran, Iran,
Gasiński, M. A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, adam.gasinski@uj.edu.pl,
Olshtynska, A.
Institute of Geological Sciences, National Academy of Sciences of Ukraine, O. Gonchara str. 55-b, 01601 Kiev, Ukraine, ol-lesia@mail.ru,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Klinger, H.
Natural History Collections Department, Iziko South African Museum, P. O. Box 61, Cape Town, 8000, Republic of South Africa, hkling@telekomsa.net,
Machalski, M.
Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL-00-818 Warszawa, Poland, mach@twarda.pan.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Schneider, S.
CASP, University of Cambridge, West Building, 181A Huntingdon Road, Cambridge, CB3 0DH, UK and GeoZentrum Nordbayern, Paleobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany, simon.schneider@casp.cam.ac.uk,
Jäger, M.
Lindenstr. 53, 72348 Rosenfeld, Germany, langstein.jaeger@web.de,
Kroh, A.
Natural History Museum Vienna, Geology-Palaeontology, Burgring 7, 1010 Wien, Austria, andreas.kroh@nhm-wien.ac.at,
Mitterer, A.
Hoffmann Mineral GmbH, Münchener Str. 75, 86633 Neuburg an der Donau, Germany, agnes.mitterer@sonax.de,
Niebuhr, B.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Paläozoologie, Königsbrücker Landstr. 159, 01109 Dresden, Germany, niebuhr.birgit@googlemail.com,
Vodrážka, R.
Academy of Sciences of the Czech Republic, Institute of Geology, Rozvojová 269, 16502 Praha 6, Czech Republic, radek.vodrazka@seznam.cz,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Paläozoologie, Königsbrücker Landstr. 159, 01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Wood, C. J.
Scops Geological Services Ltd., 31 Periton Lane, Minehead, Somerset TA24 8AQ, UK, chrisjwood@btinternet.com,
Zágoršek, K.
Department of Paleontology, National Museum, Vaclavske nam. 68, 11579 Praha 1, Czech Republic, kamil_zagorsek@nm.cz,
Jurkowska, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a; 30-063 Kraków, Poland, jurkowska.a@gmail.com,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a; 30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland,
Gale, A.
Department of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL. United Kingdom,
Dembicz, K.
Spirifer Geological Society, Warszawa, Poland,
Praszkier, T.
Spirifer Geological Society, Warszawa, Poland,
Fedorowski, J.
Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, Pl-61-606 Poznań, Poland, jerzy@amu.edu.pl,
Kullmann, J.
Mathematisch-Naturwissenschaften Faculty, Geowissenschaften University, Tübingen, Hölderlinstrasse 12, Germany, juergen.kullmann@uni-tuebingen.de,
Kochman, A.
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Al. A. Mickiewicza 30; 30-059 Kraków, Poland, kochman@geol.agh.edu.pl,
Matyszkiewicz, J.
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Al. A. Mickiewicza 30; 30-059 Kraków, Poland, jamat@geol.agh.edu.pl,
Żelaźniewicz, A.
Instytut Nauk Geologicznych PAN, Podwale 75, PL-50-449 Wrocław, Poland, pansudet@pwr.wroc.pl,
Kromuszczyńska, O.
Instytut Nauk Geologicznych PAN, Podwale 75, PL-50-449 Wrocław, Poland, olga.kromuszczynska@twarda.pan.pl,
Biegała, N.
Instytut Geologii UAM, Maków Polnych 16, PL-61-606 Poznań, Poland,
Abstrakty : The Orlica-Śnieżnik Dome (OSD), NE Bohemian Massif, contains in its core several gneiss variants with protoliths dated at ~500 Ma. In the western limb of the OSD, rodding augen gneisses (Spalona gneiss unit) are mainly L>S tectonites with a prominent stretching lineation. The few quartz LPO studies have produced somewhat discrepant results. Reexamination of these rocks revealed that texture formation was a protracted, multistage process that involved strain partitioning with changing strain rate and kinematics in a general shear regime at temperatures of the amphibolite facies (450–600°C). Quartz c-axis microfabrics show complex yet reproducible patterns that developed under the joint control of strain geometry and temperature; thus the LPOs are mixed features represented by pseudogirdle patterns. Domainal differences in quartz microfabrics (ribbons, tails, quartzo-feldspathic aggregate) are common in the Spalona orthogneisses but uncommon in the sheared migmatitic gneisses. In the latter rocks, the constrictional strain was imposed on the originally planar fabric defined by high-temperature migmatitic layering. The constrictional fabric of the Spalona gneisses may have developed in the hinge zones of kilometer-scale folds, where the elongation occurred parallel to the fold axes. Other occurrences of rodding gneisses throughout the Orlica-Śnieżnik Dome are thought to occupy similar structural positions, which would point to the significance of large-scale folds in the tectonic structure of the dome.

Słowa kluczowe : Masyw Czeski, kurczenie, gnejs, quartz c-axis, constriction, Augen orthogneiss, microfabric, Stretching Lineation, rodding gneiss, pseudo-girdle, Bohemian Massif,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2013
Numer : Vol. 63, no. 4
Strony : 697 – 722
Bibliografia : 1. Bailey, C.M., Francis, B.E. and Fahrney, E.E. 2004. Strain and vorticity analysis of transpressional high-strain zones from the Virginia Piedmont, USA. Geological Society of London, Special Publications, 224, 249–264.
2. Bons, P.D. and Urai, J.L. 1992. Syndeformational grain growth: microstructures and kinetics. Journal of Structural Geology, 14, 323–334.
3. Bouchez, J.L. 1978. Preferred orientations of quartz (a) axes in some tectonites – kinematic inferences. Tectonophysics, 49, 25–30.
4. Carreras, J. and Garcia Celma, A. 1982. Quartz of C-Axis fabric variation at the margins of a shear zone developed in shists from cap de Creus (Spain). Acta Geologica Hispanica, 17, 137–149.
5. Celma, A.G. 1982. Dominal and fabric heterogeneities in the Cap-de-Creus quartz mylonites. Journal of Structural Geology, 4, 443–455.
6. Chopin, F., Schulmann, K., Štipska, P., Martelat, J.E., Pitra, P., Lexa, O. and Petri, B. 2012. Microstructural and metamorphic evolution of a high-pressure granitic orthogneiss during continental subduction (Orlica-Śnieżnik dome, Bohemian Massif). Journal of Metamorphic Geology, 30, 347–376.
7. Cymerman, Z. 1997. Structure, kinematics and an evolution of the Orlica–Śnieżnik Dome, Sudetes. Prace Państwowego Instytutu Geologicznego, 156, 3–118.
8. Don, J. 1964. Góry Złote i Krowiarki jako elementy składowe metamorfiku Śnieżnika. The Złote and Krowiarki Mts. as structural elements of the Śnieżnik metamorphic massif. Geologia Sudetica, 1, 79–117.
9. Don, J., Dumicz, M., Wojciechowska, I. and Żelaźniewicz, A. 1990. Lithology and tectonics of the Orlica – Śnieżnik Dome, Sudetes – Recent State of Knowledge. Neues Jahrbuch für Geologie Paläontologie Abhandlungen, 179, 153–188.
10. Don, J., Skácel, J. and Gotowała, R. 2003. The boundary zone of the East and West Sudetes on the 1:50000 scale geological map of the Velké Vrbno, Staré Místo and Śnieżnik Metamorphic Units. Geologia Sudetica, 35, 25–59.
11. Dumicz, M. 1964. Budowa geologiczna krystaliniku Gór Bystrzyckich. Geology of the crystalline massif of the Bystrzyckie Mts. Geologia Sudetica, 1, 169–203. In Polish, with English summary
12. Dumicz, M. 1988. Mesostructural and kinematic characteristics of core gneisses in western part of the Orlica-Śnieżnik Dome, West Sudetes. Geologia Sudetica, 31, 105–111.
13. Etchecopar, A. 1977. A plane kinematic model of progressive deformation in a polycrystalline aggregate. Tectonophysics, 39, 121–139.
14. Etchecopar, A. and Vasseur, G. 1987. A 3-D kinematic model of fabric development in polycrystalline aggregates: comparisons with experimental and natural examples. Journal of Structural Geology, 9, 705–718.
15. Festa, V. 2009. C-axis fabrics of quartz-ribbons during hightemperature deformation of syn-tectonic granitoids (Sila Massif, Calabria, Italy). Comptes Rendus Geoscience, 341, 557–567.
16. Grześkowiak, A. and Żelaźniewicz, A. 2002. On the Significance of Gneissic Enclaves in the 500 Ma Metagranite, the Lądek–Śnieżnik Metamorphic Unit, the West Sudetes. Geolines, 14, 28–29.
17. Heilbronner, R. and Tullis, J. 2006. Evolution of c-axis pole figures and grain size during dynamic recrystallization; results from experimentally sheared quartzite. Journal of Geophysical Research, 111, B10202.
18. Hippertt, J., Rocha, A., Lana, C., Egydio-Silva, M. and Takeshita, T. 2001. Quartz plastic segregation and ribbon development in high-grade striped gneisses. Journal of Structural Geology, 23, 67–80.
19. Hippertt, J. and Tohver, E. 1999. On the development of zones of reverse shearing in mylonitic rocks. Journal of Structural Geology, 21, 1603–1614.
20. Hirth, G. and Tullis, J. 1992. Dislocation creep regimes in quartz aggregates. Journal of Structural Geology, 14, 145–149.
21. Jastrzębski, M. 2009. A Variscan continental collision of the West Sudetes and the Brunovistulian terrane: a contribution from structural and metamorphic record of the Stronie Formation, the Orlica-Śnieżnik Dome, SW Poland. International Journal of Earth Sciences 98, 1901–1923.
22. Jastrzębski, M., Żelaźniewicz, A., Majka, J., Murtezi, M., Bazarnik, J. and Kapitonov, I. 2013. The Devono-Carboniferous evolution of the Rheic Ocean from a multimethod geochronology study of the Staré Město Belt in the Sudetes (Poland and the Czech Republic). Lithos, 170-71, 54–72.
23. Jessell, M.W. and Lister, G.S. 1990. A simulation of the temperature dependence of quartz fabrics. In: Knipe, R.J. and Rutter, E.H. (Eds), Deformation Mechanisms, Rheology and Tectonics. Geological Society of London, Special Publications, 54, 353–362.
24. Juroszek, C. 1976. Granitogneisses from Bystrzyca Mountains (Sudetes). Archiwum Mineralogiczne, 30, 173–242. In Polish, with English summary
25. Kruhl, J.H. 1996. Prism, and basal, plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. Journal of Metamorphic Geology, 14, 581–589.
26. Kruhl, J.H. 1998. Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer – Reply. Journal of Metamorphic Geology, 16, 142–146.
27. Kruhl, J.H. 2001. Crystallographic controls on the development of foam textures in quartz, plagioclase and analogue material. In: Dresen, G., Handy, M. (Eds), Deformation Mechanisms, Rheology, and Microstructures. International Journal of Earth Science, 90, 104–117.
28. Lange, U., Bröcker, M., Armstrong, R., Trapp, E. and Mezger, K. 2005. Sm–Nd and U–Pb dating of high-pressure granulites from the Złote and Rychleby Mts (Bohemian Massif, Poland and Czech Republic). Journal of Metamorphic Geology, 23, 133–145.
29. Lange, U., Bröcker, M., Mezger, K. and Don, J. 2002. Geochemistry and Rb–Sr geochronology of a ductile shear zone in the Orlica-Śnieżnik dome (West Sudetes, Poland). International Journal of Earth Sciences, 91, 1005–1016.
30. Law, R., Miller, E.L. and Little, T.A. 1994. Extensional origin of ductile fabrics in the Schist Belt, Central Brooks Range, Alaska. Microstructural and petrofabric evidence. Journal of Structural Geology, 16, 919–940.
31. Law, R.D., Schmid, S.M. and Wheeler, J. 1990. Simple shear deformation and quartz crystallographic fabrics – a possible natural example from The Torridon Area of NW Scotland. Journal of Structural Geology, 12, 29–45.
32. Lister, G.S. and Hobbs, B.E. 1980. The simulation of fabric development during plastic deformation, the effects of deformation history. Journal of Structural Geology, 2, 355–370.
33. Mainprice, D., Bouchez, J.L., Blumenfeld, P. and Tubia, J.M. 1986. Dominant C-slip in naturally deformed quartz – implications for plastic softening at high-temperature. Geology, 14, 819–822.
34. Marjoribanks, R.W. 1976. The relation between microfabric and strain in a progressively deformed quartzite sequence from Central Australia. Tectonophysics, 32, 269–293.
35. Murtezi, M. 2006. The acid metavolcanic rocks of the OrlicaŚnieżnik Dome (Sudetes): their origin and tectono-metamorphic evolution. Geologia Sudetica, 38, 1–38.
36. Opletal, M., Domečka, K. and Čech, S. 1980. Geology of the Orlické hory Mountains. 1–202. Academia; Praha. In Czech, English summary
37. Passchier, C.W. and Trouw, R. A.J. 1998. Microtectonics. 289 p. Springer-Verlag; Berlin.
38. Pauk, F. 1977. The nappe structure of the Orlické hory-Klodsko Dome. Prace a Studie – Přir., Pardubice, 9, 7–32.
39. Peternell, M., Hasalová, P., Wilson, C.J.L., Piazolo, S. and Schulmann, K. 2010. Evaluating quartz crystallographic preferred orientations and the role of deformation partitioning using EBSD and fabric analyser techniques. Journal of Structural Geology, 32, 803–817.
40. Poirir, J.P. and Nicolas, A. 1975. Deformation-induced recrystalization due to progresive misorientation of subgrains, with special reference to mantle peridotites. Journal of Geology, 83, 707–720.
41. Přikryl, R., Schulmann, K. and Melka, R. 1996. Perpendicular fabrics in the Orlické hory orthogneisses (western part of the Orlice-Sněžník Dome, Bohemian Massif) due to high temperature E-W deformational event and late lower temperature N-S overprint. Journal of the Czech Geological Society, 41, 156–166.
42. Pryer, L.L. 1993. Microstructures in feldspars from a major crustal thrust zone: the Grenville Front, Ontario, Canada. Journal of Structural Geology, 15, 21–36.
43. Redlińska-Marczyńska, A. and Żelaźniewicz, A. 2011. Gneisses in the Orlica-Śnieżnik Dome, West Sudetes: a single batholitic protolith or a more complex origin? Acta Geologica Polonica, 61, 307–339.
44. Schmid, S.M. and Casey, M. 1986. Complete fabric analysis of some commonly observed quartz c-axis patterns. Mineral and Rock Deformation: Laboratory Studies, American Geophysics Union Monography, 36, 263–286.
45. Schmid, S.M., Casey, M. and Starkey, J. 1981. An illustration of the advantages of a complete texture analysis described by the orientation distribution function (ODF) using quartz pole figure data. Tectonophysics, 78, 101–117.
46. Skrzypek, E., Štipska, P., Schulmann, K., Lexa, O. and Lexova, M. 2011. Prograde and retrograde metamorphic fabrics – a key for understanding burial and exhumation in orogens (Bohemian Massif). Journal of Metamorphic Geology, 29, 451–472.
47. Smulikowski, K. 1973. Les roches métamorphiques du Mont Śnieżnik et de la région de Ladek. In: Smulikowski, K. (Ed.), Revue des problèmes géologiques des zones profondes de l’écorce terrestre en Basse Silésie, pp. 77–102. Wydawnictwa Geologiczne; Warszawa
48. Smulikowski K., 1979. Polimetamorphic evolution of the crystalline complex of the Śnieżnik and Góry Złote Mts in the Sudetes. Geologia Sudetica, 14, 7–76. In Polish, with English summary
49. Stipp, M., Stünitz, H., Heilbronner, R. and Schmid, S.M. 2002. The eastern Tonale fault zone: a “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700 ºC. Journal of Structural Geology, 24, 1861–1884.
50. Stoeckhert, B. and Duyster, J. 1999. Discontinuous grain growth in recrystallized vein quartz; implications for grain boundary structure, grain boundary mobility, crystallographic preferred orientation, and stress history. Journal of Structural Geology, 21, 1477–1490.
51. Stoeckhert, B., Brix, M.R., Kleinschrodt, R., Hurford, A.J. and Wirth, R. 1999. Thermochronometry and microstructures of quartz – a comparison with experimental flow laws and predictions on the temperature of the brittle–plastic transition. Journal of Structural Geology, 21, 351–369.
52. Szczepański, J. 2010. Provenance and tectonometamorphic evolution of the supracrustal series from the Bystrzyckie Mts. Crystalline Massif. 1–166. Wydawnictwo Uniwersytetu Wrocławskiego; Wrocław. In Polish
53. Teisseyre, H. 1973. Geology of the Śnieżnik Mountain Group. In: Smulikowski K. (Ed.), Revue des problèmes géologiques des zones profondes de l‘écorce terrestre en Basse Silésie, pp. 59–77. Wydawnictwa Geologiczne; Warszawa.
54. Toy, V.G., Prior, D.J. and Norris, R.J. 2008. Quartz fabrics in the Alpine Fault mylonites: Influence of pre-existing preferred orientations on fabric development during progressive uplift. Journal of Structural Geology, 30, 602–621.
55. Tullis, J., Stunitz, H., Teyssier, C. and Heilbronner, R. 2000. Deformation microstructures in quartzo-feldspathic rocks. In: Jessell, M.W. and Urai, J.L. (Eds), Stress, Strain and Structure, Win Means volume. Journal of the Virtual Explorer, 2, doi:10.3809/jvirtex.2000.00019.
56. Turner, F.J. and Weiss, L.E. 1963. Structural analysis of metamorphic tectonites, 545 p. McGraw-Hill; New York.
57. Żelaźniewicz A. 1978. Major tectonic structures in the Polish part of the Góry Orlickie. Geologia Sudetica, 13, 67–86. In Polish, English Summary
58. Żelaźniewicz, A. 1984. Synmetamorphic penetrative mylonitization in orthogneisses of the Bystrzyca Mts, Sudetes. Acta Geologica Polonica, 34, 111–130.
59. Żelaźniewicz, A. 1988. Orthogneisses due to irrotational extension, a case from the Sudetes, Bohemian massif. Geologische Rundschau, 77, 671–682.
60. Żelaźniewicz, A. 1991. Uwagi o deformacji ortognejsów oczkowych w kopule orlicko-śnieżnickiej. In: Dumicz, M. (Ed.), Następstwo serii skalnych Śnieżnika w świetle kartografii geologicznej, analizy strukturalnej i badań radiometrycznych. Materiały Konferencji Terenowej Uniwersytetu Wrocławskiego, Wrocław. 122–136.
61. Żelaźniewicz, A., Mazur, S. and Szczepański, J. 2002. The Lądek-Śnieżnik Metamorphic Unit – recent state of knowledge. GeoLines, 14, 115–125.
62. Żelaźniewicz A., Nowak I., Bachliński R., Larionov A.N. and Sergeev S.A. 2006. Cadomian versus younger deformations in the basement of the Moravo-Silesian Variscides, East Sudetes, SW Poland: U-Pb SHRIMP and Rb-Sr age data. Geologia Sudetica, 37, 35–52.
DOI :
Cytuj : Kennedy, W. J. ,Walaszczyk, I. ,Kopaevich, L. ,Beniamovski, V. N. ,Wilmsen, M. ,Storm, M. ,Fürsich, F. ,Majidifard, M. ,Gasiński, M. A. ,Olshtynska, A. ,Uchman, A. ,Kennedy, W. J. ,Klinger, H. ,Machalski, M. ,Kennedy, W. J. ,Schneider, S. ,Jäger, M. ,Kroh, A. ,Mitterer, A. ,Niebuhr, B. ,Vodrážka, R. ,Wilmsen, M. ,Wood, C. J. ,Zágoršek, K. ,Jurkowska, A. ,Uchman, A. ,Kennedy, W. J. ,Walaszczyk, I. ,Gale, A. ,Dembicz, K. ,Praszkier, T. ,Fedorowski, J. ,Kullmann, J. ,Kochman, A. ,Matyszkiewicz, J. ,Żelaźniewicz, A. ,Kromuszczyńska, O. ,Biegała, N. , Quartz c-axis fabrics in constrictionally strained orthogneisses: implications for the evolution of the Orlica-Śnieżnik Dome, the Sudetes, Poland. Acta Geologica Polonica Vol. 63, no. 4/2013
[Top]

Ryszard Marcinowski (1946-2010) – Memories and personal reminiscences

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Ryszard Marcinowski (1946-2010) – Memories and personal reminiscences

Autorzy :
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland, i.walaszczyk@uw.edu.pl,
Kopaevich, L.
Geological Faculty, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991 Russia,
Beniamovski, V. N.
Geological Institute, Russian Academy of Sciences, Pyzhevski 7, Moscow, 119017, Russia,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D-01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Storm, M.
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom,
Fürsich, F.
GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, D-91054 Erlangen, Germany,
Majidifard, M.
Geological Survey of Iran, Box 131851-1494, Tehran, Iran,
Gasiński, M. A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, adam.gasinski@uj.edu.pl,
Olshtynska, A.
Institute of Geological Sciences, National Academy of Sciences of Ukraine, O. Gonchara str. 55-b, 01601 Kiev, Ukraine, ol-lesia@mail.ru,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Klinger, H.
Natural History Collections Department, Iziko South African Museum, P. O. Box 61, Cape Town, 8000, Republic of South Africa, hkling@telekomsa.net,
Machalski, M.
Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL-00-818 Warszawa, Poland, mach@twarda.pan.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Schneider, S.
CASP, University of Cambridge, West Building, 181A Huntingdon Road, Cambridge, CB3 0DH, UK and GeoZentrum Nordbayern, Paleobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany, simon.schneider@casp.cam.ac.uk,
Jäger, M.
Lindenstr. 53, 72348 Rosenfeld, Germany, langstein.jaeger@web.de,
Kroh, A.
Natural History Museum Vienna, Geology-Palaeontology, Burgring 7, 1010 Wien, Austria, andreas.kroh@nhm-wien.ac.at,
Mitterer, A.
Hoffmann Mineral GmbH, Münchener Str. 75, 86633 Neuburg an der Donau, Germany, agnes.mitterer@sonax.de,
Niebuhr, B.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Paläozoologie, Königsbrücker Landstr. 159, 01109 Dresden, Germany, niebuhr.birgit@googlemail.com,
Vodrážka, R.
Academy of Sciences of the Czech Republic, Institute of Geology, Rozvojová 269, 16502 Praha 6, Czech Republic, radek.vodrazka@seznam.cz,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Paläozoologie, Königsbrücker Landstr. 159, 01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Wood, C. J.
Scops Geological Services Ltd., 31 Periton Lane, Minehead, Somerset TA24 8AQ, UK, chrisjwood@btinternet.com,
Zágoršek, K.
Department of Paleontology, National Museum, Vaclavske nam. 68, 11579 Praha 1, Czech Republic, kamil_zagorsek@nm.cz,
Jurkowska, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a; 30-063 Kraków, Poland, jurkowska.a@gmail.com,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a; 30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland,
Gale, A.
Department of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL. United Kingdom,
Dembicz, K.
Spirifer Geological Society, Warszawa, Poland,
Praszkier, T.
Spirifer Geological Society, Warszawa, Poland,
Fedorowski, J.
Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, Pl-61-606 Poznań, Poland, jerzy@amu.edu.pl,
Kullmann, J.
Mathematisch-Naturwissenschaften Faculty, Geowissenschaften University, Tübingen, Hölderlinstrasse 12, Germany, juergen.kullmann@uni-tuebingen.de,
Kochman, A.
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Al. A. Mickiewicza 30; 30-059 Kraków, Poland, kochman@geol.agh.edu.pl,
Matyszkiewicz, J.
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Al. A. Mickiewicza 30; 30-059 Kraków, Poland, jamat@geol.agh.edu.pl,
Żelaźniewicz, A.
Instytut Nauk Geologicznych PAN, Podwale 75, PL-50-449 Wrocław, Poland, pansudet@pwr.wroc.pl,
Kromuszczyńska, O.
Instytut Nauk Geologicznych PAN, Podwale 75, PL-50-449 Wrocław, Poland, olga.kromuszczynska@twarda.pan.pl,
Biegała, N.
Instytut Geologii UAM, Maków Polnych 16, PL-61-606 Poznań, Poland,
Abstrakty : Memories and personal reminiscences and and the list of scientific papers by Ryszard Marcinowski.

Słowa kluczowe : biography, memories,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2013
Numer : Vol. 63, no. 4
Strony : I – XI
Bibliografia :
DOI :
Cytuj : Kennedy, W. J. ,Walaszczyk, I. ,Kopaevich, L. ,Beniamovski, V. N. ,Wilmsen, M. ,Storm, M. ,Fürsich, F. ,Majidifard, M. ,Gasiński, M. A. ,Olshtynska, A. ,Uchman, A. ,Kennedy, W. J. ,Klinger, H. ,Machalski, M. ,Kennedy, W. J. ,Schneider, S. ,Jäger, M. ,Kroh, A. ,Mitterer, A. ,Niebuhr, B. ,Vodrážka, R. ,Wilmsen, M. ,Wood, C. J. ,Zágoršek, K. ,Jurkowska, A. ,Uchman, A. ,Kennedy, W. J. ,Walaszczyk, I. ,Gale, A. ,Dembicz, K. ,Praszkier, T. ,Fedorowski, J. ,Kullmann, J. ,Kochman, A. ,Matyszkiewicz, J. ,Żelaźniewicz, A. ,Kromuszczyńska, O. ,Biegała, N. , Ryszard Marcinowski (1946-2010) – Memories and personal reminiscences. Acta Geologica Polonica Vol. 63, no. 4/2013
[Top]