Category: Advances in Materials Science

Influence of friction stir welding on corrosion properties of Aw-7020M alloy in sea water

Czasopismo : Advances in Materials Science
Tytuł artykułu : Influence of friction stir welding on corrosion properties of Aw-7020M alloy in sea water

Autorzy :
Dudzik, K.
Gdynia Maritime University, Faculty of Marine Engineering, Marine Maintenance Department, Gdynia, Poland,
Jurczak, W.
Polish Naval Academy, Mechanical – Electrical Faculty, Gdynia, Poland, wjurczak@amw.gdynia.pl,
Abstrakty : Friction Stir Welding (FSW), provides an alternative to MIG and TIG welding methods for joining aluminium alloys. The article presents the results of electrochemical corrosion resistance test of alloy AW- 7020M and its joints welded by FSW. The study was performed using the method of electrochemical impedance spectroscopy (EIS). Impedance spectroscopy studies showed that both, the FSW welded joint and base material AW-7020M has a good resistance to electrochemical corrosion in sea water environment, wherein the welded joint has a higher susceptibility to this type of corrosion. Research has indicated the desirability of applying the FSW method for joining AW-7020M alloy in shipbuilding industry.

Słowa kluczowe : impedancja elektrochemiczna spektroskopii, EIS, Stopy glinu, korozja, schody łączenia, electrochemical impedance spectroscopy, EIS, aluminium alloys, corrosion, FSW joining,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 1(43)
Strony : 7 – 13
Bibliografia : 1. Cudny K., Puchaczewski N.: Alloys on ship hulls and Ocean Engineering Objects in Polish, Gdańsk University of Technology Publishing House, Gdańsk 1995.
2. Jurczak W.: Problems and prospects of the use of aluminum alloys for marine structures in Polish, Naval Academy Scientific Papers, Gdynia, 4, 183, 2010.
3. Ferraris S, Volpone L.M.: Aluminium alloys in third millennium shipbuilding: materials, technologies, perspectives, The Fifth International Forum on Aluminium Ships, Tokyo, Japan 2005.
4. Lahti K.: FSW – possibilities in shipbuilding, Svetsaren, The ESAB Welding and Cutting Journal, Vol. 58, 1, 2003.
5. Pietras A., Zadroga L., Łomozik M.: Characteristics of the weld formed by friction stir welding (FSW) in Polish, Bulletin of the Institute of Welding in Gliwice, 3, 2003.
6. Czechowski M.: Effect of anodic polarization on stress corrosion cracking of some aluminium alloys, Advances in Materials Science, Vol 7, 1(11) (2007), 13-20
7. Czechowski M.: Low-cycle fatigue of friction stir welded Al-Mg alloys. Journal of Materials Processing Technology, 164-165 (2005), 1001-1006.
8. Dudzik K., Czechowski M.: Analysis of possible shipbuilding application of Friction Stir Welding (FSW) method to joining elements made of AlZn5Mg1 alloy, Polish Maritime Research, 4, 2009.
9. Sharma C., Dwivedi D. K., Kumar P.: Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of AA7039 aluminum alloy, Materials and Design, 36, 2012.
10. Squillace A., De Fenzo A., Giorleo G., Bellucci F.: A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints, Journal of Materials Processing Technology, 152, 2004.
11. Dudzik K., Charchalis A.: EIS Research of AW-7020 Alloy Joints Welded by FSW, Solid State Phenomena, Trans Tech Publications, Switzerland, Mechatronic Systems and Materials V, 2013.
12. Starosta R.: Corrosion of Ni-Al and Ni-Al-Al2O3 flame sprayed coatings of “Casto-Dyn 8000” system in 0.01 M H2SO4 and 3.5% NaCl solution. Solid State Phenomena vol. 183, 2012.
13. Trzaska M., Trzaska Z.: Electrochemical impedance spectroscopy in materials science in Polish, Warsaw University of Technology Publishing House, Warszawa 2010.
DOI :
Cytuj : Dudzik, K. ,Jurczak, W. , Influence of friction stir welding on corrosion properties of Aw-7020M alloy in sea water. Advances in Materials Science Vol.15, nr 1(43)/2015

Fabrication of composite polyurethane/hydroxyapatite scaffolds using solvent-casting salt leaching technique

Czasopismo : Advances in Materials Science
Tytuł artykułu : Fabrication of composite polyurethane/hydroxyapatite scaffolds using solvent-casting salt leaching technique

Autorzy :
Dudzik, K.
Gdynia Maritime University, Faculty of Marine Engineering, Marine Maintenance Department, Gdynia, Poland,
Jurczak, W.
Polish Naval Academy, Mechanical – Electrical Faculty, Gdynia, Poland, wjurczak@amw.gdynia.pl,
Wosek, J.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, wosekjoanna@gmail.com,
Abstrakty : Scaffolds are porous three-dimensional structures which are used to fill bone losses and make them possible to cells to grow. Many different structural and biological properties are required from them: porosity, mechanical strength and biocompability. The present research is aimed at development of composite polyurethane/hydroxyapatite scaffolds by using the solvent-casting salt leaching method. The SEM examinations were applied to assess the structure of obtained scaffolds.

Słowa kluczowe : rusztowania, poliuretan, hydroksyapatyt, odlewy rozpuszczalnikiem, ługowanie soli, scaffolds, polyurethane scaffolds, hydroxyapatite scaffolds, solvent-casting, salt leaching,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 1(43)
Strony : 14 – 20
Bibliografia : 1. Kaźnica A., Joachimiak R., Drewa T., Rawo T., Deszczyński J.: New trends in tissue engineering in Polish, Artroskopia i Chirurgia Stawów, 3 (2007), 11-16.
2. Bobe K., Willbold E., Morgenthal I., Andersen O.: Studnitzky T., Nellesen J., Tillmann W., Vogt C., Vano K. , Witte F., In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres, Acta Biomaterialia, 9 (2013), 8611-8623.
3. http://www.wisegeek.net/what-are-tissue-engineering-scaffolds.htm
4. http://www.karplab.net/papers/Karp_et_al___Scaffolds_for_Tissue_Engineering.pdf
5. X. Ma P.: Scaffolds for tissue fabrication, Materials Today, 2004, 30-40.
6. Liu C., Xia Z., Czernuszka J.T.: Design and development of three-dimensional scaffolds for tissue engineering, Review Paper, Chemical Engineering Research and Design, Institution of Chemical Engineers, vol. 85, no. A7 (2007), 1051-1064.
7. Ninp Z., Xiongbiao C.: Advances in Biomaterials Science and Biomedical Applications, Chapter 12: Biofabrication of Tissue Scaffolds”, ISBN 978-953-51-1051-4.
8. Zhou H., Lawrence J.G., Bhaduri S.B.: Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: A review, Acta Biomaterialia 8, (2012), 1999-2016. CrossRef
9. X. Ma P., Elisseeff J.: Scaffolding in Tissue Engineering, Taylor & Francis Group, 2006, ch. 8, 111-125.
10. Kools W.F.C.: Membrane formation by phase inversion in multicomponent polymer systems, mechanisms and morphologies, University of Twente, 1998, ISBN 90 365 10961, 2, 3,
11. Kulbe K.C., Feng C.Y., Matsuura T.: Synthetic Polymeric Membranes, chapter 2: Synthetic Membranes for membrane processes, Springer 2008, ISBN 978-3-540-73994-4, 7, 8.
12. Asefnejad A., Khorasani M.T., Behnamghader A., Farsadzadeh B.: Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay, International Journal of Nanomedicine, 2011, 2375-2384.
13. Yu L., Zhou L., Ding M., Li J., Tan H., Fu Q., He X.: Synthesis and characterization of novel biodegradable folate conjugated polyurethanes, Journal of Colloid and Interface Science, vol. 358 (2011), 376-383.
14. Yeganeh H., Lakouraj M.M., Jamashidi S.: Synthesis and properties of biodegradable elastomeric epoxy modified polyurethanes based on poly(e-caprolactone) and poly(ethylene glycol), European Polymer Journal 41, (2005), 2370-2379.
15. Zanetta M., Quirici N., Demarosi F., Tanzi M.C., Rimondini L., Fare S.: Ability of polyurethane foams to support cell proliferation and the differentiation of MSCs into osteoblasts, Acta Biomaterialia 5 (2009), 1126-1136.
16. http://www.applichem.com/fileadmin/datenblaetter/A1584_pl_PL.pdf
DOI :
Cytuj : Dudzik, K. ,Jurczak, W. ,Wosek, J. , Fabrication of composite polyurethane/hydroxyapatite scaffolds using solvent-casting salt leaching technique. Advances in Materials Science Vol.15, nr 1(43)/2015
[Top]

XPS analysis of AISI 304L stainless steel surface after electropolishing

Czasopismo : Advances in Materials Science
Tytuł artykułu : XPS analysis of AISI 304L stainless steel surface after electropolishing

Autorzy :
Dudzik, K.
Gdynia Maritime University, Faculty of Marine Engineering, Marine Maintenance Department, Gdynia, Poland,
Jurczak, W.
Polish Naval Academy, Mechanical – Electrical Faculty, Gdynia, Poland, wjurczak@amw.gdynia.pl,
Wosek, J.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, wosekjoanna@gmail.com,
Rokosz, K.
Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl,
Hryniewicz, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland,
Simon, F.
frsimon@ipfdd.de, frsimon@ipfdd.de,
Rzadkiewicz, S.
Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland,
Abstrakty : In the paper, the passive surface layers of AISI 304L after standard (EP50) and very-high-current density electropolishing (EP1000) in a mixture of orthophosphoric and sulfuric acids in a 1:4 ratio, are presented. The main finding of the presented studies is enrichment of the steel surface film in chromium: total chromium to total iron ratio was equal to 6.6 after EP50 and to 2.8 after EP1000; on the other hand, chromium compounds to iron compounds ratio was equal to 10.1 after EP50, and 3.9 after EP1000.

Słowa kluczowe : elektropolerowanie, XPS, AISI 304L SS, Cr, Fe, electropolishing, XPS, AISI 304L SS, Cr/Fe ratio,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 1(43)
Strony : 21 – 29
Bibliografia : 1. Hryniewicz T.: Physicochemical and technological basics of electrolytic polishing of steels in Polish, Monograph No 26, Publisher: Koszalin University of Technology, Koszalin 1989.
2. Rokosz K.: Electrochemical polishing of steels in the magnetic field in Polish, Monograph No 219, Publisher: Koszalin University of Technology, Koszalin 2012, ISSN 0239-7129.
3. Hryniewicz T., Rokosz K., Rokicki R., Electrochemical and XPS Studies of AISI 316L Stainless Steel after Electropolishing in a Magnetic Field, Corrosion Science, 50(9), 2008, 2676-2681.
4. Rokosz K., Hryniewicz T., XPS measurements of LDX 2101 duplex steel surface after magnetoelectropolishing, International Journal of Materials Research, 104(12), 2013, 1-10.
5. Rokosz K., Hryniewicz T., Raaen S., Cr/Fe ratio by XPS spectra of magnetoelectro-polished AISI 316L SS fitted by Gaussian-Lorentzian shape lines, Technical Gazette, 2014, 21(3), 533-538.
6. Hryniewicz T., Rokosz K., Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing, Materials Chemistry and Physics, 123, 2010, 47-55.
7. Rokicki R., US Patent No 7632390, http://www.patentgenius.com/patent/7632390.html
8. Hryniewicz T., Rokicki R., Rokosz K., Surface characterization of AISI 316L biomaterials obtained by electropolishing in a magnetic field, Surface & Coatings Technology, 202(9), 2008, 1668-1673.
9. Hryniewicz T., Rokicki R., Rokosz K., Corrosion Characteristics of Medical Grade AISI 316L Stainless Steel Surface after Electropolishing in a Magnetic Field, CORROSION (The Journal of Science and Engineering), Corrosion Science Section, 2008, 64(8), 660-665.
10. Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing for metal surface modification, Transactions of the Institute of Metal Finishing, 85(6), 2007, 325-332.
11. Hryniewicz T., K. Rokosz K., Highlights of magnetoelectropolishing, Frontiers in Materials: Corrosion Research, 2014, 1(3), 1-7 (Inaugural Article); DOI: 10.3389/fmats.2014.00003.
12. Hryniewicz T., K. Rokosz K., Rokicki R., Magnetic Fields for Electropolishing Improvement: Materials and Systems, International Letters of Chemistry, Physics and Astronomy, 4 2014, 98-108.
13. Hryniewicz T., Concept of microsmoothing in electropolishing process, Surface and Coatings Technology, 1994, 64(2), 75-80.
14. Biesinger M.C., Payne B.P. , Grosvenor A. P., Lau L. W. M., Gerson A. R., Smart R. St. C., Resolving surface chemical states in XPS analysis of first row transmission metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Applied Surface Science, 2011, 257, 2717-2730.
15. Herrera-Gomez A., The Peak-Shirley Background (Shirley background in overlapping peaks), Centro de Investigación y de Estudios Avanzados del IPN Unidad Querétaro, Internal Report Created 8/2011, Last Update 2/2012.
16. Fairley N., http://www.casaxps.com, © Casa software Ltd., 2005.
17. CasaXPS Processing Software, CasaXPS Manual 2.3.15 Rev 1.0, Copyright © 2010 Casa Software Ltd, 19-20.
18. Walton J., Carrick A., The Casa Cookbook-The CasaXPS User’s Manual, Part 1: Recipes for XPS data proceedings, 2009, ISBN: 9780954953300, Publisher: Acolyte Science.
DOI :
Cytuj : Dudzik, K. ,Jurczak, W. ,Wosek, J. ,Rokosz, K. ,Hryniewicz, T. ,Simon, F. ,Rzadkiewicz, S. , XPS analysis of AISI 304L stainless steel surface after electropolishing. Advances in Materials Science Vol.15, nr 1(43)/2015
[Top]

Project of hip joint endoprosthesis for an individual patient with materials selection

Czasopismo : Advances in Materials Science
Tytuł artykułu : Project of hip joint endoprosthesis for an individual patient with materials selection

Autorzy :
Dudzik, K.
Gdynia Maritime University, Faculty of Marine Engineering, Marine Maintenance Department, Gdynia, Poland,
Jurczak, W.
Polish Naval Academy, Mechanical – Electrical Faculty, Gdynia, Poland, wjurczak@amw.gdynia.pl,
Wosek, J.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, wosekjoanna@gmail.com,
Rokosz, K.
Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl,
Hryniewicz, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland,
Simon, F.
frsimon@ipfdd.de, frsimon@ipfdd.de,
Rzadkiewicz, S.
Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland,
Bartmański, M.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Świeczko-Żurek, B.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Abstrakty : Nowadays the joint replacement orthopaedic surgery is most frequently performed surgery associated with the damage of the join surface. The implantation is mainly placed in hip and knee area. This work includes the hip replacement design, based on the patient's medical records, the description of creation process and materials used for individual components.

Słowa kluczowe : wymiana stawu, endoproteza, biomateriały, joint replacement, endoprosthesis, biomaterials,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 1(43)
Strony : 30 – 36
Bibliografia : 1. Dorr L.D.: Alloplastic of hip joint. Elsevier Urban & Partner, Wroclaw 2006.
2. Płomiński J., Watral Z.: Testing the stability of the polyethylene acetabulum of an artificial hip joint in Polish, Diagnostyka, 3 (2006).
3. Kowalczyk E., Sobczyk K.: Examination of time's influence on mechanical properties of polyethylene hip cup endoprosthesis in Polish, Engineering of Biomaterials, 74 (2008), 11-15.
4. Li S.: Ultra high molecular weight polyethylene: from charney to cross linked, Operative techniques in Orthopedics, 11 (2001), 288 – 295.
5. Strzelec – Nowak D., Bogut A.: Microbiological diagnostics of the inflammation of hip joint implants, XXVII meeting of Polish Society of Microbiology in Lublin. 5-8 IX 2012.
6. Semenowicz J., Mroczka A., Kajzer A., Kajzer W., Koczy B., Marciniak J.: Total hip arthroplasty using cementlees Avantage cup in patients with risk of hip prosthesis instability. Orthopedic, Traumatology, Rehabilitation, 16 (3) (2014), 253-263.
7. Kubacki J.: Alloplastic of hip joints and rehabilitation. The Publishing house of Physical Training Academy. Katowice 2004.
8. John A., Duda M., Kokot G.: The influance of shape endoprosthesis on state of stress and strain of femur, Modelling in engineering ISSN 1896- 771X 44, Gliwice 2012, 117-124.
9. http://www.nfz.gov.pl/new/art/5432/2013_05_07_endoprotezy_2012_analiza.pdf 26.01.2013
10. Głuszko P.: Osteoporosis – prospects for future. Rheumatology, 49 (2011) 372-377.
11. Świeczko-Żurek B.: Biomaterials. The Publishing House of Technical University of Gdansk 2009.
12. Jurczyk M., Jakubowicz J.: Biomaterials. The Publishing House of Technical University of Poznan. Poznan 2008.
13. Niinomi M.: Fatigue characteristics of metallic biomaterials, International Journal of Fatigue, 29 (2007), 992-1000. Web of Science
14. Bauer S., Schmuki P., von der Mark K.: Engineering biocompatible implant surfaces Part I: Materials and surfaces, Progress in Materials Science, 58 (2013), 261-326.
15. Ryniewicz A.: The analysis of lubrication mechanism of a human hip joint, Monograph no. 111, AGH University of Science and Technology Press, Krakow 2002.
16. http://www.szpitalmsw.pl/mswia/cenniki/cennik_2014_01.pdf 20.12.2014
17. Hallab N.J., Merritt K., Jacobs J.J.: Metal sensitivity in patients with orthopedic implants. J. Bone Joint Surg. Am., 83-A (2001), 428-436.
18. Leszczyński P., Pawlak – Buś K.: Osteoarthritis – the epidemic of the 21th century, Contemporary Pharmacy, 1 (2008), 78-87.
19. Door L. D.: Hip Arthroplasty, Elsevier Urban and Partners, Wroclaw 2009.
20. Niezgodziński M. Niezgodziński T.: Strenght of Materials, Polish Scientific Publishers PWN, Warszawa 2009.
21. Szarek A.: The assessment of wear of metal heads in hip joint prosthesis removed from human body due to aseptic loosening in Polish, Inżynieria Biomateriałów, 74 (2008), 6-10.
22. Szewczenko J., Pochrząst M., Walke W.: Evaluation of electrochemical properties of modified Ti-6Al-4V ELI alloy, Electrical Review, 12b (2011), 178-181.
23. Kajzer A., Kajzer W., Semenowicz J., Mroczka A.: Corrosion resistance of hip endoprosthesis cups in the initial state and after implantation. Solid State Phenomena, 227 (2015) 523-526.
24. Przondziono J., Walke W., Hadasik E, Szymszal J.: The effect of strain hardening on resistance to electrochemical corrosion of wires for orthopedics. Technologies and Properties of Modern Utilised Materials. IOP Conference Series: Materials Science and Engineering, 35, 012015, 2012, 1-9.
25. Gierzyńska-Dolna M.: Biotribology and medical application, Tribology 4, 2003.
DOI :
Cytuj : Dudzik, K. ,Jurczak, W. ,Wosek, J. ,Rokosz, K. ,Hryniewicz, T. ,Simon, F. ,Rzadkiewicz, S. ,Bartmański, M. ,Świeczko-Żurek, B. , Project of hip joint endoprosthesis for an individual patient with materials selection. Advances in Materials Science Vol.15, nr 1(43)/2015
[Top]

Clay minerals – mineralogy and phenomenon of clay swelling in oil & sas industry

Czasopismo : Advances in Materials Science
Tytuł artykułu : Clay minerals – mineralogy and phenomenon of clay swelling in oil & sas industry

Autorzy :
Dudzik, K.
Gdynia Maritime University, Faculty of Marine Engineering, Marine Maintenance Department, Gdynia, Poland,
Jurczak, W.
Polish Naval Academy, Mechanical – Electrical Faculty, Gdynia, Poland, wjurczak@amw.gdynia.pl,
Wosek, J.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, wosekjoanna@gmail.com,
Rokosz, K.
Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl,
Hryniewicz, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland,
Simon, F.
frsimon@ipfdd.de, frsimon@ipfdd.de,
Rzadkiewicz, S.
Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland,
Bartmański, M.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Świeczko-Żurek, B.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Karpiński, B.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, bartekkarpi@gmail.com,
Szkodo, M.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Abstrakty : Among the minerals found in the earth's crust, clay minerals are of the widest interest. Due to the specific properties such as plasticity, absorbing and catalytic properties clay minerals are used in many industries (oil & gas, chemistry, pharmacy, refractory technology, ceramics etc.). In drilling, a phenomenon of swelling clays is frequently observed. It has an important impact on the cementing quality. During the last few decades clays have been the subject of research on a scale unprecedented in the history of mineralogy. This paper presents review literature on mineralogy of clay minerals and phenomenon of swelling in oil and gas industry. Unique ion exchange properties and clay swelling mechanisms are also considered.

Słowa kluczowe : minerały ilaste, ropa, gaz, wymiana jonowa, obrzęk, clay minerals, oil, gas, ion exchanging, swelling,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 1(43)
Strony : 37 – 55
Bibliografia : 1. Zvyagin B.B.: Materialy k klassifikatsii glinistykh mineralov (Data on the Classification of Clay Minerals), Izd. Akad. Nauk SSSR, Moscow, 1961.
2. Stoch L.: Minerały Ilaste, Wydawnictwo geologiczne, Warszawa, 1974, 12-17.
3. Henry C. H. Darley, George Robert Gray.: Composition and Properties of Drilling and Completion Fluids, Gulf Professional Publishing; 6 edition August 29, 2011.
4. Krzysiek J, UK Patent: GB 2446742A; 2012.
5. Civan, F., “Effect of Completion Damage on Well Performance,” Workshop 18: Contemporary Oil and Gas Well Completion and Work over Jobs, Petroleum Engineering Summer School, The Inter- University Center, Dubrovnik, Croatia, June 13-17, 2005.
6. Fink, J. K.: Petroleum Engineers Guide to Oil Field Chemicals and Fluids, Gulf Professional Publishing, May 2012 .
7. Durand, C., Onaisi, A., Audibert, A., Forsans, T., Ruffet, C.: Infuence of clays on bore-hole stability: A literature survey: Pt.1: Occurrence of drilling problems physico-chemicaldescription of clays and of their interaction with fuids. Rev. Inst. Franc. Pet. 50 (2), 1995, 187-218.
8. Zhou,Z.J.,Gunter,W.D.,Jonasson,R.G.: Controlling formation damage using clay stabilizers: A review. In: Proceedings Volume-2, no. CIM 95-71, 46th Annu. Cim. Petrol. Soc. Tech. Mtg.(Banff, Can, 5/14-17/95), 1995.
9. Van Oort, E.: Physico-chemical stabilization of shales, in: Proceedings Volume, SPE Oilfeld Chem. Int. Symp. (Houston, 2/18-21/97), 1997, 523-538.
10. Patel, A.D., Stamatakis, E., Davis, E.: Shale hydration inhibition agent and method of use, US Patent 6 247 543, assigned to M I Llc., June 19 2001.
11. Ohen, H.A. and Civan, F.: Simulation of Formation Damage in Petroleum Reservoirs, SPE Advanced Technology Series 1, 1993.
12. Amaefule, J. O., Kersey, D. G., Norman, D. L., and Shannon, P. M.: Advancesin Formation Damage Assessment and Control Strategies, CIM Paper No.88-39-65, Proceedings of the 39th Annual Technical Meeting of PetroleumSociety of CIM and Canadian Gas Processors Association, Calgary, Alberta, June 12-16, 1988.
13. Civan, Faruk; Mechanism of Clay Swelling from Reservoir Formation Damage – Fundamentals, Modeling, Assessment, and Mitigation; Elsevier; 2000.
14. K. Krishna Moha, Ravimadhav N. Vaidyab, Marion G. Reed and H. Scott Fogle,: Colloids and Surfaces A: Physicochemical and Engineering Aspects. Elsevier Science Publishers B.V., Amsterdam; 18 February 1993, 73 (1993) 231-254.
15. Gangopadhyay S.: Engineering Geology; Oxford University Press India, 2013
16. Wentworth C. K., A scale of grade and class terms of clastic sediments. J. Geol. 30, 377 – 392, 1922. CrossRef
17. Ruhin L. B.: Osnovy Litologii, YoYo Media 1961.
18. Pettijohn F. J., Sedimentary rocks. Harper, New York 1957.
19. Harrison, R.M., Understanding Our Environment – An Introduction to Environmental Chemistry and Pollution (3rd Edition), Royal Society of Chemistry, 1999.
20. Grim, R.E., Clay Mineralogy, McGraw Hill Book Co., New York 1953.
21. Grim, R.E., Applied Clay Mineralogy, McGraw Hill, New York 1962.
22. Marshall, C.E., The Colloid Chemistry of Silicate Minerals, Academic Press, New York 1949.
23. Weaver, C.E., Pollard, L.D., The Chemistry of Clay Minerals, Elsevier Scientific Publ. Co., New York 1973.
24. Serra, O.: Well Logging and Reservoir Evaluation, Editions Technip ,Volume 3, Paris, France, 2007.
25. Grim, R.E,: Clay Mineralogy, International Series in the Earth and Planetary Sciences. F. Press, ed. New York: McGraw-Hill Book Company, 1968
26. Hendricks, S.B., Jefferson, M.E., 1938. Structure of kaolin and talc – pyrophyllite hydrate sand their bearing on water sorption of the clays. Am. Mineral. 23,863-875.
27. MC Murchy R.C.: Structure of chlorites. Proc Leeds Phil. Lit. Soc. Sect. 5, 1934, 102-108.
28. Hughes, R. V.: The Application of Modern Clay Concepts to Oil Field Development, in Drilling and Production Practice 1950, American Petroleum Institute, New York, NY, 1951, 151-167
29. Grim, R. E.: Modern Concepts of Clay Minerals, Jour. Geology, Vol. 50, No. 3, April-May 1942, 225-275.
30. Degens, E. T.: Geochemistry of Sediments, Prentice-Hall, Englewood Cliffs, N.J., 1965.
31. Ezzat, A. M., “Completion Fluids Design Criteria and Current Technology Weak-nesses,” SPE 19434 paper, the SPE Formation Damage Control Symposium held in Lafayette, Louisiana, February 22-23, 1990, 255-266
32. Mancini, E. A., “Characterization of Sandstone Heterogeneity in CarboniferousReservoirs for Increased Recovery of Oil and Gas from Foreland Basins,”Contract No. FG07-90BC14448, in EORDOE/ BC-90/4 Progress Review,64, 79-83, U.S. Department of Energy, Bartlesville, Oklahoma, May 1991,129pp.
33. Stadler P.J.: Influence of crystallographic habit and aggregate structure of authigenic clay minerals on sandstone permeability, Geologic Mijnbouw 53, 1973, 217-220.
34. Sommer F. (1975). Histoire diagtn&ique d'une strie grtseuse de Mer du Nord. Datation de l'introduction des hydrocarbures. Revue lnst. fr. Pdtrole 30, 729-740.
35. Hancock N.J. & Taylor A.M.: Clay mineral diagenesis and oil migration in the Middle Jurassic Brent Sand Formation, J. Geol. Soc. Lond. 135, 1978, 69-72.
36. Goven N., Howe W.F. & Davms D.K.: Nature of authigenic illites in sandstone reservoirs, J. Sedim.Petrol. 50, 1980, p. 761-766.
37. Tovey, N.K.: A selection of scanning electron micrographs of clays, University of Cambridge, Department of Engineering, 1971.
38. Patel, A.D., Stamatakis, E., Davis, E., Friedheim, J.: High performance water based drillingfuids and method of use, US Patent 7 250 390, assigned to M-I L.L.C. (Houston, TX), 31 July 2007.
39. Blachier, C., Michot, L., Bihannic, I., Barr`es, O., Jacquet, A., Mosquet, M.: Adsorption ofpolyamine on clay minerals. J. Colloid Interface Sci. 336 (2), 2009, 599-606.
40. Mehlich, A., 1948, Determination of cation- and anion-exchange properties of soils, Soil Sci. 66, 429-445.
41. Alexiades C., Jackson M. L.: Quantitative determination of vermiculite in soils, Soil Sci. Soc. Amer. Proc. 29, 1965, 522-27
42. Kloppenburg, S., 1997, Kolloidchemische Steuerung der Porosität aggregierter Tonminerale, Dissertation, Universität Kiel.
43. Eslinger, E., Pevear, D, 1988. Clay Minerals for Petroleum Geologists and Engineers. SEPM Short Course Notes No. 22, Society of Economic Paleontologists and Mineralogists, Tulsa 1988.
44. Zhou, Z., “Construction and Application of Clay-Swelling Diagrams by Use of XRD Methods,” JPT, April 1995, 306.
45. Mohan, K. K., and Fogler, H. S., “Colloidally Induced Smecticic Fines Migration: Existance of Microquakes,” AIChE Journal, 43(3), March 1997, 565-576. CrossRef
46. Norrish, K.,1954.Theswellingofmontmorillonite.Discuss.FaradaySoc.18, 120-134.
47. Collins, E. R.: Flow of Fluids Through Porous Materials, Penn Well Publishing Co., Tulsa, Oklahoma, 1961.
48. Nayak, N. V., Christensen, R. W., Swelling Characteristics of Compacted Expansive Soils, Vol. 19, No. 4, December 1970, 251-261.
49. Chang, F. F. and Civan, F.: Practical Model for Chemically Induced Formation Damage, Journal of Petroleum Science and Engineering, 17(1/2), February 1997, 123-137.
50. Seed, H. B., Woodward, Jr, R. J., and Lundgren, R., “Prediction of Swelling Potential for Compacted Clays,” Journal of Soil Mechanics and Foundation Engineering Division, Proceedings of the American Society of Civil Engineers, 88(SM3), June 1962b, 53-87.
51. Manohar Lal,; Shale Stability: Drilling Fluid Interaction and Shale Strength, Society of Petroleum Engineers Inc, BP Amoco, 1999
52. Beihoffer, T.W., Dorrough, D.S., Schmidt, D.D.: The separation of electrolyte from rheological effects in studies of inhibition of shales with native moisture contents, SPE Paper 18032. IADC/SPE Drilling Conference, Houston, 1988, 2-5 October.
53. Bol, G.M., Wong, S.W., Davidson, C.J., Woodland, D.C.: Borehole stability in shales. Paper SPE24975. SPE European Petroleum Conference, Cannes, 1992, Nov. 16-18.
54. van Oort, E., 2003. On the physical and chemical stability of shales. J. Petr. Sci. Eng. 38, 213-235.
55. Jaber Taheri Shakib, Hossein Jalalifar and Ebrahim Akhgarian,; Wellbore Stability in Shale Formation Using Analytical and Numerical Simulation, Journal of Chemical and Petroleum Engineering, University of Tehran, Vol. 47, No.1, Jun.2013, 51-60
56. Doleschall, S., Milley, G., Paal, T., 1987. Control of clays in fuid reservoirs. In: Proceedings Volume, 4th BASF AG et al Enhanced Oil Recovery Europe Symp. (Hamburg, Ger, 10/27-29/87), 803-812.
57. Ballard, T., Beare, S., Lawless, T., 1993. Mechanisms of shale inhibition with water based muds. In:Proceedings Volume, IBC Tech. Serv. Ltd Prev. Oil Discharge from Drilling Oper. The OptionsConf. (Aberdeen, Scot, 6/23-24/93).
58. Pinnavma T.J.: Intercalated clay catalysts. Science, 220, 1983, 365-371.
59. Diddams P.A., Thomas J.T., Jones W., Baelantine J.A. & Purnell J.H.: Synthesis, characterization, and catalytic activity of beidellite-montmorillonite layered silicas and their pillared analogues, J. Chem. Soc., Chem. Commun. 20, 1984, 1340-1342.
60. Kitutchi E., Maxsuoa T., Ueda I. & Morita Y.: Conversion of trimethylbenzenes over montmorillonites pillared by aluminium and zirconium oxides. Appl. Cat. 16, 1985, 401-410.
61. Zyla M. & Bandosz T.: Montmorillonite from Milowice intercalated with hydroxyl-aluminium oligocations as vapour and gas adsorbent, Min. Polon. 18, 1987, 39-50.
62. Peter A., Ciullo R.T.: Industrial Minerals and their uses A Handbook & Formulary, Noyes Publication, United States, 1996.
63. Brindley G.W., Sempels R.E.: Preparation and properties of some hydroxyl aluminium beidellites, Clay Miner. 12, 1977, 229-236.
DOI :
Cytuj : Dudzik, K. ,Jurczak, W. ,Wosek, J. ,Rokosz, K. ,Hryniewicz, T. ,Simon, F. ,Rzadkiewicz, S. ,Bartmański, M. ,Świeczko-Żurek, B. ,Karpiński, B. ,Szkodo, M. , Clay minerals – mineralogy and phenomenon of clay swelling in oil & sas industry. Advances in Materials Science Vol.15, nr 1(43)/2015
[Top]

Case study and failure analysis of a total hip stem fracture

Czasopismo : Advances in Materials Science
Tytuł artykułu : Case study and failure analysis of a total hip stem fracture

Autorzy :
Mierzejewska, Ż. A.
Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Biomedical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland, a.mierzejewska@doktoranci.pb.edu.pl,
Abstrakty : A total hip replacement is a procedure that requires removal of the affected joint lesions and replacing it with artificial elements. Nevertheless, like any invasive surgery, it is associated with the risk of complications, including joint infection, fracture of the bone during and after surgery, scarring and limitation of motion of the hip, and loosening of the prosthesis. In this work we present and describe the results of its investigations. In order to determine the mechanism of failure, a broken stem components were analyzed by means of macroscopic and microscopic observations and hardness measurements. The hardness, microstructure and chemical composition of the broken part of the hip stem were analyzed. Microscopic examination revealed numerous defects in material. Among them are pores and emptiness, located on the outskirts of the tested samples and a plurality of micro-cracking, debonding and delamination of the material due to the overloading of a fatigue character. There were no changes caused by intergranular corrosion or pitting, which may indicate for an even distribution of the major alloying components such as chromium and nickel. Observations of the material by using scanning electron microscopy (SEM), clearly proved that the destruction was caused by material fatigue. The investigation showed that the crack had originated due to a high stress concentration on the lateral corner section of the stem. Large surface of the fatigue crack zone area indicated for small stresses and small crack propagation velocities. There was a clear correlation between the grain size of the steel hardness. The results of hardness test revealed a significant increase hardness of stem in relation to the normative values. In addition, the measured average grain size is less than the standard accepted. Using Solid Works simulation and FEM a model of the stem was created and analyzed in terms of strength and rated the distribution of the generated stress. The finite-element analysis confirmed that there is the highest stress concentration in the middle of the stem.

Słowa kluczowe : hip replacement, isolated fracture, fatigue fracture,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 2(44)
Strony : 5 – 13
Bibliografia : 1. Gandhi R., Davey J.R., Mahomed N.: Patient expectations predict greater pain relief with joint arthroplasty. J. Arthroplasty, 24(5) (2009), 716-21.
2. Nunley R. M., Ruh E. L., Zhang Q., Della Valle C. J., Engh C. A,. Berend M. E, Parvizi J., Clohisy J. C., And Barrack R. L.: Do patients return to work after hip arthroplasty surgery. J. Arthroplasty, 26 (6 Suppl) (2011), 92-98.
3. Kamachi M. U., Sridhar T.M., Eliaz N., Baldev R.A.J.: Failures of stainless steel orthopaedic devices: causes and remedies. Corros Rev., 21 (2003), 231-67.
4. Martens M., Aernoudt E., De Meester P., Ducheyne P., Muller J.C., Delangh R., Kestelijn P.: Factors in the mechanical failure of the femoral component in total hip prosthesis. Acta Orthop Scandinavica, 45(5) (1974), 693-710.
5. Kotela A., Ambroziak P., Deszczyński M.J.: Złamanie trzpienia endoprotezy stawu biodrowego – opis przypadku. Ostry Dyżur, 5, 1-2 (2012).
6. Carlsson A. S., Gentz C. F., Stenport J.: Fracture of the femoral prosthesis in total hip replacement according to charnley. Acta Orthop Scand., 48(6) (1977), 650-5.
7. Wróblewski B.M.: Fractured stem in total hip replacement – a clinical review of 120 cases. Acta Orthop Scand., 53(2) (1982), 279-84.
8. Akinola B., Mahmud T., Deroeck N.: Fracture of an exeter stem – a case report. The Internet Journal of Orthopedic Surgery, 16, 1 (2009).
9. Jarvi K., Kerry R.M.: Case report segmental stem fracture of a cemented femoral prosthesis. The Journal of Arthroplasty, 22 (2007).
10. Roffey P.: Case study: Failure of a high nitrogen stainless steel femoral stem. Engineering Failure Analysis, 20 (2012).
11. Sen R.K., Mootha A.K., Saini R., Kumar V.: Segmental fracture of a cemented femoral stem – a case report and review of literature. The Internet Journal of Orthopedic Surgery, 13, 1 (2009).
12. Speidel M.O.: Nitrogen containing austenitic stainless steels. Materialwissenschaft Und Werkstofftechnik, 37, 10 (2006).
13. Cieśla M., Ducki K.J.: Effect of increased nitrogen content on the structure and properties of tool steels. Journal of Achievements in Materials and Manufacturing Engineering, 29 (2008).
14. Ducki K.J., Cieśla M., Hetmańczyk M., Kuc D., Kamiński P.: The influence of increased nitrogen contents on structure and selected properties of tool steels. Proceedings of the 7th Scientific Conference “New Production Technology and Materials in Metallurgy and Materials Engineering”, Katowice (2000), 123-128 (In Polish).
15. Standard specification for wrought nitrogen strengthened 21 chromium-10 nickel- 3 manganese-2.5 molybdenum stainless steel alloy bar for surgical implants, American Society For Testing and Materials, West Conshohocken, Pa, ASTM F1586.
16. Murty B.S., Shankar P., Baldev R., Rath B.B., Murday J.: Texstbook of Nanoscience and Nanotechnology, Springer (2013), 55 – 66.
17. Standard specification for stainless steel forgings for surgical implants, American Society For Testing And Materials, West Conshohocken, Pa, ASTM F621-12.
DOI :
Cytuj : Mierzejewska, Ż. A. , Case study and failure analysis of a total hip stem fracture. Advances in Materials Science Vol.15, nr 2(44)/2015
[Top]

The kinetics of scale growth on Ti-25Al-12.5Nb alloy suring high temperature oxidation in 9%O2+0.2%HCl+0.08%SO2+N2 atmosphere

Czasopismo : Advances in Materials Science
Tytuł artykułu : The kinetics of scale growth on Ti-25Al-12.5Nb alloy suring high temperature oxidation in 9%O2+0.2%HCl+0.08%SO2+N2 atmosphere

Autorzy :
Mierzejewska, Ż. A.
Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Biomedical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland, a.mierzejewska@doktoranci.pb.edu.pl,
Małecka, J.
Opole University of Technology, Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Poland, j.malecka@po.opole.pl,
Abstrakty : The paper presents research results of isothermal oxidation of Ti-25Al-12.5Nb alloy. Oxidation was carried out in 9%O2+0,2%HCl+0,08%SO2+N2atmosphere at the temperature of 700 and 750ºC.

Słowa kluczowe : high temperature corrosion, oxidation, sulphidation,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 2(44)
Strony : 14 – 21
Bibliografia : 1. Shemet V., Tyagi A.K., Becker J.S., Lersch P., Singheiser L., Quadakkers W.J.: The formation of protective alumina-based scales during high-temperature air oxidation of γ -TiAl alloys. Oxidation of Metals, 54 (2000), 211-235.
2. Shen Y., Ding X., Wang F.: High temperature oxidation behaviour of Ti-Al-Nb ternary alloys. Journal of Materials Science, 39 (2004), 6583-6589.
3. Małecka J., Grzesik W., Hernas A.: An investigation on oxidation wear mechanisms of Ti-46Al-7Nb-0.7Cr-0.1Si-0.2Ni. Corrosion Science, 52 (2010), 263-272.
4. Chang S.Y.: The isothermal and cyclic oxidation behavior of a titanium aluminide alloy at elevated temperature. Journal of Materials Engineering and Performance, 16 (2007), 508-514.
5. Godlewska E., Mitoraj M., Leszczynska K.: Hot corrosion of Ti-46Al-8Ta (at.%) intermetallic alloy. Corrosion Science, 78 (2014), 63-70.
6. Banerjee D., Gogia A.K., Nandy T.K., Joshi V.A.: A new ordered orthorhombic phase in a Ti3Al2Nb alloy. Acta Metallurgica, A36 (1988), 871-882.
7. Becker S., Rahmel A., Schorr M, Schütze M.: Mechanism of isothermal oxidation of the intermetallic TiAl and of TiAl alloys. Oxidation of Metals, 5/6 (1992), 425-464.
8. Mrowec S., Werber T.: Gaseous corrosion, Publishing house “Silesia”, Katowice, 1965 (in Polish).
9. Hernas A., Dobrzański J.: Durability and destruction of the elements of boilers and turbines, Silesian University of Gliwice 2003 (in Polish).
10. Małecka J.: Investigation of the oxidation behavior of orthorhombic Ti2AlNb alloy, Journal of Materials Engineering and Performance, 10.1007/s11665-015-1449-6
DOI :
Cytuj : Mierzejewska, Ż. A. ,Małecka, J. , The kinetics of scale growth on Ti-25Al-12.5Nb alloy suring high temperature oxidation in 9%O2+0.2%HCl+0.08%SO2+N2 atmosphere. Advances in Materials Science Vol.15, nr 2(44)/2015
[Top]

Experimental verification of the concrete shrinkage strains course according to En 1992-2 standard

Czasopismo : Advances in Materials Science
Tytuł artykułu : Experimental verification of the concrete shrinkage strains course according to En 1992-2 standard

Autorzy :
Mierzejewska, Ż. A.
Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Biomedical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland, a.mierzejewska@doktoranci.pb.edu.pl,
Małecka, J.
Opole University of Technology, Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Poland, j.malecka@po.opole.pl,
Raczkiewicz, W.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Strength of Materials and Concrete Structures, 25-314 Kielce, Poland, wiolar@tu.kielce..pl,
Bacharz, M.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Strength of Materials and Concrete Structures, 25-314 Kielce, Poland,
Bacharz, K.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Strength of Materials and Concrete Structures, 25-314 Kielce, Poland,
Abstrakty : The article provides basic information about the shrinkage of concrete and discusses the major impact on the size and course of the shrinkage. There are the guidelines to estimate the shrinkage strain of concrete bridge structures for the high tensile strength-SCI in accordance with PN-EN 1992-2. The article presents the results of experimental studies which aim was to analyze the course of shrinkage in two types of specimens made of different composition mixes. The studies have also made possible to verify the actual size of the shrinkage strain and designated ones on the basis of the PN-EN 1992-2.

Słowa kluczowe : shrinkage, concrete, PN-EN 1992-2, experimental studies, eurocode standards,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 2(44)
Strony : 22 – 29
Bibliografia : 1. Jamroży Z.: Concrete and its technologies, (in Polish). PWN, Warszawa, 2009.
2. Kurdowski W.: Chemistry of cement and concrete, (in Polish). Polski Cement, Kraków, 2010.
3. Neville A. M.: Properties of concrete (in Polish). Polski Cement, Kraków, 2000.
4. Mértola H.C., Rizkalla S.H., Zia P., Mirmiran A.: Creep and shrinkage behaviour of highstrength concrete and minimum reinforcement ratio for bridge columns. PCI Journal 55 (2010), 138-154.
5. Flaga K.: The shrinkage of concrete and its effect on the load-bearing capacity, serviceability and durability of reinforced concrete structures and prestressed structures, (in Polish). Monograph, Zeszyty Naukowe Politechniki Krakowskiej, 73 Kraków 2002.
6. Flaga K.: Shrinkrage stress and subsurface reinforcement in concrete structures, (in Polish), Monograph 391, Seria Inżynieria Lądowa, Wydawnictwo Politechniki Krakowskiej, Kraków, 2011.
7. Raczkiewicz W.: Shrinkage of concrete – qualities important for the design of concrete structures, (in Polish). Przegląd Budowlany 2 (2012), 43-46.
8. Piasta W., Sikora H.: Self deformation of aerated concrete, (in Polish). Przegląd Budowlany 4 (2009), 28-31.
9. Barr B., Heseinian S.B., Beygi M.A.: Shrinkage of concrete stored in natural environments. Cement and Concrete Composites 25 (2003), 19-29.
10. Domagała L.: Contraction and expansion of lightweight aggregate concrete modified with fibers, (in Polish). Budownictwo, 105 (2008), 21-40.
11. Sikora H., Piasta W.: Rheology aerated concrete and cement with mineral additives, (in Polish). Budownictwo i Inżynieria Środowiska 3 (2012), 141-146.
12. Flaga K.: Anticontraction reinforcement, calculations, recommendations for building engineering, (in Polish). Proc. Conf. XVII Ogólnopolska Konferencja Warsztat Pracy Projektanta Konstrukcji, Ustroń 2002, 1-43.
13. Kossakowski P., Raczkiewicz W.: Comparative analysis of measured and predicted shrinkage strain in concrete. Advances in Materials Science, Vol. 14, No 2 (40), June 2014, 5-13.
14. Kossakowski P., Raczkiewicz W.: Estimating shrinkage deformation in concrete bridge structures in terms of the Eurocodes, (in Polish). Mosty, 4 (2013), 28-30.
15. PN-EN 1992-1-1:2008 Eurokod 2:. Design of concrete structures – Part 1-1: General rules and rules for buildings.
16. PN-EN 1992-2:2010 Eurokod 2: Design of concrete structures – Part 2: Concrete bridges – Design and detailing rules.
17. PN-EN 206-1:2003 Concrete – Part 1: Specification, performance, production and conformity.
18. PN-EN 12390-3:2011 Concrete Tests – Part 3: The compressive strength of test samples.
19. ITB Instruction No 194/98: Study of mechanical properties of concrete on samples taken in the forms, (in Polish). Instytut Techniki Budowlanej, Warszawa 1998.
DOI :
Cytuj : Mierzejewska, Ż. A. ,Małecka, J. ,Raczkiewicz, W. ,Bacharz, M. ,Bacharz, K. , Experimental verification of the concrete shrinkage strains course according to En 1992-2 standard. Advances in Materials Science Vol.15, nr 2(44)/2015
[Top]

Impact behaviour of glass fribre /epoxy composites with nano-enhanced resin after water exposure

Czasopismo : Advances in Materials Science
Tytuł artykułu : Impact behaviour of glass fribre /epoxy composites with nano-enhanced resin after water exposure

Autorzy :
Mierzejewska, Ż. A.
Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Biomedical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland, a.mierzejewska@doktoranci.pb.edu.pl,
Małecka, J.
Opole University of Technology, Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Poland, j.malecka@po.opole.pl,
Raczkiewicz, W.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Strength of Materials and Concrete Structures, 25-314 Kielce, Poland, wiolar@tu.kielce..pl,
Bacharz, M.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Strength of Materials and Concrete Structures, 25-314 Kielce, Poland,
Bacharz, K.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Strength of Materials and Concrete Structures, 25-314 Kielce, Poland,
Landowski, M.
Gdańsk University of Technology, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, mlandowski@gmail.com,
Imielińska, K.
University of Technology, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Abstrakty : Impact behaviour of glass fibre /epoxy composites with nano- SiO2 modified resin was studied in terms of low velocity impact after water exposure. Nanocomposites with 1%, 2%, 3% 5% 7% nano-SiO2 (Nanopox- Evonic) were investigated. Peak impact load and impact damage area as a function of nanoparticle contents were compared for dry specimens and for samples exposed to water (0.7 %wt. 1.7% water absorbed) at 1J, 2J 3J impact energies. For unmodified composite peak force was higher than for 3% modified specimens and higher for dry specimens than those exposed to water. Impact damage areas were plotted as a function of water contents for modified and unmodified samples. Failure modes were illustrated using SEM micrographs. Numeropus matrix cracks were the dominating failure mode in dry speciemens both unmodified and the modified. Fibre fracture was observed at 3J impact energy in all dry unmodified samples, however water exposure prevented early fibre fracture in nanocomposites. The proposed energy absorption mechanism is nanoparticles debonding.

Słowa kluczowe : polymer composites, nanocomposites, low-velocity impact,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 2(44)
Strony : 30 – 35
Bibliografia : 1. Reis P.N.B., Ferreira J.A.M., Zhang Z.Y., Benameur T., Richardson M.O.W.: Impact strength of composites with nano-enhanced resin after fire exposure. Composites: Part B, 56 (2014), 290-295.
2. Saber-Samandaris S., Khatibi A.A., Basic D.: An experimental study on clay/epoxy nanocomposites produced in a centrifuge: Composites Part B, 38(1), (2007),102-7.
3. Hosur M.V., Chowdhury F., Jeelani S.: Low velocity impact response and ultrasonic NDE of woven carbon/epoxy – nanoclay nanocompositres. Journal of Composite Materials, 41 (2007), 2195-212.
4. Evonik Industries – Specialty Chemicals. Evonik. http://corporate.evonik.com/ Online access: 20.01.2014.
5. Zeng Y., Liu H.Y., Mai Y.W., Du X.S.: Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles. Composites Part B: Engineering, 43(1) (2012), 90-94.
6. Imielińska K., Guillaumat L.: The effect of water immersion ageing on low- velocity impact behaviour of woven aramid-glass fibre/epoxy composites. Composites Science and Technology, 64 (2004), 2271-2278.
7. Landowski M., Budzik M., Imielińska K.: Water absorption and blistering of glass fibrereinforced polymer marine laminates with nanoparticle-modified coatings. Journal of Composite Materials, 48(23) (2014), 2805-2813.
DOI :
Cytuj : Mierzejewska, Ż. A. ,Małecka, J. ,Raczkiewicz, W. ,Bacharz, M. ,Bacharz, K. ,Landowski, M. ,Imielińska, K. , Impact behaviour of glass fribre /epoxy composites with nano-enhanced resin after water exposure. Advances in Materials Science Vol.15, nr 2(44)/2015
[Top]

Selective laser sintering – binding mechanism and assistance in medical applications

Czasopismo : Advances in Materials Science
Tytuł artykułu : Selective laser sintering – binding mechanism and assistance in medical applications

Autorzy :
Mierzejewska, Ż. A.
Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Biomedical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland, a.mierzejewska@doktoranci.pb.edu.pl,
Markowicz, W.
Vilnius Gediminas Technical University, Faculty of Mechanical Engineering, Department of Materials Science and Welding, ul. Basanaviciaus 28, 03224 Vilnius, Lithuania, vladislav.markovic@vgtu.lt,
Abstrakty : Rapid prototyping technology (RP), based on designing and computer aided manufacturing, is widely used in traditional branches of industry. Due to its ability to accurately and precisely manufacture designed elements of various dimensions and complicated geometry, this technology is more and more frequently applied in the field of biomedical engineering. Selective laser sintering (SLS) is a universal RP technique, utilizing a laser beam to sinter powdered materials and create three-dimensional objects. Data for producing parts for tissue replacement come from medical imaging capabilities and digital presentation of test results. This paper presents the following: general classification of RP methods, the concept and methodology of performing laser sintering, sintering mechanisms, and the application of elements manufactured using this technology in biomedical engineering, particularly for the production of scaffolds used in tissue cultures, skeletal and dental prostheses in dental implantation, manufacturing of custom-made implants that are individually adjusted to the patient, and for production of training models on which a team of surgeons can train a surgical technique.

Słowa kluczowe : laser sintering, sintering process, powder metallurgy, applications in biomedical engineering,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 3(45)
Strony : 5 – 16
Bibliografia : 1. Levy G.N., Schindel R., Kruth J.P.: Rapid manufacturing and rapid tooling with layer manufacturing technologies: state of the art and future perspectives, CIRP Annals (2003), 52(2): 589-609. CrossRef
2. Miecielica M.: Analysis of selected methods for rapid prototyping, (in Polish), PW IIPiB (2007), Warsaw.
3. Ruszaj A.: Unconventional methods of fabrication machines and tools, (in Polish), IOS (1999), Krakow.
4. Kruth J.P., Leu M. C., Nakagawa T.:Progress in additive manufacturing and rapid prototyping, CIRP Annals(1998), 47(2): 525-540. CrossRef
5. Gibson I., Rosen D. W., Stucker B.: Additive Manufacturing Technologies. Rapid Prototyping to Direct Digital Manufacturing, Springer (2010), New York.
6. Cooper K.: Rapid prototyping technology – selection and application, Marcel Dekker (2001), New York.
7. Bourell D.L., Beaman J.J.: Materials issues in rapid prototyping, Proc. VRAP, Leiria (2005): 305-310.
8. Hudak R., Šarik M., Dadej R., Živčák J., Harachová D.: Material And Thermal Analysis Of Laser Sinterted Products, Acta Mechanica Et Automatica(2013), 7(1):115-19. CrossRef
9. Kumar S.: Selective Laser Sintering: A Qualitative and Objective Approach, JOM, Springer-Verlag (2003), 55(10): 43-47. CrossRef
10. Bourell D.L., Marcus H.L., Barlow J.W., Beaman J.J. (1992), Selective laser sintering of metals and ceramics, Int. J. Powder Metallurgy, 28 (4): 369-381.
11. Simchi A., Pohl H.:Effects of laser sintering processing parameters on the microstructure and densification of iron powder, Materials Science & Engineering: A, Elsevier (2003), 359:119-128.
12. Fischer P., Romano V., Weber H.P., Karapatis N. P., Boillat E., Glardon R.: Sintering of commercially pure titanium powder with a Nd:YAG laser source, Acta Materialia (2003), 51:1651-1662. CrossRef
13. Ghanekar A., Crawford R.: Optimization of SLS Process Parameters using D-Optimality, Douglas Watson National Instruments Inc, Austin, TX (1992): 348-362.
14. Kruth J.P., Wang X., Laoui T., Froyen L.: Lasers and materials in selective laser sintering, Assembly Automation (2003), 23(4): 357-371. CrossRef
15. Laoui T., Wang X., Childs T.H.C., Kruth J.P., Froyen L.: Laser penetration in a powder bed during selective laser sintering of metal powders: simulations versus experiments, Proc. SFF Symp., Austin (2000): 7-9.
16. Bagaria V., Rasalkar D., Bagaria S. J., Ilyas J.: Medical Applications of Rapid Prototyping – A New Horizon, Advanced Applications of Rapid Prototyping Technology in Modern Engineering, 1st ed., In Tech 2011:1-21.
17. Kruth J.P., Levy G., Klocke F., Childs T.H.C.: Consolidation phenomena in laser and powder-bed based layered manufacturing, Annals of the CIRP (2010), 56(2): 730-759
18. Das S.: Physical aspects of process control in selective laser sintering of metals, Advanced Engineering Materials (2003), 5: 701-711. CrossRef
19. Childs T.H.C., Hauser C., Badrossamay M.: Selective laser sintering (melting) of stainless and tool steel powders: experiments and modeling, Proc. IMechE part B, J. Engineering Manufacture (2005), 219: 339-357.
20. Dimov S., Pham D.T., et al.: Rapid tooling applications of the selective laser sintering process, Assembly Automation (2001), 21(4): 296-302. CrossRef
21. Senthilkumaran K., Pandey P. M., Rao P. V. M.: Influence of building strategies on the accuracy of parts in selective laser sintering, Materials and Design (2009), 30: 2946-2954.
22. Lu L., Fuh J. Y. H., Wong Y. S.: Laser-induced materials and processes for rapid prototyping, Springer Science & Business Media (2010): 89-142.
23. Wang X. C., Laoui T., Bonse J., Kruth J. P., Lauwers B., Froyen L.: Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation, The Internation Journal of Advanced Manufacturing Technology (2002), 19: 351-357.
24. Kruth J.P., Mercelis P., Van Vaerenbergh J., Froyen L., Rombouts M.: Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping J. (2005), 55(1): 26-36. Web of Science CrossRef
25. Kruth J. P., Mercelis P., Froyen L., Rombouts M.: Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting, Rapid prototyping journal (2005),11 (1): 26-36. Web of Science CrossRef
26. Dobrzański L. A.: Introduction to Materials Science, (in Polish), Silesian University of Technology (2007), Gliwice.
27. Bednarczyk I., Lesz S., Puchała M., Szczucka – Lasota B., Warchoł A.: Nauka o materiałach i mechanika, Wyższa Szkoła Zarządzania Ochroną Pracy (2010), Katowice.
28. Szucki T.: Inżynieria Materiałowa: materiałoznawstwo, Oficyna Wydawnicza Politechniki Warszawskiej(1999), Warszawa.
29. Storch S., Nellessen D., Schaefer G., Reiter R.:Selective laser sintering: qualifying analysis of metal based powder systems for automotive applications, Rapid Prototyping Journal (2003), 9: 240-252. CrossRef
30. Kruth J.P., Froyen L., Van Vaerenbergh J., Mercelis P., Rombouts M., Lauwers B.: Selective laser melting of iron based powder, J. Materials Processing Technology(2004), 149(1-3): 616 – 622.
31. German R.M.:Sintering Theory and Practice, John Wiley and Sons (1996), New York.
32. Gibson I., Cheung L.K.., Chow S.P., Cheung W.L., Beh S.L., Savalani M., Lee S.H.: The use of rapid prototyping to assist medical applications, Rapid Prototyping Journal (2006), 12(1): 53 – 58. CrossRef
33. Kruth J.P., Van der Scheuren B., Bonse J.E., Morren B.:Basic powder metallurgical aspects in selective metal powder sintering, CIRP Annals (1996), 45(1): 183-186. CrossRef
34. Gusarov A.V.: Mechanisms of selective laser sintering and heat transfert in Ti powder, Rapid Prototyping J. (2003), 9(5): 314-326. CrossRef Web of Science
35. Gibson I., Shi D.: Material properties and fabrication parameters in selective laser sintering process, Rapid Prototyping Journal (1997), 3(4):129-136. CrossRef
36. Kruth J.P., Vandenbroucke B., Van Vaerenbergh J., Naert I.: Digital manufacturing of biocompatible metal frameworks for complex dental prostheses by means of SLS/SLM, Proc. VRAP, Leiria(2005): 139-146.
37. Vail N.K., Swain D., Fox W.C., Aufdemorte T.B., Lee G., Barlow J.W.: Materials for biomedical applications, Proc. SFF Symp., Austin (1998): 621-628.
38. Williams J. D., Deckard C. R. (1998), Advances in modelling the effects of selected parameters on the SLS process, Rapid Prototyping Journal, 4(2): 90-100. CrossRef
39. Smith M.: A Preliminary experience with medical applications of rapid prototyping by selective laser sintering, Med. End. Phys. (1996), 19: 90-96.
40. Dalgarno K.W., Wood D.J., et al.: Mechanical properties and biological responses of bioactive glass ceramic processed using indirect SLS, Proc. SFF Symp., Austin (2005):132-140.
41. Miecielica M.: Rapid prototyping – methods and applicability in biomedical engineering, (in Polish) AGH (2009), Krakow.
42. Mazzoli A.: Selective laser sintering in biomedical engineering, Med. Biol. Eng. Comput (2013): 245-256. CrossRef Web of Science
43. Tan K. H., Chua C. K., Leong K. F., Cheah C. M., Cheang P., Abu Bakar M. S., Cha S. W.: Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomoposite blends, Biomaterials (2013), 24: 3115-3123. CrossRef
44. Antonov E.N., Bagratashvili V.N., et al.: Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering, Advanced Materials (2005), 17(3): 327-333. CrossRef
45. Chua C.K., Leong K.F., Tan K.H., Wiria F.E., Cheah C. M.: Development of tissue scaffolds using selective laser sintering of polyvinylalcohol/hydroxyapatite biocomposite for craniofacial and joint defects, J. Materials Science: Materials in Medicine (2004), 15(10): 1113-1121. Web of Science
46. Cruz F., Simoes J., Coole T., Bocking C.: Direct manufacture of hydroxyapatite based bone implants by selective laser sintering, Proc. VRAP, Leiria(2005), 119-126.
47. Abe F., Osakada K., Kitamura Y., Matsumoto M., Shiomi M.: Manufacturing of titanium parts for medical purposes by selective laser melting, Proc. Rapid Prototyping (2000): 288-293. Web of Science
48. Torres K., Staśkiewicz G., Śnieżyński M., Drop A., Maciejewski R.: Application of rapid prototyping techniques for modelling of anatomical structures in medical training and education, Folia Morphol, Via Medica (2010), 70: 1-4.
49. Wu W.Z., Yan M.G.: Development of polymer coated metallic powder for selective laser sintering (SLS) process, J. Adv. Materials (2002), 34(2): 25-28.
50. Cruz F., Coole T., Bocking C., Simoes J.: Selective laser sintering of customized medical implants using biocomposite materials, Tech. Vjesn. (2003), 10(2): 23-27.
DOI :
Cytuj : Mierzejewska, Ż. A. ,Markowicz, W. , Selective laser sintering – binding mechanism and assistance in medical applications. Advances in Materials Science Vol.15, nr 3(45)/2015
[Top]

Selected properties of thermally sprayed oxide ceramic coatings

Czasopismo : Advances in Materials Science
Tytuł artykułu : Selected properties of thermally sprayed oxide ceramic coatings

Autorzy :
Mierzejewska, Ż. A.
Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Biomedical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland, a.mierzejewska@doktoranci.pb.edu.pl,
Markowicz, W.
Vilnius Gediminas Technical University, Faculty of Mechanical Engineering, Department of Materials Science and Welding, ul. Basanaviciaus 28, 03224 Vilnius, Lithuania, vladislav.markovic@vgtu.lt,
Czupryński, A.
Silesian University of Technology, Mechanical Engineering Faculty, The Chair of Welding, Konarskiego 18A Street,44-100 Gliwice, Poland, artur.czuprynski@polsl.pl,
Abstrakty : The article presents the results of the study on exploitation properties of flame sprayed ceramic coatings produced by oxide ceramic material in the form of powder on the aluminum oxide Al2O3 matrix with 3% titanium oxide TiO2 addition and also on the zirconium oxide (ZrO2) matrix with 30% calcium oxide (CaO) on the substrate of unalloyed structural steel of S235JR grade. As a primer powder, metallic powder on the base of Ni-Al-Mo has been applied. Plates with dimensions of 5×200×300 mm and also front surfaces of ∅40×50 mm cylinders have been flame sprayed. Spraying of primer coating has been done using RotoTec 80 torch and external specific coating has been done with CastoDyn DS 8000 torch. Investigations of coating properties are based on metallography tests, phase composition research, measurement of microhardness, coating adhesion to the ground research (acc. to EN 582:1996 standard), abrasive wear resistance (acc. to ASTM G65 standard) and erosion wear resistance (acc. to ASTM G76-95 standard) and thermal stroke study. Performed tests have shown that the flame spraying with 97%Al2O3 powder containing 3% TiO2 and also by the powder based on zirconium oxide (ZrO2) containing 30% calcium oxide (CaO) performed in a wide range of technological parameters allow to obtain high quality ceramic coatings with thickness up to ca. 500 μm on a steel substrate. The primer coating sprayed with the Ni-Al-Mo powder to the steel substrate and external coatings sprayed has the of mechanical bonding character. The coatings are characterized by high adhesion to the substrate and also high erosion and abrasive wear resistance and the resistance for cyclic thermal stroke.

Słowa kluczowe : flame spray process, coating, ceramic powder, abrasive wear resistance, erosion wear resistance, adhesion strength,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 3(45)
Strony : 17 – 32
Bibliografia : 1. Janicki D.: High Power Diode Laser Cladding of Wear Resistant Metal Matrix Composite Coatings. Solid State Phenomena, Vol. 199 (2013), 587-592. Web of Science
2. Arcondéguy A., Gasginier G., Montavon G., Pateyron B., Denoirjean A., Grimaud A., Huguet C.: Effects of spraying parameters onto flame-sprayed glaze coating structures. Surface & Coatings Technology, Vol. 202 (2008), 4444-4448. Web of Science
3. Lisiecki A.: Titanium Matrix Composite Ti/TiN Produced by Diode Laser Gas Nitriding. Metals, Vol 5(1) (2015), 54-59.
4. Janicki D.: Disk laser welding of armor steel. Archives of Metallurgy and Materials, Vol. 59 (2014), 1641-1646. Web of Science
5. Lisiecki A.: Welding of thermomechanically rolled fine-grain steel by different types of lasers. Archives of Metallurgy and Materials, Vol. 59 (2014), 1625-1631. Web of Science
6. Kurc-Lisiecka A., Ozgowicz W., Ratuszek W., Kowalska J.: Analysis of Deformation Texture in AISI 304 Steel Sheets. Solid State Phenomena, Vol. 202-203 (2013), 105-110.
7. Adamiak M., Dobrzański L.A.: Microstructure and selected properities of hot-work tool steel with PVD coatings after laser surface treatment. Applied Surface Science, Vol. 254(15) (2008), 4552-4556. Web of Science
8. Dobrzański L.A., Adamiak M.: Structure and properities of the TiN and Ti (C, N) coatings deposited in PVD process on high-speed steels. Journal of Materials Processing Technology, Vol. 133 (2003), 50-62.
9. Li J.F., Li L., Stott F.H.: Combined laser and flame surface coating of refractory ceramics: phase and microstructural characteristics. Thin Solid Films, Vol. 453-454 (2004), 67-71.
10. Pawlowski L., The Science and Engineering of Thermal Spray Coatings, second ed., John Wiley & Sons, Chichester, UK, 2008.
11. Spencer K., Fabijanic D. M., Zhang M. X.: The use of Al-Al2O3 cold spray coatings to improve the surface properties of magnesium alloys. Surface and Coatings Technology, Vol 204 (2009), 336-344.
12. Vargas F., Ageorges H., Fournier P., Fauchais P., López M.E.: Mechanical and tribological performance of Al2O3-TiO2 coatings elaborated by flame and plasma spraying. Surface & Coatings Technology, Vol 205 (2010), 1132-1136.
DOI :
Cytuj : Mierzejewska, Ż. A. ,Markowicz, W. ,Czupryński, A. , Selected properties of thermally sprayed oxide ceramic coatings. Advances in Materials Science Vol.15, nr 3(45)/2015
[Top]

Influence of large non-metallic inclusions on bending fatigue strength hardened and tempered steels

Czasopismo : Advances in Materials Science
Tytuł artykułu : Influence of large non-metallic inclusions on bending fatigue strength hardened and tempered steels

Autorzy :
Mierzejewska, Ż. A.
Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Biomedical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland, a.mierzejewska@doktoranci.pb.edu.pl,
Markowicz, W.
Vilnius Gediminas Technical University, Faculty of Mechanical Engineering, Department of Materials Science and Welding, ul. Basanaviciaus 28, 03224 Vilnius, Lithuania, vladislav.markovic@vgtu.lt,
Czupryński, A.
Silesian University of Technology, Mechanical Engineering Faculty, The Chair of Welding, Konarskiego 18A Street,44-100 Gliwice, Poland, artur.czuprynski@polsl.pl,
Lipiński, T.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland, tomasz.lipinski@uwm.edu.pl,
Wach, A.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland,
Detyna, E.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland,
Abstrakty : The article discusses the effect of large oxide impurities (a diameter larger than 10 μm in size) on the fatigue resistance of structural steel of high purity during rotary bending. The study was performed on 7 heats produced in an industrial plant. The heats were produced in 140 ton electric furnaces. All heats were desulfurized. The experimental material consisted of semi-finished products of high-grade, carbon structural steel with: manganese, chromium, nickel, molybdenum and boron. Steel sections with a diameter of 18 mm were hardened from austenitizing by 30 minutes in temperature 880°C and tempered at a temperature of 200, 300, 400, 500 and 600°C for 120 minutes and air-cooled. The experimental variants were compared in view of the heat treatment options. Fatigue tests were performed with the use of a rotary bending machine at a frequency of 6000 cpm. The results were statistical processed and presented in graphic form. This paper discusses the results of the relative volume of large impurities, the fatigue strength for various heat processing options.

Słowa kluczowe : carbon steel, inclusions, non-metalic inclusions, fatigue strength, bending fatigue strength,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 3(45)
Strony : 33 – 40
Bibliografia : 1. Roiko A., Hänninen H., Vuorikari H.: Anisotropic distribution of non-metallic inclusions in a forged steel roll and its influence on fatigue limit, International Journal of Fatigue 41 (2012) 158-167. Web of Science CrossRef
2. Kocańda S.: Zmęczeniowe pękanie metali (Metal fatigue cracking). WNT Warszawa (in Polish), 1985.
3. Wołczyński W.: Constrained/unconstrained solidification within the massive cast steel/iron ingots. Archives of Foundry Engineering 10 (2010) 195-202.
4. Lipinski T., Wach A.: Non-metallic inclusions structure dimension in high quality steel with medium carbon contents. Archives of Foundry Engineering 3(9) (2009) 75-78.
5. Spriestersbach D., Grad P., Kerscher E.: Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime, International Journal of Fatigue 64, (2014) 114–120. CrossRef
6. Zhang J. M., Zhang J. F., Yang Z. G., Li G. Y., Yao G., Li S. X., Hui W. J., Weng Y. Q.: Estimation of maximum inclusion size and fatigue strength in high-strength ADF1 steel. Material. Science and Engineering A 394 (2005) 126–131.
7. Lipiński T., Wach A.: The Effect of Fine Non-Metallic Inclusions on The Fatigue Strength of Structural Steel. Archives of Metallurgy and Materials 60 (1) (2015) 65-69. Web of Science
8. Wołczyński W., Guzik E. Wajda W. Jedrzejczyk D. Kania B., Kostrzewa M.: Cet In Solidifying Roll – Thermal Gradient Field Analysis. Archives of Metallurgy and Materials 57 (2012) 105-117. Web of Science
9. Ulewicz R., Novy F., Selejdak J. Fatigue Strength of Ductile Iron in Ultra-High Cycle Regime. Advanced Materials Research 874 (2014) 43-48.
10. Roiko A., Hänninen H., Vuorikari H.: Anisotropic distribution of non-metallic inclusions in a forged steel roll and its influence on fatigue limit, International Journal of Fatigue 41 (2012) 158–167. Web of Science CrossRef
11. Murakami Y., Endo M.: Effects of defects, inclusions and inhomogenities on fatigue strength, International Journal of Fatigue 16 (3) (1994) 163–82. CrossRef
12. Wang Y., Yang J., Bao Y.: Effects of Non-metallic Inclusions on Machinability of Free-Cutting Steels Investigated by Nano-Indentation Measurements. Metallurgical and Materials Transactions A 46A (2015) 281-292. Web of Science
13. Lipiński T., Wach A.: The effect of the production process of medium-carbon steel on fatigue strength. Archives of Foundry Engineering 10(2) (2010) 79-82.
14. Ryś J.: Stereologia materiałów (Stereology of materials). FOTOBIT DESIGN, Kraków (in Polish) (1995).
15. Lipiński T., Wach A.: Influence of Outside Furnace Treatment on Purity Medium Carbon Steel. Proc. 23rd Intern. Conf. on Metallurgy and Materials Metal 2014 Brno TANGER Ltd., Ostrava Czech (2014), pp. 738-743.
DOI :
Cytuj : Mierzejewska, Ż. A. ,Markowicz, W. ,Czupryński, A. ,Lipiński, T. ,Wach, A. ,Detyna, E. , Influence of large non-metallic inclusions on bending fatigue strength hardened and tempered steels. Advances in Materials Science Vol.15, nr 3(45)/2015
[Top]

SEM and EDS analysis of nitinol surfaces treated by Plasma Electrolytic Oxidation

Czasopismo : Advances in Materials Science
Tytuł artykułu : SEM and EDS analysis of nitinol surfaces treated by Plasma Electrolytic Oxidation

Autorzy :
Mierzejewska, Ż. A.
Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Biomedical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland, a.mierzejewska@doktoranci.pb.edu.pl,
Markowicz, W.
Vilnius Gediminas Technical University, Faculty of Mechanical Engineering, Department of Materials Science and Welding, ul. Basanaviciaus 28, 03224 Vilnius, Lithuania, vladislav.markovic@vgtu.lt,
Czupryński, A.
Silesian University of Technology, Mechanical Engineering Faculty, The Chair of Welding, Konarskiego 18A Street,44-100 Gliwice, Poland, artur.czuprynski@polsl.pl,
Lipiński, T.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland, tomasz.lipinski@uwm.edu.pl,
Wach, A.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland,
Detyna, E.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland,
Rokosz, K.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl,
Hryniewicz, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland,
Dudek, Ł.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland,
Malorny, W.
Hochschule Wismar-University of Applied Sciences Technology, Business and Design, Faculty of Engineering, DE 23966 Wismar, Germany, winfried.malorny@hs-wismar.de,
Abstrakty : In the paper, the surface layers formed on nickel-titanium alloy during Plasma Electrolytic Oxidation (PEO), known also as Micro Arc Oxidation (MAO), are described. The mixture of phosphoric acid and copper nitrate as the electrolyte for all plasma electrochemical processes was used. Nitinol biomaterial was used for the studies. All the experiments were performed under the voltage of 450 V and current density of 0.3 A/dm2. The main purpose of the studies was to achieve the highest amount of copper in the surface layer versus amount of the copper nitrate in phosphoric acid. The highest copper concentration was found in the surface layer after the PEO treatment in the electrolyte consisting of 150g Cu(NO3)2 in 0.5 dm3 H3PO4. The worst results, in case of the amount of copper in the NiTi surface layer, were recorded after oxidizing in the solution with 5 g Cu(NO3)2.

Słowa kluczowe : Plasma Electrolytic Oxidation, PEO, Micro Arc Oxidation, MAO, SEM, Titanium alloy, NiTi,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 3(45)
Strony : 41 – 47
Bibliografia : 1. Hryniewicz T., Fizykochemiczne i technologiczne podstawy procesu elektrochemicznego polerowania stali (Physicochemical and technological bases of electrochemical polishing of steels), Monograph Nr 26, Publisher: Koszalin University of Technology, Koszalin 1989.
2. Hryniewicz T., Concept of microsmoothing in electropolishing process, Surface and Coatings Technology, 1994, 64(2), 75-80.
3. Rokosz K., Polerowanie elektrochemiczne stali w polu magnetycznym (Electrochemical polishing of steels in the magnetic field), Monograph Nr 219, Publisher: Koszalin University of Technology, Koszalin 2012, ISSN 0239-7129, (211 pages, in Polish).
4. Hryniewicz T., Rokosz K., Rokicki R., Electrochemical and XPS Studies of AISI 316L Stainless Steel after Electropolishing in a Magnetic Field, Corrosion Science, 2008, 50(9), 2676-2681.
5. Rokosz K., Hryniewicz T., XPS measurements of LDX 2101 duplex steel surface after magneto-electropolishing, International Journal of Materials Research, 2013, 104(12), 1-10.
6. Rokosz K., Hryniewicz T., Raaen S., Cr/Fe ratio by XPS spectra of magnetoelectro-polished AISI 316L SS fitted by Gaussian-Lorentzian shape lines, Technical Gazette, 2014, 21(3), 533-538.
7. Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing for metal surface modification, Transactions of the Institute of Metal Finishing, 2007, 85(6), 325-332. Web of Science
8. Simka W., Sadowski A., Warczak M., Iwaniak A., Dercz G., Michalska J., Maciej A., Modification of titanium oxide layer by calcium and phosphorus, Electrochemical Acta, 2011, 56(24) 8962-8968.
9. Simka W., Sowa M., Socha R.P., Maciej A., Michalska J., Anodic oxidation of zirconium in silicate solutions, Electrochemical Acta, 2013, 104, 518-525.
10. Simka W., Nawrat G., Chlode J., Maciej A., Winiarski A., Szade J., Radwanski K., Gazdowicz J., Electropolishing and anodic passivation of Ti6Al7Nb alloy, Przemysł Chemiczny, 2011, 90(1), 84-90.
11. Jin F. Y., Tong H. H., Shen L. R., Wang K., Chu P. K., Micro-structural and Dielectric Properties of Porous TiO2 Films Synthesized on Titanium Alloys by Micro-Arc Discharge Oxidization, Materials Chemistry and Physics, 2006, 100(1), 31-33.
12. Walsh F.C., Low C.T.J., Wood R.J.K., Stevens K.T., Archer J., Poeton A.R., Ryder Y. Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys, Transactions of the IMF, 2009, 87(3), 122-135.
13. Yerokhin A.L., Nie X., Leyland A., Matthews A. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy, Surf Coat. Technol., 2000, 130(2-3), 195-206.
14. Chung C.J., Su R.T., Chu H.J., Chen H.T., Tsou H.K., He J.L. Plasma electrolytic oxidation of titanium and improvement in osseointegration. J. Biomed. Mater. Res. B Appl. Biomater, 2013, 101(6), 1023-1030. CrossRef
DOI :
Cytuj : Mierzejewska, Ż. A. ,Markowicz, W. ,Czupryński, A. ,Lipiński, T. ,Wach, A. ,Detyna, E. ,Rokosz, K. ,Hryniewicz, T. ,Dudek, Ł. ,Malorny, W. , SEM and EDS analysis of nitinol surfaces treated by Plasma Electrolytic Oxidation. Advances in Materials Science Vol.15, nr 3(45)/2015
[Top]

Cold cracking of underwater wet welded S355G10+N high strength steel

Czasopismo : Advances in Materials Science
Tytuł artykułu : Cold cracking of underwater wet welded S355G10+N high strength steel

Autorzy :
Mierzejewska, Ż. A.
Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Biomedical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland, a.mierzejewska@doktoranci.pb.edu.pl,
Markowicz, W.
Vilnius Gediminas Technical University, Faculty of Mechanical Engineering, Department of Materials Science and Welding, ul. Basanaviciaus 28, 03224 Vilnius, Lithuania, vladislav.markovic@vgtu.lt,
Czupryński, A.
Silesian University of Technology, Mechanical Engineering Faculty, The Chair of Welding, Konarskiego 18A Street,44-100 Gliwice, Poland, artur.czuprynski@polsl.pl,
Lipiński, T.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland, tomasz.lipinski@uwm.edu.pl,
Wach, A.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland,
Detyna, E.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland,
Rokosz, K.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl,
Hryniewicz, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland,
Dudek, Ł.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland,
Malorny, W.
Hochschule Wismar-University of Applied Sciences Technology, Business and Design, Faculty of Engineering, DE 23966 Wismar, Germany, winfried.malorny@hs-wismar.de,
Fydrych, D.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, darfydry@pg.gda.pl,
Łabanowski, J.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Tomków, J.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Rogalski, G.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Abstrakty : Water as the welding environment determines some essential problems influencing steel weldability. Underwater welding of high strength steel joints causes increase susceptibility to cold cracking, which is an effect of much faster heat transfer from the weld area and presence of diffusible hydrogen causing increased metal fragility. The paper evaluates the susceptibility to cold cracking of the high strength S355G10+N steel used, among others, for ocean engineering and hydrotechnical structures, which require underwater welding. It has been found from the CTS test results that the investigated steel is susceptible to cold cracking in the wet welding process.

Słowa kluczowe : underwater welding, wet welding, high strength steel, weldability, cold cracking,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 3(45)
Strony : 48 – 56
Bibliografia : 1. Fydrych D., Łabanowski J., Rogalski G.: Weldability of high strength steels in wet welding conditions. Polish Maritime Research, 2 (2013). Web of Science CrossRef
2. Gao W., Wang D., Cheng F., Deng C., Liu Y., Xu W.: Enhancement of the fatigue strength of underwater wet welds by grinding and ultrasonic impact treatment. Journal of Materials Processing Technology, 223 (2015). Web of Science
3. Zhang H.T., Dai X.Y., Feng J.C., Hu L.L.: Preliminary investigation on real-time induction heating-assisted underwater wet welding. Welding Journal, 1 (2015).
4. Guo N., Du Y., Feng J., Guo W., Deng Z.: Study of underwater wet welding stability using an X-ray transmission method. Journal of Materials Processing Technology, 225 (2015). Web of Science
5. Guo N., Guo W., Du Y., Fu Y., Feng J.: Effect of boric acid on metal transfer mode of underwater flux-cored wire wet welding. Journal of Materials Processing Technology, 223 (2015).
6. Gao W.B., Wang D.P., Cheng F.J., Deng C.Y., Xu W.: Underwater wet welding for HSLA steels: chemical composition, defects, microstructures, and mechanical properties. Acta Metallurgica Sinica (English Letters), 9 (2015).
7. Maksimov S.Y.: Prevention of cold cracks in heat affected zone in underwater welding of low-alloyed high-strength steels. Збірник Наукових Праць НУК, 4 (2014).
8. Silva L.F., dos Santos V.R., Paciornik S., Mertens J.C.E., Chawla N.: Multiscale 3D characterization of discontinuities in underwater wet welds. Materials Characterization, 107 (2015). Web of Science
9. Fydrych D., Rogalski G., Tomków J., Łabanowski J.: The tendency to form cold cracks at the S420G2+M steel joints welded under water using wet method (in Polish). Przegląd Spawalnictwa (Welding Technology Review), 10 (2013).
10. Maksimov S.Y.: Underwater arc welding of higher strength low-alloy steels. Welding International, 6 (2010). CrossRef
11. Omajene J.E., Martikainen J., Wu H., Kah P.: Optimization of underwater wet welding process parameters using neural network. International Journal of Mechanical and Materials Engineering, 1 (2014).
12. Ćwiek J.: Hydrogen degradation of weldable high strength steels (in Polish). Gdansk Univ. Of Technology, Gdańsk 2006.
13. Garašić I., Kralj S., Kožuh Z., Pacak M.: Analysis of underwater repair technology on the jack-up platform spud can. Brodogradnja, 2 (2010).
14. Fydrych D., Łabanowski J., Rogalski G., Haras J., Tomków J., Świerczyńska A., Jakóbczak P., Kostro Ł.: Weldability of S500MC steel in underwater conditions. Advances in Materials Science, 2 (2014).
15. Fydrych D., Kozak T.: Underwater welded joint properties investigation. Advances in Materials Science, 4 (2009).
16. Sharp J.V., Billingham J., Robinson M.J.: The risk management of high-strength steels in jack-ups in seawater. Marine Structures, 14 (2001) CrossRef
17. PN-EN ISO 17642-2:2005 Destructive tests on welds in metallic materials – Cold cracking tests for weldments – Arc welding processes – Part 2: Self-restraint tests
18. Kurji R., Coniglio N.: Towards the establishment of weldability test standards for hydrogen-assisted cold cracking. The International Journal of Advanced Manufacturing Technology, 77 (2015). Web of Science
19. Kannengiesser T., Boellinghaus T.: Cold cracking tests-an overview of present technologies and applications. Welding in the World, 1 (2013).
20. PN-EN 10225:2011 Weldable structural steels for fixed offshore structures – Technical delivery conditions.
21. PN-EN ISO 17637:2011 Non-destructive testing of welds. Visual testing of fusion-welded joints
22. PN-EN ISO 3452-1:2013-08 Non-destructive testing — Penetrant testing — Part 1: General principles
23. PN-EN ISO 17639:2013-12 Destructive tests on welds in metallic materials – Macroscopic and microscopic examination of welds
24. PN-EN ISO 9015-1:2011 Non-destructive testing of welds. Hardness testing. Part 1.
25. PN-EN ISO 15614-1:2008 Specification and qualification of welding procedures for metallic materials -Welding procedure test – Arc and gas welding of steels and arc welding of nickel and nickel alloys.
DOI :
Cytuj : Mierzejewska, Ż. A. ,Markowicz, W. ,Czupryński, A. ,Lipiński, T. ,Wach, A. ,Detyna, E. ,Rokosz, K. ,Hryniewicz, T. ,Dudek, Ł. ,Malorny, W. ,Fydrych, D. ,Łabanowski, J. ,Tomków, J. ,Rogalski, G. , Cold cracking of underwater wet welded S355G10+N high strength steel. Advances in Materials Science Vol.15, nr 3(45)/2015
[Top]

Biomechanical analysis of the intervertebral disc implant using the finite element method

Czasopismo : Advances in Materials Science
Tytuł artykułu : Biomechanical analysis of the intervertebral disc implant using the finite element method

Autorzy :
Mierzejewska, Ż. A.
Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Biomedical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland, a.mierzejewska@doktoranci.pb.edu.pl,
Markowicz, W.
Vilnius Gediminas Technical University, Faculty of Mechanical Engineering, Department of Materials Science and Welding, ul. Basanaviciaus 28, 03224 Vilnius, Lithuania, vladislav.markovic@vgtu.lt,
Czupryński, A.
Silesian University of Technology, Mechanical Engineering Faculty, The Chair of Welding, Konarskiego 18A Street,44-100 Gliwice, Poland, artur.czuprynski@polsl.pl,
Lipiński, T.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland, tomasz.lipinski@uwm.edu.pl,
Wach, A.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland,
Detyna, E.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland,
Rokosz, K.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl,
Hryniewicz, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland,
Dudek, Ł.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland,
Malorny, W.
Hochschule Wismar-University of Applied Sciences Technology, Business and Design, Faculty of Engineering, DE 23966 Wismar, Germany, winfried.malorny@hs-wismar.de,
Fydrych, D.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, darfydry@pg.gda.pl,
Łabanowski, J.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Tomków, J.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Rogalski, G.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Kajzer, W.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, ul. Roosvelta 40, 44-800 Zabrze, Wojciech.Kajzer@polsl.pl,
Kajzer, A.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, ul. Roosvelta 40, 44-800 Zabrze,
Pindycki, I.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Students’ Scientific Society of Biomedical Engineering ”SYNERGIA”,
Abstrakty : Dysfunctions of the vertebral column belong to a group of civilisation diseases and they affect approximately 80% of population. The underlying cause is modern (sedentary) lifestyle, low locomotive activity of people and frequent motor vehicle and sports accidents. Despite civilisation’s progress, no injury prophylactics or prevention of dysfunctions of the vertebral column have been introduced. The key element influencing function of the vertebral column is the intervertebral disc. It enables multidimensional movements and constitutes a basic connective element between the joints of the vertebral column. It also enables performing basic daily activities. Acting as a “damper”, it cushions vibrations and transmits loads between the vertebrae. One of the diseases affecting the intervertebral disc is discopathy. This is the most common degenerative disease, which can be treated by both conservative and surgical treatment. After removal of the damaged disc, it can be replaced by an adequate implant, which will assume its function. The implant will be expected to restore the vertebral column motor function, as well as to eliminate the pain resulting from compression of the spine caused by the damaged disc. This paper presents a biomechanical analysis using the finite element method for the L2-L3 vertebrae system with natural intervertebral disc, and the L2-L3 – implant of the intervertebral disc system. Two cases of the system vertebrae-implant were analysed which differed in the placement of the artificial disc in the intervertebral space. Within the conducted analysis, the state of displacement, strain and stress of reduced analysed systems and their individual elements was determined. A comparative analysis of the results and calculations was performed, also conclusions and observations were formulated, constituting a starting point for building more advanced calculation models and further analyses of such implants.

Słowa kluczowe : biomaterial, intervertebral disc, biomechanical analysis, finite element method,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 3(45)
Strony : 57 – 66
Bibliografia : 1. Kiwerski J., Kowalski M., Krasuski M.: Schorzenia i urazy kręgosłupa, PZWL, Warszawa (1997).
2. Gaździk T.: Ortopedia i traumatologia. Tom I, Wydanie III uaktualnione i rozszerzone, PZWL, Warszawa (2008).
3. Putza R., Pabsta R.: Sobotta, Atlas Anatomii Człowieka, Tom II Klatka piersiowa, brzuch, miednica, kończyna dolna. Wydanie II Polskie opracowane przez M. Ziółkowskiego, Urban & Partner, Wrocław (1997).
4. Stajgis M.: Urazy kręgosłupa i rdzenia kręgowego, II Zakład Radiologii Ogólnej UM, Kielce (2009), 2-12.
5. Pezowicz C.: Biomechanika Krążka Międzykręgowego, Ocena Przeciążeń oraz Skutki Wprowadzania Implantów, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (2008).
6. Borkowski P.: Biomechanical analysis of artificial lumbar disc, Bio-algorithms and med-systems journal edited by medical college – Jagiellonian University 1 (2005), 143-146.
7. Barczewska M., Maksymowicz W., Beta J.: Artificial discs as a new alternative treatment method for selected patients with cervical or lumbar, Problemy Lekarskie 45 (2006), 7-10.
8. Świeczko-Żurek B., Serbiński W., Szumlański A.: Analisys of the failure of fixator used in bone surgery. Advances in Materials Science, 8, 2 (2008), 84-88.
9. Kajzer W., Kajzer A, Szewczenko J., Marciniak J.: FEM Analysis of Locked Intramedullary Nails Used For Femur Fractures Treatment. Engineering of Biomaterials, 13 (2010), 54-57.
10. Pochrząst M., Basiaga M., Marciniak J, Kaczmarek M.: Biomechanical analysis of limited-contact plate used for osteosynthesis. Acta of Bioengineering and Biomechanics 16, 1, (2014), 99-105. Web of Science
11. Ziębowicz A., Kajzer A., Kajzer W., Marciniak J.: Metatarsal osteotomy using double-threaded screws – biomechanical analysis, Conference on Information Technologies in Biomedicine. Adva ces in soft computing 69. Springer-Verlag, Berlin Heidelberg (2010), 465-472.
12. Kajzer A., Kajzer W., Gzik-Zroska B., Wolański W., Janicka I., Dzielicki J.: Experimental Biomechanical Assessment of Plate Stabilizers for Treatment of Pectus Excavatum Acta of Bioengineering and Biomechanics, 15, 3, (2013), 113-121. Web of Science
13. Basiaga M., Paszenda Z., Szewczenko J., Kaczmarek M.: Numerical and experimental analysis of drills used in osteosynthesis. Acta of Bioengineering and Biomechanics, 13, 4, (2011), 29-36.
14. Kajzer W., Kajzer A, Kaczmarek M., Marciniak J.: FEM analisys of the expandable intramedullary nail. Advances in soft computing, Springer-Verlag 47 (2008), 537-544.
15. www page: http://www.whichmedicaldevice.com/by-manufacturer/234/372/prodisc-l-prosthesis.
16. Gzik M.: Biomechanika Kręgosłupa Człowieka, Wydawnictwo Politechniki Śląskiej, Gliwice (2007).
17. Kurtz S.M.: The UHMWPE Handbook, Ultra-High Molecular Weight Polyethylene in Total Joint Replacement, Elsevier Academic Press (2004), 219-325.
18. Standard ASTM F 75-82 – Standard Specification for Cast Cobalt-Chromium-Molybdenum alloy for Surgical Implant Applications.
19. Tejszerska D., Mańka I.: Modelowanie skrzywień bocznych kręgosłupa człowieka, Wydawnictwo Politechniki Śląskiej, Gliwice (2010), 56-64.
20. Rundell S.A., Isaza J.E., Kurtz S.M.: Biomechanical evaluation of a spherical lumbar interbody device at varying levels of subsidence, SAS Journal 5 (2011), 16-25.
21. Shikinami Y., Kawabe Y., Yasukawa K., Tsuta K., Kotani Y., Abumi K.: A biomimetic artificial intervertebral disc system composed of a cubic three-dimensional fabric. The Spine Journal 10 (2010), 141-152.
22. Haiyun Li, Zheng W.: Intervertebral disc biomechanical analysis using the finite element modeling based on medical images, Medical Imaging a d Telemedicine, Computerized Medical Imaging and Graphics 30 (2006), 363-370.
23. Denozière G., Ku D.N.: Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc, Journal of Biomechanics 39 (2006), 766-775. CrossRef
24. Grauer J.N., Biyani A., Faizan A., Kiapour A., Sairyo K., Ivanov A., Ebraheim N.A., Patel T.Ch., Goel V.K.: Biomechanics of two-level Charité artificial disc placement in comparison to fusion plus single-level disc placement combination, The Spine Journal 6 (2006), 659–666.
25. Wanga W., Zhangb H., Sadeghipoura K., Baran G.: Effect of posterolateral disc replacement on kinematics and stress distribution in the lumbar spine: A finite element study, Medical Engineering & Physics 35 (2013), 357–364.
DOI :
Cytuj : Mierzejewska, Ż. A. ,Markowicz, W. ,Czupryński, A. ,Lipiński, T. ,Wach, A. ,Detyna, E. ,Rokosz, K. ,Hryniewicz, T. ,Dudek, Ł. ,Malorny, W. ,Fydrych, D. ,Łabanowski, J. ,Tomków, J. ,Rogalski, G. ,Kajzer, W. ,Kajzer, A. ,Pindycki, I. , Biomechanical analysis of the intervertebral disc implant using the finite element method. Advances in Materials Science Vol.15, nr 3(45)/2015
[Top]

Influence of preservative on the tensile strength of the tissue of porcine circulatory system

Czasopismo : Advances in Materials Science
Tytuł artykułu : Influence of preservative on the tensile strength of the tissue of porcine circulatory system

Autorzy :
Mierzejewska, Ż. A.
Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Biomedical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland, a.mierzejewska@doktoranci.pb.edu.pl,
Markowicz, W.
Vilnius Gediminas Technical University, Faculty of Mechanical Engineering, Department of Materials Science and Welding, ul. Basanaviciaus 28, 03224 Vilnius, Lithuania, vladislav.markovic@vgtu.lt,
Czupryński, A.
Silesian University of Technology, Mechanical Engineering Faculty, The Chair of Welding, Konarskiego 18A Street,44-100 Gliwice, Poland, artur.czuprynski@polsl.pl,
Lipiński, T.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland, tomasz.lipinski@uwm.edu.pl,
Wach, A.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland,
Detyna, E.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland,
Rokosz, K.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl,
Hryniewicz, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland,
Dudek, Ł.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland,
Malorny, W.
Hochschule Wismar-University of Applied Sciences Technology, Business and Design, Faculty of Engineering, DE 23966 Wismar, Germany, winfried.malorny@hs-wismar.de,
Fydrych, D.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, darfydry@pg.gda.pl,
Łabanowski, J.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Tomków, J.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Rogalski, G.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Kajzer, W.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, ul. Roosvelta 40, 44-800 Zabrze, Wojciech.Kajzer@polsl.pl,
Kajzer, A.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, ul. Roosvelta 40, 44-800 Zabrze,
Pindycki, I.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Students’ Scientific Society of Biomedical Engineering ”SYNERGIA”,
Dawidowska, K.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, kindaw@wp.pl,
Stanisławska, A.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, alistanislawska@gmail.com,
Abstrakty : There are many biomaterials that can substitute pathologically altered tissue, however, none of them is as perfect as a native tissue. Currently, scientists are looking for new biomaterials that can be successfully implanted without exposing the patient to reoperation. Each material introduced into an organism must afford sufficient mechanical and biochemical properties and meet the criteria of the biomaterial. Materials intended to take over the function of natural tissue materials should be characterized to the greatest extent by similar mechanical properties. The authors of many publications describing the results of strength tests of biological tissues show different ways of researching them. In many cases, the form of the test material preparation is different because of anisotropy of biological tissue. This study provides an overview of selected methods for the tensile tests characterizing the mechanical properties of the heart valves, pericardium and porcine aortas. We also present results of our study of mechanical properties of the natural porcine tissues.

Słowa kluczowe : tensile test, heart valves, pericardium, aorta, mechanical properties,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 3(45)
Strony : 67 – 75
Bibliografia : 1. Edwards M, Draper ER, Hand JW, Taylor KM, Young IR., Mechanical testing of human cardiac tissue strength and stiffness: implications for MRI safety. Journal of Cardiovascular Magnetic Resonance 7 (2005), 835-840.
2. Kalejsa M, Stradinsa P, Lacisa R, Ozolantab I, Pavarsa J, Kasyanovb V., St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves – comparison of mechanical properties. Interactive CardioVascular and Thoracic Surgery 8 (2009), 553-557.
3. Stradins P, Lacisa R, Ozolantab I, Purinab B, Oseb V, Feldmanea L, Kasyanovb V., Comparison of biomechanical and structural properties between human aortic and pulmonary valve. European Journal of Cardio-thoracic Surgery 26 (2004), 634-639.
4. Mohammad S.N., The Effect of storage on tensile properties of natural heart valve tissue. University of Surrey 1994.
5. Sauren A.H, Van Hout M., Van Steenhoven A, Veldpaus F., Janssen J., The mechanical properties of porcine aortic valve tissues. J. Biomechanics 16, 5 (1983), 327-337.
6. Bourges J.Y, Rojo F.J, García-Paez J.M, Atienza J.M, Álvarez L, Guinea G., Relationship between fibre orientation and tensile strength of natural collagen membranes for heart valve leaflets. Anales de Mecánica de la Fraktura 28, 1 (2011), 51-55.
7. http://www.alveo.4poziom.net/slowniczek,b,BLONA%20SUROWICZA.html, access date: 5.01.2014
8. Lavrijsen T., Validation of indentation tests on porcine Pericardium against uniaxial tensile tests. BMTE 07.41, December 2007, Internship BME -master
9. Garcia Páez JM, Jorge-Herrero E, Carrera A, Millán I, Rocha A, Salvador J, Mendez J, Téllez G, Castillo-Olivares J., Porcine pericardial membrane is subjected tensile testing: preliminary study of the Process of Selecting tissue for use in the construction of cardiac bioprostheses, Journal of Material Science: Materials in Medicine 12 (2001), 425 ± 430.
10. Bochenek A., Reicher M., Anatomia człowieka T. III Układ naczyniowy. W. Łasiński ed., PZWL, Warszawa, 1968, 171-178, 184.
11. Willkins WR, Vascular P., Dobrin mechanics. Handbook of Physiology. Part I. Peripheral Circulation and Organ Blood Flow. Shepard JT, Abbound FM ed, Baltimore, 1983, 65-102.
12. Groenink M., Langerak S., Vanbavel E., Van der Wall E., Mulder B., Van der Wal A., Spaan J., The influence of aging and aortic stiffness on permanent dilation and breaking stress of the thoracic descending aorta. Cardiovasc Research 43 (1999), 471-480.
13. Roach M., Burton A.C., The reason for the shape of the dispensability carves of arteries. Canadian Journal of Biochemistry and Physiology 35 (1957), 681-690.
14. Sonesson B, Lanne T, Vernesson E, Hansen F., Sex difference in the mechanical properties of the abdominal aorta in human beings. Journal of Vascular Surgery 29 (1994), 959-969.
15. Mechanical properties of the aorta. Annual report to the European society for vascular surgery under the direction of pr ramon, Berguer Ambroise Duprey, http://www.esvs.org/sites/default/files/image/Travel%20grant%20reports/Duprey_Report.pdf, access date: 5.12.2013.
16. Lanzo: Mechanical Characterization of the Aortic Vassel Wall, http://www-2.unipv.it/compmech/dissertations/lanzo.pdf, access date: 10.12.2013.
17. Vorp D.A., Schiro B.J., Ehrlich M., Juvonen T., Ergin M., Griffith B., Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. The Annals of Thoracic Surgery 75 (2003), 1210-1214.
DOI :
Cytuj : Mierzejewska, Ż. A. ,Markowicz, W. ,Czupryński, A. ,Lipiński, T. ,Wach, A. ,Detyna, E. ,Rokosz, K. ,Hryniewicz, T. ,Dudek, Ł. ,Malorny, W. ,Fydrych, D. ,Łabanowski, J. ,Tomków, J. ,Rogalski, G. ,Kajzer, W. ,Kajzer, A. ,Pindycki, I. ,Dawidowska, K. ,Stanisławska, A. , Influence of preservative on the tensile strength of the tissue of porcine circulatory system. Advances in Materials Science Vol.15, nr 3(45)/2015
[Top]

Pareto Optimal Multi-Objective Optimization of Antiwear Tialn/Tin/Cr Coatings

Czasopismo : Advances in Materials Science
Tytuł artykułu : Pareto Optimal Multi-Objective Optimization of Antiwear Tialn/Tin/Cr Coatings

Autorzy :
Szparaga, Ł.
Koszalin University of Technology, Institute of Technology and Education, Department of Materials and Processes Design,75-453 Koszalin, Poland, lukasz.szparaga@tu.koszalin.pl,
Ratajski, J.
Koszalin University of Technology, Institute of Technology and Education, Department of Materials and Processes Design,75-453 Koszalin, Poland,
Abstrakty : The multi-objective optimization procedure of geometry of TiAlN/TiN/Cr multilayer coatings was created. The procedure was applied to the multilayer coatings subjected to constant tangential and normal loads (Hertzian contact). In physical model Cr, TiN and TiAlN layers were treated as a continuous medium, thus in mathematical description of the stress and strain states in the coatings a classical theory of stiffness was used. Decisional variables used in procedure were thicknesses of Cr, TiN and TiAlN layers and decisional criteria were functions of the stress and strain fields in the coating and substrate. Using created optimization procedure, Pareto set of optimal values of layers' thicknesses were determined. Additionally, two methods of analysis of Pareto-optimal set were introduced and discussed.

Słowa kluczowe : multi-objective optimization, multilayer coatings, internal stress, Pareto set,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 1(39)
Strony : 5 – 13
Bibliografia : 1. Dobrzańska-Danikiewicz A.D.: The development perspectives of Physical Vapour Deposition technologies. Journal of Achievements in Materials and Manufacturing Engineering 54 (2012), 103-109.
2. Bell T., Mao K., Sun Y.: Surface engineering design: modelling surface engineering systems for improved tribological performance. Surface & Coatings Technology 108-109 (1998), 360-368.
3. Bennani H. H. Takadoum J.: Finite element model of elastic stresses in thin coatings submitted to applied forces. Surface and Coatings Technology 111 (1999), 80-85.
4. Djabella H., Arnell R. D.: Finite element analysis of the contact stresses in elastic coating/substrate under normal and tangential loads. Thin Solid Films 223 (1993), 87-97.
5. Komvopoulos K.: Elastic-plastic finite element analysis of indented layered media. Journal of Tribology, 111 (1989), 430-440.
6. Śliwa A., Dobrzański L.A., Kwaśny W., Staszuk M., Simulation of the microhardness and internal stresses measurement of PVD coatings by use of FEM, Journal of Achievements in Materials and Manufacturing Engineering 43 (2) (2010), 684-691.
7. Śliwa, A., Dobrzański, L. A., Kwaśny, W., Sitek, W.: The computer simulation of internal stresses on the PVD coatings. Archives of Computational Materials Science and Surface Engineering, 1(3) (2009), 183-188.
8. Dobrzański, L. A., Śliwa, A., Sitek, W.: Finite Element Method application for modeling of PVD coatings properties. Proceedings of the 5th International Surface Engineering Conference (2006), 26-29.
9. Johnson K. L.: Contact Mechanics, Cambridge, 1985.
10. Lakkaraju R. K., Bobaru F., Rohde S. L.: Optimization of multilayer wear-resistant thin films using finite element analysis on stiff and compliant substrates. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 24 (2006), 146-155.CrossRef
11. Kuruppu M. L., Negrea G., Ivanov I. P., Rohde S. L.: Monolithic and multilayer Cr/CrN, Cr/Cr2N, and Cr2N/CrN coatings on hard and soft substrates. Journal of Vacuum Science and Technology A 16 (1998), 1949-1956.
12. Valle R., Leveque D., Parlier M.: Optimizing substrate and intermediate layers geometry to reduce internal thermal stresses and prevent surface crack formation in 2-D multilayered ceramic coatings. Journal of the European Ceramic Society 28 (2008), 711-716.Web of Science
13. Szparaga Ł., Ratajski J., Zarychta A.: Multi objective optimization of, wear resistant TiAlN and TiN coatings deposited by PVD techniques. Archives of Materials Science and Engineering 1/48 (2011), 33-39.
14. Szparaga Ł., Ratajski J.: Polyoptimization of antiwear TiAlN and TiN coatings, deposited by PVD techniques on tools for wood machining. Measurement Automation and Monitoring (Pomiary Automatyka Kontrola) 57 (2011) (in Polish), 1055-1058.
15. Szparaga Ł., Ratajski J.: Polyoptimization of gradient antiwear TiAlN/TiN coatings. Materials Science (Inżynieria Materiałowa) 5/195 (2013), (in Polish).
DOI :
Cytuj : Szparaga, Ł. ,Ratajski, J. , Pareto Optimal Multi-Objective Optimization of Antiwear Tialn/Tin/Cr Coatings. Advances in Materials Science Vol.14, nr 1(39)/2014
[Top]

The Effect of Welding Conditions on Mechanical Properties of Superduplex Stainless Steel Welded Joints

Czasopismo : Advances in Materials Science
Tytuł artykułu : The Effect of Welding Conditions on Mechanical Properties of Superduplex Stainless Steel Welded Joints

Autorzy :
Szparaga, Ł.
Koszalin University of Technology, Institute of Technology and Education, Department of Materials and Processes Design,75-453 Koszalin, Poland, lukasz.szparaga@tu.koszalin.pl,
Ratajski, J.
Koszalin University of Technology, Institute of Technology and Education, Department of Materials and Processes Design,75-453 Koszalin, Poland,
Świerczyńska, A.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk, Narutowicza 11/12 Poland, aleswier@student.pg.gda.pl,
Łabanowski, J.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk, Narutowicza 11/12 Poland,
Fydrych, D.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk, Narutowicza 11/12 Poland,
Abstrakty : The tests results of superduplex stainless steel welded joints made with a different heat input, using automatic submerged arc welding (SAW) and semi-automatic flux-cored arc welding (FCAW) have been presented. Metallographic examinations, the measurements of the ferrite content, the width of the heat affected zone (HAZ) and the hardness of the welds in characteristic areas have been performed. Significant differences in the amount of ferrite in the weld metal and in the heat affected zone microstructure of joints were found.

Słowa kluczowe : superduplex steel, welding, SAW process, FCAW process, microstructure,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 1(39)
Strony : 14 – 23
Bibliografia : 1. Ammann T.: Welding of duplex stainless steels in shielding gases. Institute of Welding Bulletin 5/2000 (in Polish).
2. Brózda J.. Łomozik M.: Welding duplex stainless steel (dual phase). Properties of welded joints. Institute of Welding Bulletin 2/2001 (in Polish).
3. Hilkes J.. Bekkers K.: Welding duplex stainless steel. Welding Journal 11/1995.
4. Karlsson L.: Welding of duplex stainless steels – A review of current recommendations. Institute of Welding Bulletin 5/2012 (in Polish).
5. Kolenic F.. Kovac L.. Drimal D.: Effect of laser welding conditions on austenite/ferrite ratio in duplex stainless steel 2507 welds. Welding in the World. vol. 55. 5-6/2011.
6. Kotecki D. J.: Predicted and measured FN in specifications. A position statement of the experts of IIW commission IX. Welding in the World 2/1999.
7. Leonard A. J.. Gunn R. N.. Gooch T. G.: Hydrogen cracking of ferritic-austenitic stainless steel weld metal. Proceedings of the International Conference „Stainless Steel World Duplex America 2000”.
8. Łabanowski J.: Properties and weldability of dual phase duplex stainless steels. Welding Technology Review 10/2007 (in Polish).
9. McPherson N.A.. Chi K.. Baker T.N.: Submerged arc welding of stainless steel and the challenge from the laser welding process. Journal of Materials Processing Technology. 134 (2003), 174-179.
10. Mee V.. Meelker H.. Schelde R.: How to control hydrogen level in (super) duplex stainless steel weldments using the GTAW or GMAW process. Welding Journal 1/1999.
11. Michalska J.. Sozańska M.. Hetmańczyk M.: Application of quantitative fractography in the assessment of hydrogen damage of duplex stainless steel. Materials Characterization. vol. 60. no. 10. 2009.
12. Muthupandi V.. Srinivasan P.. Seshadri S.. Sudaresan S.: Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steels welds. Materials science and Engineering A, 358 (2003), 9-16.
13. Nakade K.: Sigma phase precipitation and its influence on hydrogen induced cracking of duplex stainless steel base metal and weld metal. Welding in the World. vol. 47. 9-10/2003.
14. Nowacki J.: Duplex steel in welded constructions. WNT. Warszawa 2013 (in Polish).
15. The Standard PN-EN 9015-1:2011 Destructive tests on welds in metallic materials. Hardness testing. Hardness test on arc welded joints (in Polish).
16. Practical guidelines for the fabrication of duplex stainless steels. International Molybdenum Association 2001.
17. Ramirez A.J.. Lippold J.C.. Brandi S.D.: The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels. Metallurgical and Materials Transactions A. vol. 34A. 08/2003.
18. Słodziński S.. Zając P.: Experience of Szczecińska Shipyard with application of flux cored wires for duplex steel welding (FCAW-136) of chemical tankers. Proceedings of the VII Welding Conference. Międzyzdroje 2002 (in Polish).
19. Still J.: How to reduce sigma in offshore pipe fabrications. Welding Journal 11/1999.
20. Studholme S.: Application of flux-cored wires for improved productivity in offshore duplex pipework. Svetsaren 1/1998.
21. Walker R. A.. Gooch T. G.: Hydrogen cracking of welds in duplex stainless steel Proceedings of the International Conference „Duplex stainless steel”. Beaune 1991.
22. Van Nassau L.. Meelker H.: Position statement on the specification of metallographic properties of weldments in duplex and superduplex stainless steels. Welding in the World 2/1999.
DOI :
Cytuj : Szparaga, Ł. ,Ratajski, J. ,Świerczyńska, A. ,Łabanowski, J. ,Fydrych, D. , The Effect of Welding Conditions on Mechanical Properties of Superduplex Stainless Steel Welded Joints. Advances in Materials Science Vol.14, nr 1(39)/2014
[Top]

Fluctuations in Chemical Composition of M7C3 Carbides in the Soft Annealed Nc11lv/D2 Steel

Czasopismo : Advances in Materials Science
Tytuł artykułu : Fluctuations in Chemical Composition of M7C3 Carbides in the Soft Annealed Nc11lv/D2 Steel

Autorzy :
Szparaga, Ł.
Koszalin University of Technology, Institute of Technology and Education, Department of Materials and Processes Design,75-453 Koszalin, Poland, lukasz.szparaga@tu.koszalin.pl,
Ratajski, J.
Koszalin University of Technology, Institute of Technology and Education, Department of Materials and Processes Design,75-453 Koszalin, Poland,
Świerczyńska, A.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk, Narutowicza 11/12 Poland, aleswier@student.pg.gda.pl,
Łabanowski, J.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk, Narutowicza 11/12 Poland,
Fydrych, D.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk, Narutowicza 11/12 Poland,
Hryniewicz, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland, Tadeusz.Hryniewicz@tu.koszalin.pl,
Nykiel, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland,
Abstrakty : The paper presents the study results on chemical composition of the coarse primary M7C3carbides occurring in the soft annealed NC11LV/D2 tool steel consisting of: 1.53% C; 11.65% Cr; 0.01% W; 0.81% Mo; 0.068% V; (balance iron plus admixtures), used for cold operation. The microanalyzer of type SEMPROBE Su-30, French made by CAMECA Co., equipped with two WDS X-ray spectrometers and an EDS VOYAGER 3 100, NORAN Instruments Co., made in USA. It was found that out of the three alloying elements occurring in the big carbides of the annealed NC11LV/D2 steel, i.e. Cr, Mo, and V, the chromium appears to be the most uniformly distributed. The big carbides vary concerning C, Cr, Mo, V; the greatest differentiation degree of the contents of Mo and Cr, and the least – of vanadium. The average chemical composition of the big/coarse carbides is as follows: C = 9.42±1.28%; Cr = 44.17±2.95%; Mo = 4.48±3.52%; V = 4.53±0.31%; balance Fe.

Słowa kluczowe : D2 tool steel, primary carbides M7C3, carbides distribution, chemical composition, chromium distribution,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 1(39)
Strony : 24 – 30
Bibliografia : 1. T. Sato, Y. Honda, T. Nishizawa, Tetsu To Hagane, 42(12) (1951) 1118-1122.
2. Z. Głowacki, PhD Thesis, Poznań 1956.
3. W. Kowalski, Prace Instytutu Mechaniki Precyzyjnej, 14(28) (1966) 1-18.
4. K. Kałuża, PhD Thesis, Politechnika Poznańska, Poznań, 1979.
5. T. Nykiel, PhD Thesis, Politechnika Poznańska, Poznań, 1982.
6. T. Nykiel, T. Hryniewicz, Kinetics of Carbides Dissolution During Austenitizing of Tool Steel D3 (2% C and 12% Cr with Additives of W, Mo, V), Proc. of the 6th Intern. Seminar IFHT, Kyongju TEMF Hotel, 15-18 October, Korea, 1997, pp. 238-245
7. E. Haberling, I. Schruff, Thyssen Edelst. Techn. Ber., 13(1) (1987) 64-71.
8. D. Grman, N. Klantschi, C. Solenthaler, Material und Technik, 4 (1988) 81-88.
9. F. Staub, J. Adamczyk, L. Cieślak, J. Gubała, A. Maciejny, Metaloznawstwo, Śląsk Ed., Katowice, 1973, 386-389.
10. A.K. Sinha, Physical metallurgy handbook, The McGraw-Hill Companies, Inc., 2003.
11. T. Nykiel, T. Hryniewicz, Trans. Indian Inst. Met., 65(2) (2012) 219-230.
12. L. Zhou, D. Sun, C.-S. Liu, Q. Wu, J. Iron and Steel Research Intern., 13(6) (2006) 49-52.
13. S.D. Carpenter, D. Carpenter, Materials Letters, 57 (2003) 4456-4459.
14. S.D. Carpenter, D. Carpenter, Materials Letters, 57 (2003) 4460-4465.
15. S.D. Carpenter, D.E.O.S. Carpenter, J.T.H. Pearce, J. Alloys and Compounds, 494 (2010) 245-251.
16. F. Ernst, D. Li, H. Kahn, G.M. Michal, A.H. Heuer, Acta Materialia, 59 (2011) 2268-2276.
17. M.J. Monteiro, F.C. Rizzo, Mater. Sci. Forum, 522-523 (2005) 171-180.
18. M. Palcut, V. Vach, R. Cicka, J. Janovec, Archives of Metallurgy and Materials, 53(4) (2008) 1157-1164.
19. Y. Zhang, G. Zong, K. Shui, M. He, Heat Treatment of Metals, 10 (2010) 44-47.
20. P. Bała, Archives of Metallurgy and Materials, 54(2) (2009) 491-498.
21. A. Molinari, M. Pellizzari, A. Biggi, G. Corbo, A. Tremea, Primary carbides in spincast HSS for hot rolls and their effect on the oxidation behaviour, Proc. 6th Intern. Tooling Conference, 2002, 33_437_452_pdf_66272.
22. Szummer A. (ed.), Fundamentals of quantitative analysis of X-ray microanalysis, WNT, Warszawa, 1994
23. J.L. Pouchou, F. Pichoir, la Recherches Aerospatiale, 5 (1984) 13-38.
24. K.M. Zhang, J.X. Zou, B. Bolle, T. Grosdidier, Vacuum, 87 (2013) 60-68.
25. M.B. Mhamdi, S.B. Salem, M. Boujelbene and E. Bayraktar, Journal of Mechanical Science and Technology, 27(11) (2013) 3451-3461.
26. T. Aized & M. Amjad, Intern. Journal of Advanced Manufacturing Technology, 69 (2013) 2493-2503.
DOI :
Cytuj : Szparaga, Ł. ,Ratajski, J. ,Świerczyńska, A. ,Łabanowski, J. ,Fydrych, D. ,Hryniewicz, T. ,Nykiel, T. , Fluctuations in Chemical Composition of M7C3 Carbides in the Soft Annealed Nc11lv/D2 Steel. Advances in Materials Science Vol.14, nr 1(39)/2014
[Top]

Xps Study Of Aisi 316L Ss Surfaces After Mechanical And Electrochemical Polishing and Chelating/Electro-Chelating Treatments

Czasopismo : Advances in Materials Science
Tytuł artykułu : Xps Study Of Aisi 316L Ss Surfaces After Mechanical And Electrochemical Polishing and Chelating/Electro-Chelating Treatments

Autorzy :
Szparaga, Ł.
Koszalin University of Technology, Institute of Technology and Education, Department of Materials and Processes Design,75-453 Koszalin, Poland, lukasz.szparaga@tu.koszalin.pl,
Ratajski, J.
Koszalin University of Technology, Institute of Technology and Education, Department of Materials and Processes Design,75-453 Koszalin, Poland,
Świerczyńska, A.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk, Narutowicza 11/12 Poland, aleswier@student.pg.gda.pl,
Łabanowski, J.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk, Narutowicza 11/12 Poland,
Fydrych, D.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk, Narutowicza 11/12 Poland,
Hryniewicz, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland, Tadeusz.Hryniewicz@tu.koszalin.pl,
Nykiel, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland,
Rokosz, K.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl,
Hryniewicz, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland,
Abstrakty : In the paper, there are presented the analyses of iron Fe2p3/2and chromium Cr2p3/2and oxide O1s XPS spectra of surfaces obtained after abrasive and electrochemical polishing with additional treatment as chemical chelating in the solution containing of 10% Citric Acid and 2% Ethylenediaminetetraacetic Acid. There was also performed electro-chelating after mechanical polishing in the electrolyte for chemical chelating. The maximum values of chromium compounds to iron compounds ratio were obtained after electropolishing with and without stirring with chemical chelating in Citric Acid and EDTA and they were in rage from 3.5 to 3.6. The minimum value was obtained for the steel surface after abrasive polishing and electro-chelating and was equal 1.3. After electrochemical polishing and chemical passivation in the surface layer there were detected FeO and Cr(OH)3as dominated compounds. After abrasive polishing and electro-chelating there were mostly Fe2O3and Cr2O3.

Słowa kluczowe : XPS spectra fitting, Surface layer, AISI 316L SS, Electropolishing, Chelating, Passivation, Electrochelating, Cr/Fe ratio, Fe 2p, Cr 2p, O 1s,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 1(39)
Strony : 31 – 41
Bibliografia : 1. Rokosz K., Electrochemical polishing of steels in magnetic field, Monograph No. 219, Publisher: Koszalin University of Technology, Koszalin 2012, ISSN 0239-7129, (in Polish).
2. Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing for metal surface modification, Transactions of the Institute of Metal Finishing, 2007, 85(6), 325-332.Web of Science
3. Hryniewicz T., Rokicki R., Rokosz K., Surface characterization of AISI 316L biomaterials obtained by electropolishing in a magnetic field, Surface & Coatings Technology, 2008, 202(9 1668-1673. ), 1-16.Web of Science
4. Hryniewicz T., Rokosz K., Rokicki R., Electrochemical and XPS Studies of AISI 316L Stainless Steel after Electropolishing in a Magnetic Field, Corrosion Science, 2008, 50(9), 2676-2681.
5. Hryniewicz T., Rokicki R., Rokosz K., Corrosion Characteristics of Medical Grade AISI 316L Stainless Steel Surface after Electropolishing in a Magnetic Field, Corrosion, 2008, 64(8), 660-665.
6. Rokicki R., US Patent No. 7632390, http://www.patentgenius.com/patent/7632390.html
7. Davidson J.A. , Kovacs P., Passivation method and passivated implant, 1992, Patent EP 0520721 A2.
8. Mahla E.M., Nielsen N.A., A Study of Films Isolated from Passive Stainless Steels, J. Electrochem. Society, 1948, 98(1),
9. Maller R.R., Passivation of Stainless Steel, Trends in Food Science and Technology, 1998, 9, 28-32.
10. Cleaning, Derouging and Passivation of the Stainless Steel Parts of the Purified Water Systems in Standard Operating Procedure, www.gmpsop.com, 1-10.
11. Cleaning and passivating of stainless steel equipment, Applications/Cleaning Procedures C-1.30, Technical Reference, Ecolab, 2010, 1-6.
12. Wegrelius L., Sjödén B., Passivation treatment of stainless steel, Acom, Outokumpu, 2004 , 2-9
13. Fairley N., http://www.casaxps.com, © Casa software Ltd. 2005.
14. Walton J., Carrick A., The Casa Cookbook-The CasaXPS User’s Manual, Part 1: Recipes for XPS data processings, 2009, ISBN: 9780954953300, Publisher: Acolyte Science.
15. CasaXPS Processing Software, CasaXPS Manual 2.3.15 Rev 1.0, Copyright © 2010 Casa Software Ltd, 19-20.
16. Herrera-Gomez A., The Peak-Shirley Background (Shirley background in overlapping peaks), Centro de Investigación y de Estudios Avanzados del IPN Unidad Querétaro, Internal Report Created 8/2011, Last Update 2/2012, 14 pages.
17. Biesinger M.C., Payne B.P., Grosvenor A.P., Lau L.W.M., Gerson A.R., Smart R.St.C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Applied Surface Science, 2011, 257, 2717-2730.
18. Rokosz K., Hryniewicz T., Cr/Fe Ratio by XPS Spectra of Magnetoelectropolished AISI 316L SS using Linear, Shirley and Tougaard Method of Background Subtraction, Advances in Materials Science 13(1) (2013) 11-20; DOI: 10.2478/adms-2013-0002 CrossRef
DOI :
Cytuj : Szparaga, Ł. ,Ratajski, J. ,Świerczyńska, A. ,Łabanowski, J. ,Fydrych, D. ,Hryniewicz, T. ,Nykiel, T. ,Rokosz, K. ,Hryniewicz, T. , Xps Study Of Aisi 316L Ss Surfaces After Mechanical And Electrochemical Polishing and Chelating/Electro-Chelating Treatments. Advances in Materials Science Vol.14, nr 1(39)/2014
[Top]

Comparative analysis of measured and predicted shrinkage strain in concrete

Czasopismo : Advances in Materials Science
Tytuł artykułu : Comparative analysis of measured and predicted shrinkage strain in concrete

Autorzy :
Kossakowski, P. G.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Strength of Materials and Concrete Structures, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland., kossak@tu.kielce.pl,
Raczkiewicz, W.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Strength of Materials and Concrete Structures, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland,
Abstrakty : The article discusses the issues related to concrete shrinkage. The basic information on the phenomenon is presented as well as the factors that determine the contraction are pointed out and the stages of the process are described. The guidance for estimating the shrinkage strain is given according to Eurocode standard PN-EN 1992-1-1:2008. The results of studies of the samples shrinkage strain of concrete C25/30 are presented with a comparative analysis of the results estimated by the guidelines of the standard according to PN-EN 1992-1- 1:2008.

Słowa kluczowe : shrinkage, shrinkage strain, concrete, eurocodes, experimental test,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 2(40)
Strony : 5 – 13
Bibliografia : 1. Neville A.M.: Properties of concrete in Polish. Polski Cement, Kraków, 2000.
2. Jamroży Z.: Concrete and its technologies in Polish. Wydawnictwo Naukowe PWN, Warszawa 2009.
3. Mertol H.C., Rizkalla S.H., Zia P., Mirmiran A.: Creep and shrinkage behavior of high-strength concrete and minimum reinforcement ratio for bridge columns. PCI Journal 55 (2010), pp. 138-154.
4. Flaga K.: The shrinkage of concrete and its effect on load carrying capacity, serviceability and durability of reinforced and pre-stressed concrete structures in Polish. Monograph in Zeszyty Naukowe Politechniki Krakowskiej, Seria Inżynieria Lądowa nr 73, Wydawnictwo Politechniki Krakowskiej, Kraków 2002.
5. Barr B., Heseinian S.B., Beygi M.A.: Shrinkage of concrete stored in natural environments. Cement and Concrete Composites 25 (2003), 19-29 .
6. Kurdowski W.: Chemistry of cement and concrete in Polish. Polski Cement, Kraków 2010.
7. Flaga K.: Shrinkage stress and subsurface reinforcement in concrete structures in Polish. Monograph 391, Seria Inżynieria Lądowa, Wydawnictwo Politechniki Krakowskiej, Kraków, 2011.
8. Łapko A.: Design of reinforced concrete structures in Polish. Arkady, Warszawa 2001.
9. Piasta W.: Self-deformations of aerated concretes in Polish. Przegląd Budowlany 4 (2009), 28-31.
10. Flaga K.: Anti shrinkage reinforcement, calculation, design recommendations in the building industry in Polish. Proceedings of XVII Ogólnopolska Konferencja Warsztat Pracy Projektanta Konstrukcji, Ustroń 2002, pp. 1-43.
11. Flaga K., Klemczak B., Knoppik-Wróbel A.: Calculation methods for prediction of cracking risk in bridge abutments in Polish. Inżynieria i Budownictwo 5 (2013), 271-276.
12. Domagała L.: Shrinkage and expansion of lightweight aggregate concrete modified with fibres in Polish. Czasopismo Techniczne. Budownictwo 105 (2008), 21-40.
13. PN-EN 1992-1-1: 2008 Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings.
14. Kossakowski P., Raczkiewicz W.: Estimating of shrinkage strains in concrete bridges structures by the Eurocodes in Polish. Mosty 4 (2013), 28-30.
15. Brunarski L.: The study of mechanical properties of concrete samples made in molds. ITB Instruction 194/98 in Polish. Instytut Techniki Budowlanej, Warszawa, 1998.
16. PN-EN 206-1:2003 Concrete – Part 1: Specification, performance, production and conformity.
17. Zamorowski W, Gremza G.: Investigation of the concrete shrinkage effect on the deflections and deformations of the steel and concrete composite beams in Polish. Przegląd Budowlany 2 (2006), 18-22.
18. Sikora H., Piasta W.: Rheology of air entrained concretes and cements with mineral additives in Polish. Budownictwo i Inżynieria Środowiska 3 (2012), 141-146.
DOI :
Cytuj : Kossakowski, P. G. ,Raczkiewicz, W. , Comparative analysis of measured and predicted shrinkage strain in concrete. Advances in Materials Science Vol.14, nr 2(40)/2014
[Top]

Rationalisation of austenite transformation to upper or lower bainite in steels

Czasopismo : Advances in Materials Science
Tytuł artykułu : Rationalisation of austenite transformation to upper or lower bainite in steels

Autorzy :
Kossakowski, P. G.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Strength of Materials and Concrete Structures, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland., kossak@tu.kielce.pl,
Raczkiewicz, W.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Strength of Materials and Concrete Structures, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Abstrakty : The paper presents an analytical evaluation of transition temperature from upper to lower bainite in Fe-C-Cr steel. The calculations was based on the model constructed by Matas and Hehemann which involves a comparison between the times needed to precipitate cementite within the bainitic ferrite plates (tθ), with the time required to decarburise supersaturated ferrite plates (td). The transition between upper and lower bainite is found to occur over a narrow range of temperatures (350-410°C) and depends on the thickness of bainitic ferrite laths and the volume fraction of precipitated cementite. On comparing the td and tθ times it was found that the transition temperature from upper to lower bainite reaction (LS) of about 350oC could be predicted if the thickness of bainitic ferrite laths is set as wo = 0.1 μm and volume fraction of cementite is set as ξ = 0.01.

Słowa kluczowe : transition temperature, bainite transformation, lower, upper bainite,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 2(40)
Strony : 14 – 23
Bibliografia : 1. Aaronson H.I., Reynolds W.T., Shiflet G.J.,Spanos G.: Bainite Viewed Three Different Ways. Metall. Trans. A 21A (1990), 1343-1380. CrossRef
2. Bhadeshia H.K.D.H.: Bainite in Steels, The Institute of Materials, London, 1992.
3. Bradley J.R., Aaronson H.I.: Growth Kinetics of Grain Boundary Ferrite Allotriomorphs in Fe-CX Alloys. Metall. Trans. A 12A (1981), 729-1741.
4. Spanos G et al.: Influence of Carbon Concentration and Reaction Temperature upon Bainite Morphology in Fe-C-2Pct Mn Alloys. Metall. Trans. A 21A (1990), 1391-1411.
5. Goldstein H., Aaronson H.I.: Overall Reaction Kinetics and Morphology of Austenite Decomposition between the Upper Nose and the MS of a Hypoeutectoid Fe-C-Cr Alloy. Met. rans. A 21A (1990), 1465-1478. CrossRef
6. Shiflet G.J., Aaronson H.I.: Growth and Overall Transformation Kinetics above the Bay Temperature in Fe-C-Mo Alloys. Metall. Trans. A 21A (1990), 1413-1432. CrossRef
7. Aaronson H.I., Furuhara T., Hall M.G., Hirth J.P., Nie J.F., Purdy G.R., Reynolds Jr. W.T., On the mechanism of formation of diffusional plate-shaped transformation products. Acta Materialia 54 (2006), 1227-1232. CrossRef
8. Spanos G.: The Fine Structure and Formation Mechanism of Lower Bainite. Metall. mater. Trans. 25A (1994), 1967-1980. CrossRef
9. Vetters H.: Transformation of austenite into bainitic ferrite and martensite. Materials technology. 67 (1996), 408-411.
10. Honeycombe R.W.K.: Ferrite. Metal Sci. 6 (1980), 201-214. CrossRef
11. Matas S.J., Hehemann R.F.: The Structure of Bainite in Hypoeutectoid Steels. Trans. TMSAIME 221 (1961), 179-185.
12. Takahashi M., Bhadeshia H.K.D.H.: Model for transition from upper to lower bainite. Mater. Sci. echnol. 6 (1990), 592-603.
13. Christian J.W.: Theory of Transformations in Metals and Alloys, 2nd edition, Pt.1, Pergamon Press, Oxford, 1975.
14. Ławrynowicz Z.: Carbon Partitioning During Bainite Transformation in Low Alloy Steels. aterials Science and Technology 18 (2002), 1322-1324.
15. Ławrynowicz Z.: Bainite Morphology in Two Experimental Mn-V and Mo-Cr Steels, 13th International Symposium on Advanced Materials (ISAM-2013), Institute of Space Technology, Islamabad, Pakistan, 23 – 27 September, 2013, 13-75.
16. Bhadeshia H.K.D.H.: Thermodynamic analysis of isothermal transformation diagrams. Metal Science 16 (1982), 159-165. CrossRef
17. Ławrynowicz Z.: Mechanism of bainite transformation in Fe-Cr-Mo-V-Ti-C steel. International Journal of Engineering 12 (1999), 81-86.
18. Bhadeshia H.K.D.H., David S.A., Vitek J.M., Reed R.W.: Stress induced transformation to bainite in Fe-Cr-Mo-C pressure vessel steel. Materials Science and Technology 7 (1991), 686-698. CrossRef
19. Speer J.G., Streicher A.M., Matlock D.K., Rizzo F., Krauss G.: Quenching and partitioning: a fundamentally new process to create high strength TRIP sheet microstructures. In: Austenite formation and decomposition, E.B. Damm, M. Merwin (eds). Warrendale, PA: TMS/ISS (2003), 505-522.
20. Speer J.G., Edmonds D.V., Rizzo F.C., Matlock D.K.: Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation. Current Opinion in Solid State & Materials Science 8 (2004), 219-237.
21. Bhadeshia H.K.D.H.: Application of first-order quasichemical theory to transformations in steels. et. Sci. 16 (1982), 167-169.
22. Bhadeshia H.K.D.H.: Diffusion of carbon in austenite. Met. Sci. 15 (1981), 477-479. CrossRef
23. Bhadeshia H.K.D.H., Christian J.W.: Bainite in Steels, Metall. Trans. A 21A (1990), 767-797. CrossRef
24. Bhadeshia H.K.D.H., Edmonds D.V.: The Mechanism of Bainite Formation in Steels. Acta Metall. 28 (1980), 1265-1273. CrossRef
25. McLellan R.B., Dunn W.W.: J. Phys. Chem. Solids. 30 (1969), 2631.
26. Siller R.H., McLelan R.B.: The Variation with Composition of the Diffusivity of Carbon in Austenite. Trans. of TMS of AIME 245 (1969), 697-700.
27. Siller R.H., McLelan R.B.: The Application of First Order Mixing Statistics to the Variation of the Diffusivity of Carbon in Austenite. Metall. Trans. 1 (1970), 985-988.
28. Dunn W.W., McLellan R.B.: The Application of a Quasichemical Solid Solution Model to Carbon Austenite. Metall. Trans. 1 (1970), 1263-1265.
29. Trivedi R., Pound G.M.: The Effect of Concentration-Dependent Diffusion Coefficient on the Migration of Interphase Boundaries. J. Applied Physics 38 (1967), 3569-3576.
DOI :
Cytuj : Kossakowski, P. G. ,Raczkiewicz, W. ,Ławrynowicz, Z. , Rationalisation of austenite transformation to upper or lower bainite in steels. Advances in Materials Science Vol.14, nr 2(40)/2014
[Top]

Solderability of Alsi foams and AlSi + SiC composite foams and the joints properties

Czasopismo : Advances in Materials Science
Tytuł artykułu : Solderability of Alsi foams and AlSi + SiC composite foams and the joints properties

Autorzy :
Kossakowski, P. G.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Strength of Materials and Concrete Structures, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland., kossak@tu.kielce.pl,
Raczkiewicz, W.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Strength of Materials and Concrete Structures, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Kawiak, M.
West Pomeranian University of Technology, Institute of Materials Science and Engineering, Al. Piastow 19, 70 – 310 Szczecin, Poland,
Nowacki, J.
West Pomeranian University of Technology, Institute of Materials Science and Engineering, Al. Piastow 19, 70 – 310 Szczecin, Poland, jnowacki@zut.edu.pl,
Abstrakty : The cellular structure and unique properties of aluminum foams are the reason of problems concerning their cutting and bonding. The content of the paper includes characterization of the essence of properties and application of aluminum foams, limitations and chances of aluminum foams soldering. The aim of the research is consideration of possibilities and problems of soldering AlSi foams and AlSi – SiC composite foams as well as mechanical properties. The possibility of soldering AlSi foams and AlSi – SiC composite foams using ZnAl solders was confirmed and higher tensile strength of the joint than the parent material was ascertained.

Słowa kluczowe : AlSi foams, SiC composite foams, soldering, mechanical properties of soldered joint,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 2(40)
Strony : 24 – 36
Bibliografia : 1. Banhart J.: Manufacture, characterisation and application of cellular metals and metal foams, Progress in Materials Science, 46 (2001), 559-632.
2. Stachowski A.: Porous materials – future use in structures, in Polish, Kompozyty, 1 (2001), 224-227.
3. Degischer H.P., Kriszt B.: Handbook of cellular metals: production, processing, applications, 2002 Wiley- VCH Verlag GmbH & Co. KGaA ISBNs: 3-527-30339-1.
4. Dyga R.: Filling the flow parameters of the porous foamed steel, in Polish, Inżynieria i Aparatura Chemiczna, 49, 2 (2010), 33-34.
5. Bernard, H. W. Bergmann, Ch. Haberling, H. Haldenwanger G.: Joining technologies for Alfoam- Al-Sheet Compound Structures, Advanced Engineering Materials No. 10, 4 (2002).
6. Ambroziak A., Lange A., Derlukiewicz W., Mosińska S.: Brazing of aluminium and its alloys, in Polish, Przegląd Spawalnictwa, 2 (2009), 10-14.
7. Nowacki J., Grabian J., Krajewski S.: Problems brazing of aluminium foams, in Polish, Przegląd Spawalnictwa, 1 (2014), 7-12.
8. Ashby M.F., Evans A.G., Fleck N.A., Gibson L. J., Hutchinson J. W. and Wadley H.N.G.: Metal Foams: A Design Guide, 2000.
9. Processing and Properties of Alulight®Aluminum Foams and Sandwich Panels for Shipboard Applications, National Shipbuilding Research Program, Panel on Product Development and Materials Technology, Biloxi, MS, 14 February 2008.
10. Sedliaková N., Simančík F., Kováčik J., Minár P.: Joining of Aluminium Foams Institute of Materials & Machine Mechanics SAS, Bratislava, Slovakia.
11. Simancik F., Rajner W. and Laag R.: Alulight – Aluminium foam for lightweight construction, SAE Technical Paper Series 2000-01-0337, Warrendale: SAE, Inc., (2000), 31-38.
12. Bernard T., Bergmann H. W., Haberling C., Haldenwanger H. G.: Joining technologies for Alfoam- Al-Sheet Compound Structures, Advanced Engineering Materials, No. 10, 4 (2002), 798-802.
DOI :
Cytuj : Kossakowski, P. G. ,Raczkiewicz, W. ,Ławrynowicz, Z. ,Kawiak, M. ,Nowacki, J. , Solderability of Alsi foams and AlSi + SiC composite foams and the joints properties. Advances in Materials Science Vol.14, nr 2(40)/2014
[Top]

Weldability of S500MC steel in underwater conditions

Czasopismo : Advances in Materials Science
Tytuł artykułu : Weldability of S500MC steel in underwater conditions

Autorzy :
Kossakowski, P. G.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Strength of Materials and Concrete Structures, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland., kossak@tu.kielce.pl,
Raczkiewicz, W.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Strength of Materials and Concrete Structures, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Kawiak, M.
West Pomeranian University of Technology, Institute of Materials Science and Engineering, Al. Piastow 19, 70 – 310 Szczecin, Poland,
Nowacki, J.
West Pomeranian University of Technology, Institute of Materials Science and Engineering, Al. Piastow 19, 70 – 310 Szczecin, Poland, jnowacki@zut.edu.pl,
Fydrych, D.
Gdańsk University of Technology, Mechanical Faculty, Narutowicza 11/12, 80-233 Gdańsk, Poland, darfydry@pg.gda.pl,
Łabanowski, J.
Gdańsk University of Technology, Mechanical Faculty, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Rogalski, G.
Gdańsk University of Technology, Mechanical Faculty, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Haras, J.
Gdańsk University of Technology, Mechanical Faculty, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Tomków, J.
Gdańsk University of Technology, Mechanical Faculty, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Świerczyńska, A.
Gdańsk University of Technology, Mechanical Faculty, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Jakóbczak, P.
Gdańsk University of Technology, Mechanical Faculty, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Kostro, Ł.
Gdańsk University of Technology, Mechanical Faculty, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Abstrakty : Wet welding with the use of covered electrodes is one of the methods of underwater welding. This method is the oldest, the most economic and the most versatile. The main difficulties during underwater wet welding are: high cooling rates of the joint, the presence of hydrogen in the arc area and formation of hard martensitic structure in the weld. These phenomena are often accompanied by porosity of welds and large number of spatters, which are more advanced with the increase of water depth. In this paper result of non-destructive tests, hardness tests and metallographic observations of S500MC steel joints performed underwater are presented. The weldability of 500MC steel at water environment was determined.

Słowa kluczowe : underwater wet welding, weldability, cold cracking, Tekken test,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 2(40)
Strony : 37 – 45
Bibliografia : 1. AWS D3.6M:2010 Underwater Welding Code.
2. Łabanowski J., Fydrych D., Rogalski G.: Underwater Welding – a review. Advances in Materials Science, vol. 8, 3 (2008), 11-12.
3. Łabanowski J.: Development of under-water welding techniques. Welding International vol. 25, 12 (2011), 933-937.
4. Cotton H. C.: Welding under water and in the splash zone – a review. Proceedings of the International Conference „Underwater Welding”, Trondheim, Norway 1983.
5. Fydrych D., Rogalski G.: Effect of shielded-electrode wet welding conditions on diffusion hydrogen content in deposited metal. Welding International, vol. 25, 3 (2011), 166-171.
6. Maksimov S.Y.: Underwater arc welding of higher strength low-alloy steels. Welding International, vol. 24, 6 (2010), 449-454.
7. Zhao B., Wu C., Jia C., Yuan X.: Numerical analysis of the weld bead profiles in underwater wet flux-cored arc welding. Jinshu Xuebao/Acta Metallurgica Sinica, vol. 49, 7 (2013), 797-803.
8. AleAbbas F.M., Al-Ghamdi T.A., Liu S.: Comparison of solidification behavior between underwater wet welding and dry welding. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering – OMAE 2011, 285.
9. Shi Y., Zheng Z., Huang J.: Sensitivity model for prediction of bead geometry in underwater wet flux cored arc welding. Transactions of Nonferrous Metals Society of China (English Edition), vol. 23, 7 (2013), 1977-1984. Web of Science
10. Cui L., Yang X., Wang D., Hou X., Cao J., Xu W.: Friction taper plug welding for S355 steel in underwater wet conditions: Welding performance, microstructures and mechanical properties. Materials Science and Engineering A 2014.
11. Zhang X., Ashida E., Shono S., Matsuda F.: Effect of shielding conditions of local dry cavity on weld quality in underwater Nd:YAG laser welding. Journal of Materials Processing and Technology, vol. 174, 1-3 (2006), 34-41.
12. Zhu J., Jiao X., Chen M., Zhou C., Gao H.: Research of chamber local dry underwater welding system and drainage properties. China Welding (English Edition), vol. 22 (2013), 1, 27-29.
13. Matsuda K., Masumoto I., Hasegawa M.: Study on the crack sensitivity of mild steel welded joint by underwater welding. Proceedings of the International Conference „Joining of Metals – 2”, Helsingor, Denmark 1984.
14. Fydrych D.: Cold cracking of steel welded in water environment. Przegląd Spawalnictwa (Welding Technology Review), 10 (2012) (in Polish).
15. Garasic I., Krajl S., Kozuh S.: Investigation into cold cracking in underwater wet welding of API 5L X70 steel. Transactions of FAMENA, vol. 33, 3 (2009), 25-34.
16. PN-EN ISO 17642-2:2005. Destructive tests on welds in metallic materials. Cold cracking tests for weldments. Arc welding processes. Part 2: Self-restraint tests.
17. PN-EN ISO 17637:2011. Non-destructive testing of welds. Visual testing of fusion-welded joints.
18. PN-EN 571-1:1999. Non-destructive testing. Penetrant testing. Part 1: General principles.
19. PN-EN 1312:2000. Destructive tests on welds in metallic materials. Macroscopic and microscopic examination of welds.
20. PN-EN 9015-1:2011. Destructive tests on welds in metallic materials. Hardness testing. Hardness test on arc welded joints.
DOI :
Cytuj : Kossakowski, P. G. ,Raczkiewicz, W. ,Ławrynowicz, Z. ,Kawiak, M. ,Nowacki, J. ,Fydrych, D. ,Łabanowski, J. ,Rogalski, G. ,Haras, J. ,Tomków, J. ,Świerczyńska, A. ,Jakóbczak, P. ,Kostro, Ł. , Weldability of S500MC steel in underwater conditions. Advances in Materials Science Vol.14, nr 2(40)/2014
[Top]

Characterization of composite laminates subjected to repeated indentation

Czasopismo : Advances in Materials Science
Tytuł artykułu : Characterization of composite laminates subjected to repeated indentation

Autorzy :
Kossakowski, P. G.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Strength of Materials and Concrete Structures, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland., kossak@tu.kielce.pl,
Raczkiewicz, W.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Strength of Materials and Concrete Structures, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Kawiak, M.
West Pomeranian University of Technology, Institute of Materials Science and Engineering, Al. Piastow 19, 70 – 310 Szczecin, Poland,
Nowacki, J.
West Pomeranian University of Technology, Institute of Materials Science and Engineering, Al. Piastow 19, 70 – 310 Szczecin, Poland, jnowacki@zut.edu.pl,
Fydrych, D.
Gdańsk University of Technology, Mechanical Faculty, Narutowicza 11/12, 80-233 Gdańsk, Poland, darfydry@pg.gda.pl,
Łabanowski, J.
Gdańsk University of Technology, Mechanical Faculty, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Rogalski, G.
Gdańsk University of Technology, Mechanical Faculty, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Haras, J.
Gdańsk University of Technology, Mechanical Faculty, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Tomków, J.
Gdańsk University of Technology, Mechanical Faculty, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Świerczyńska, A.
Gdańsk University of Technology, Mechanical Faculty, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Jakóbczak, P.
Gdańsk University of Technology, Mechanical Faculty, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Kostro, Ł.
Gdańsk University of Technology, Mechanical Faculty, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Kumar, M. A.
Vignan Institute of Technology & Science, Dept. of Mech. Eng., Hyderabad, Telangana, India, mak864@rediffmail.com,
Prasad, A. M. K.
UCE, Osmania University, Dept. of Mech. Eng., Hyderabad, Telangana, India,
Ravishankar, D. V.
TKR College of Engineering, Dept. of Mech. Eng., Hyderabad, Telangana, India,
Giridhar, G.
Vignan Institute of Technology & Science, Dept. of Mech. Eng., Hyderabad, Telangana, India,
Abstrakty : The effect of the fiber orientation in a laminate is investigated experimentally when subjected repeated quasistatic indentation. All the laminates with different fiber orientation are subjected to indentation with a stainless steel spherical indenter of diameter 8.0mm on a universal testing machine for a maximum indenter displacement of 4mm. The rate of indenter displacement was 0.5mm/minute. Different parameters like load bearing capacity, indentation diameter, area of surface damage, etc., were recorded after 4mm of indenter displacement. All the parameters were studied and compared to evaluate the laminate with high strength.

Słowa kluczowe : epoxy resin, glass fiber, laminate, indentation, delamination,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 2(40)
Strony : 46 – 56
Bibliografia : 1. Ross C.A., Sierakowski R.L., Studies on the impact resistance of Composite plates. Composites 4 (1973) 157-61.
2. Xiao J.R., Gama B.A., Gillespie Jr. J.W., Progressive damage and delamination in plain weave S-2 glass /SC-15 composites under quasi-static punch-shear loading. Composite struct., 78 (2007), 182-96.
3. AbiAbdallah, Christophe Bouvet. Experimental analysis of damage creation and permanent indentation on highly oriented plates, Composites science and Tech., 69, (2009), 1238-1245.
4. Crisfeld M.A., Mi Y, Davies Gao, Jellweg G.B., Finite element methods and the progressive failure modeling of composite structures. In Wen DRJ, et al., editor’s .Computational plasticity fundamentals and applications, CIMNE Barcelona; (1997), 239-54.
5. Li CF. Hu N. Cheng JG. Fukumaga H. Sekine H. Low velocity impact induced damage of continuous fiber reinforced composite laminates. Part-II Compos part-A, 33 (2002), 1063-72.
6. Mitrevski T. Marshall I.H., Thomson R., The influence of impactor shape on damage to composite laminates. Compos Struct., 76, (2006), 116-22.
7. Davies G.A.O., Zhang X., Impact damage prediction in carbon composite structures. Int. J. impact Eng., 16(1) (1995), 149-70.
8. Caprino G., Lopresto V., The significance of indentation in the inspection of carbon fibre reinforced plastic panels damaged by low-velocity impact. Compos. Sci. Technol., 60 (2000), 1003-12.
9. Caprino G., Lopresto V., Factors affecting the penetration energy of glass fiber reinforced plastics subjected to a concentrated transverse load. Proc. ECCM9, Brighton, UK; 4-7 June 2000
10. Caprino G., Lopresto V., The Penetration energy of fiber reinforced plastics under low-velocity impact conditions. Compos. Sci.Technol., 61 (2000), 65-73.
11. Freitas M., Silva A., Reis L., Numerical evaluation of failure mechanisms on composite specimens subjected to impact loading. Composite part B, 31 (3) (2000), 199-207.
12. Richardson M.O.W., Wiheart M.J., Review of low velocity impact properties of composite materials Composites, Part A -Appl, Sci. Manuf., 27A (12) (1996), 1123-31. CrossRef
13. Wu E., Chang I.C., Woven glass/epoxy laminates subject to projectile impact, Int. J Impact Eng. 16 (4) (1995), 607-19.
14. Zhou G., Greaves I.J., Impact behavior of fiber reinforced composite materials and structures, CRC press, woodhead pubs., 2000, 133-185.
DOI :
Cytuj : Kossakowski, P. G. ,Raczkiewicz, W. ,Ławrynowicz, Z. ,Kawiak, M. ,Nowacki, J. ,Fydrych, D. ,Łabanowski, J. ,Rogalski, G. ,Haras, J. ,Tomków, J. ,Świerczyńska, A. ,Jakóbczak, P. ,Kostro, Ł. ,Kumar, M. A. ,Prasad, A. M. K. ,Ravishankar, D. V. ,Giridhar, G. , Characterization of composite laminates subjected to repeated indentation. Advances in Materials Science Vol.14, nr 2(40)/2014
[Top]

Biomaterials and implants in cardiac and vascular surgery – review

Czasopismo : Advances in Materials Science
Tytuł artykułu : Biomaterials and implants in cardiac and vascular surgery – review

Autorzy :
Stanisławska, A.
Gdansk University of Technology, Department of Materials Science and Welding, Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, alicja.stanislawska@op.pl,
Abstrakty : Currently, on prosthesis in cardiac blood vessels and heart valves are used materials of animal or synthetic origin. For animal materials include, among others pericardial sac in which is the heart. Materials such as this (natural) are characterized by a remarkable biocompatibility within the human body, but their main disadvantage is the relatively low durability. In turn, synthetic materials, which include the austenitic chromium-nickel-molybdenum steels, alloys with a shape memory (nickel-titanium), or polymeric materials, such as lactic acid, are characterized by high stability in an environment of bodily fluids, wherein the insufficiently high biocompatibility with the organism human requires from patients using after implantation, anticoagulants which prevent anti-platelet deposition on the surface of the prosthesis. The present work is a review of biomaterials using in implantology and implants using in cardiac and vascular surgery.

Słowa kluczowe : implants, biomaterials, cardiac surgery,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 3(41)
Strony : 5 – 17
Bibliografia : 1. Świeczko-Żurek B., Zieliński A., Sobieszczyk S., Ossowska A.: Biomaterials in Polish, Gdansk Univ. of Technology, 2011.
2. Polohski L. ed.: Fundamentals of cardiology in Polish. Katowice, Śląska Akademia Medyczna, 2000.
3. Williams D.F.: Definitions in biomaterials. Amsterdam – Oxford – New York Tokyo, Elsevier (1987), 24.
4. Williams D.F.: Definitions in biomaterials. Progress in Biomedical Engineering 4 (1987), 67.
5. www.imz.us.edu.pl, date of download: 12.10.2013.
6. Bergmann C.P., Stumpf A.: Dental ceramics, Topics in mining. Metallurgy and materials engineering, 2 Springer-Verlag Berlin Heidelberg, 2013.
7. Kucharczyk W., Mazurkiewicz A., Żurowski W.: Modern construction materials – selected issues in Polish. Politechnika Radomska, Radom, 2008.
8. Blicharski M.: Introduction to engineering materials in Polish. WNT Warszawa, 2003.
9. Dudek A., Przerada I.: Metallic-ceramic composites for use in medicine in Polish. Materiały ceramiczne, 62, 1 (2010), 20-23.
10. Snyder R.W., Helmus M.N.: Cardiovascular biomaterial, standard handbook of biomedical engineering and design, 2004.
11. Nowacki J., Dobrzahski L.A., Gustavo F: Intramedullary implants in long bones osteosynthesis, Gopen Access Library, 11, 2012.
12. Schliephake H., Kage T.: Enhancement of bone regeneration using resorbable ceramics and a polymer-ceramic composite material. Journal of biomedical materials research, 56 (2001), 1.
13. Hench L.L., Paschall H.A.: Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. Journal of biomedical materials research, 7, 3 (1973), 25-42.
14. Ritchie R.O.: Fatigue and fracture of pyrolytic carbon: A damage-tolerant approach to structural integrity and life prediction in ‘ceramic’ heart valve prostheses. Journal of heart valve disease, 5, 1 (1996) 9-31.
15. Robert A., Freitas J.: Pyrolytic or low temperature isotropic carbon, Nanomedicine IIA: Biocompatibility, Landes Bioscience, Georgetown, TX, 2003.
16. Davis J.R: Handbook of materials for medical devices, 6, 2003, 148.
17. Carter C.B., Norton M.G.: Ceramic materials: science and engineering, 35, 635-651.
18. Scheerded I.D.: The Biocompatibility of diamond-like carbon nano films, J. Invasive Cardiology 12, 2000, 389-394.
19. Okroj W., Kamihska M., Klimek L., Szymahski W., Walkowiak B.: Blood platelets in contact with nanocrystalline diamond surfaces, Diamond&related materials 15, 10 (2006), 1535-1539.
20. Grill A.: Diamond-like carbon coatings as biocomplatible materials- an overview. Diamond&related materials, 12, 2 (2003), 166-170.
21. Hauert R: A review of modified DLC coatings for biological applications. Diamond&related materials 12, 3-7 (2003), 583-589.
22. Freitas R.A.: Foresight Update, 39 Foresight Inst. Palo-Alto, CA, USA, 1999.
23. Dearnley P.A.: A review of metalli, ceramic and surface treated metals used for bearing surface in human joint replacements. Proc. of institution of mechanical engineers. Art H., Engineering in medicine, 213 (1999), 107-135.
24. Brinson H.F, Brinson L.C., Polymer engineering science and viscoelasticity: characteristics, applications and properties of polymers, 2008, 55-97.
25. Świeczko – Żurek B: Biomaterials in Polish, Wydawnictwo Politechniki Gdahskiej, 2009, Gdańsk
26. Sowa-Lewandowska K.: Real or artificial? – A few words about the biomaterials. www.laboratoria.net.pl, date of download: 16.10.2013
27. Guidoin R.C., Snyder, R.W., Awad J.A., King, M.W.: Biostability of vascular prostheses. Cardiovascular biomaterials, Hastings, GW ed.. New York: Springer-Verlag, 1991.
28. www.ptfe.net.pl, date of download 4.01.2014.
29. Maarek J.M., Guidoin R., Auhin M., Prud'homme R.E.: Molecular weight characterisation of virgin and explanted polyester arterial prostheses. Journal biomedical materials research 18 (1984), 881-894.
30. Guidoin R, Martin L., Marois M, Gosselin C, King M., Gunasekera K., Domurado D., SigotLuizard M.F., Sigot M., Blais P.: Polyester prostheses as suhstitutes in the thoracic aorta of dogs. II. Evaluation of alhuminated polyester grafts stored in ethanol. Journal biomedical material research 18 (1984), 1059-1072.
31. Cengiz M., Sauvage L.R., Berger K, Rohel S.B., Robel V., Wu H.D., Walker M., Appleyard R.F., Wood S.J.: Effects of compliance alteration on healing of a porous Dacron prosthesis in the thoracic aorta of the dog. Surgical gynecological obstet 158 (1984), 145-151.
32. Błażewicz M., Błażewicz S., Chłopek J., Staszków E.: Structure and properties of carbon materials for medical applications. Ceramics in substitutive and reconstructive surgery. Amsterdam: Elsevier, 1991.
33. Błażewicz M.: Carbon materials in the treatment of soft and hard tissue injuries. European cells and materials 2 (2001), 21-29.
34. Nałęcz M. ed.: Biocybernetics and biomedical engineering 2000, Vol. 4 Biomaterials in Polish. PAN, Akademicka oficyna wydawnicza Exit, 2003.
35. Liu X., Chu P.K., Ding C: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Material science engineering 47 (2004), 49-121.
36. Marciniak J.: Biomaterials in Polish. Wydawnictwo Politechniki Śląskiej, 2002, Gliwice.
37. Talonen J., Nenonen P., Pape G., Hänninen H.: Effect of strain rate on the strain-induced -martensite transformation and mechanical properties of austenitic stainless steels, Metallurgical and materials transactions A, 432, 36A, February 2005.
38. Pelletier H., Muller D., Mille P., Cornet A., Grob J.J.: Surf. Coat Technol. 2002, 151-377.
39. Rawers J., Crogdon F., Krabbe R, Duttlinger N., Powder Metall., 39, 1996.
40. Fujiwara H., Ameyama K.: Mater Sci. Forum, 47 (1999), 304-306.
41. Ucok I., Ando T., Grant N.J.: Mater Sci. Eng. A, 1991, 133:284.
42. Pakiela Z., Sus-Ryszkowska M., Druzycka-Wiencek A., Kurzydlowski K.J.: Seventh Int. Conf. on Nanostructured Materials, Germany, 20-24 June 2004.
43. Elias C.N., Lima J.H.C., Valiev R, Meyers M.A.: Biomedical applications of titanium and its alloys, Biological materials science, 2008 March JOM, 46-49.
44. de Viteri V.S., Fuentes E., Titanium and titanium alloys as biomaterials, Tribology -fundamentals and advancements, 2013 May, 155-174.
45. Krasicka-Cydzik E., Mstowski J., Ciupik L.F.: Implant materials: steel and titanium alloys, Dero system: The development of operational techniques of treatment of spine.
46. Breitbart A.S., Ablaza V.J., Implant materials, Grabb and Smith's Plastic Surgery, Sixth Edition by Charles H. Thorne, Copyright © 2007 by Lippincott Williams & Wilkins.
47. Stodolak E., Fraczek-Szczypta A., Mikociak D., Morawska-Chochól A., Szaraniec E., Zima A.: Laboratory of subject: implants and artificial organs in Polish, Międzywydziałowa Szkoła Inżynierii Biomedycznej, AGH, Kraków, 2009.
48. Kaczmarek M., Tyrlik-Held J., Paszenda Z., Marciniak J.: Characteristics of stents in terms of application and material. Achievements in mechanical&materials engineering. 12th international scientific conference, Politechnika Śląska, Gliwice (2003), 421-428.
49. Gąsior Z., Stępińska J.: Advances in the diagnosis and treatment of acquired valvular heart defects in Polish, Centrum Medyczne Kształcenia Podyplomowego w Warszawie (2011).
50. http://rcpals.com/downloads/2007files/may/accaha/type_of_stents.html, date of download: 2.01.2014
51. Kopernik M: The role of supporting research in the design of artificial ventricle, 2008.
52. Butany J., Ahluvalia M.S., Munroe C, Fayet C, Ahn C, Blit P, Kepron C, Cusimano R.J., Leask R.L.: Mechanical heart valve prosthesis: identification and evaluation (erratum). Cardiovascular pathology, 12 (2003), 322-344.
53. Rachwalik M., Biały D., Wawrzyńska M.: Mechanical prosthetic heart valves – the history and development of technology. Acta Bio-optica et. Informatica Medica, 2012.
54. Bhuvaneshwar G.S., Muraleedharan C.V., Ramani A.V., Valiathan M.S.: Evaluation of materials for artificial heart valves. Bull. Material Science, 14 (1991), 1361-1374.
55. Bloomfield P.: Choice of heart valve prosthesis, Heart, BMJ Group, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1767148/
56. Muraleedharan C.V., Bhuvaneshwar G.S.: Failure mode and effect analysis of Chitra heart valve prosthesis, Proc. RC IEEE & 14th BMESI, New Delhi, 1995, 352-354.
57. Corbett T.L., Elher K.S., Garwood C.L.: Successful use of fondaparinux in a patient with a mechanical heart valve replacement and a history of heparin-induced thrombocytopenia, J Thromb thrombolysis 1 (2010), 23.
58. Quinn J., Von Klemperer K., Brooks R.: Use of high intensity adjusted dose low molecular weight heparin in women with mechanical heart valves during pregnancy: a single-center experience, Haematologica 9 (2009), 1608-1612.
59. Khan S., Trento A., DeRobertis M.: Twenty-year comparison of tissue and mechanical valve replacement, The journal of thoracic and cardiovascular surgery 122 (2001), 257-268.
60. www.cskmswia.pl, Department of Cardiac Surgery – Poland's first operation of biological heart valve implantation of the latest generation, date of download: 31.01.2014.
DOI :
Cytuj : Stanisławska, A. , Biomaterials and implants in cardiac and vascular surgery – review. Advances in Materials Science Vol.14, nr 3(41)/2014
[Top]

Measurement of force components and Ra surface roughness parameter during grinding titanium alloy

Czasopismo : Advances in Materials Science
Tytuł artykułu : Measurement of force components and Ra surface roughness parameter during grinding titanium alloy

Autorzy :
Stanisławska, A.
Gdansk University of Technology, Department of Materials Science and Welding, Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, alicja.stanislawska@op.pl,
Grdulska, A.
Institute of Machine Tools and Production Engineering, Technical University of Łódź, anna.grdulska@p.lodz.pl,
Abstrakty : The paper deals with the measurements of selected parameters during grinding process of aerospace industry alloy. Grinding is one of the most important methods of shaping machine elements. As a result of grinding with high dimensional and shape accuracy as well as with the expected parameters describing the state of the surface layer (SL) should be obtained.Grinding difficult to machine materials used in the aerospace industry is an issue currently being examined by various research centres. An excellent example is the analysis of the grinding process of titanium alloys, as these materials have very poor machinability due to the tendency to adherence to abrasive materials, low thermal conductivity, high strength and compliance at elevated temperatures, which may adversely impact on the quality of SL. A number of factors influence on shaping SL. Worth mentioning are mechanical and thermal phenomena, as well as the type of cutting fluid and abrasive materials.

Słowa kluczowe : grinding, titanium alloys, grinding forces, roughness parameter, abrasive materials,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 3(41)
Strony : 18 – 23
Bibliografia : 1. Oczoś K., Pokrzycki J.: Grinding. Basics and Technique in Polish, WNT Warszawa 1986.
2. Łaskawiec J., Michalik R.: Theoretical and application backgrounds in implants in Polish, Gliwice 2002.
3. Melechow R., Tubielewicz K., Błaszczyk W.: Titanium and its alloys: species, properties, applications, processing technology, degradation in Polish, The monograph, 107, Czestochowa University of Technology, 2004.
4. Grdulska A.: Examination of the temperature distribution in the cutting zone of magnesium and titanium alloys, M.Sc. Thesis, Technical University of Łódź (2012).
5. Oczoś K.: Increasing the efficiency of cutting process of titanium alloys in Polish, Mechanik, 10 (2003).
6. Grdulska A., Rosik R.: The influence of the abrasive material on the condition of the surface layer during the grinding titanium alloys in Polish, Mechanik, 8-9, (2013).
7. Sadeghi M. H., Haddad M. J., Tawakoli T., Emami M.: Minimal quantity lubrication-MQL in grinding of Ti–6Al–4V titanium alloy, Int. J. Adv. Manuf. Technol. 44 (2009).
8. Ezugwu E.O., Da Silva R.B., Bonney J., Machad A. R.: Evaluation of the performance of CBN tools when turning Ti–6Al–4V alloy with high pressure coolant supplies, International Journal of Machine Tools & Manufacture 45 (2005).
DOI :
Cytuj : Stanisławska, A. ,Grdulska, A. , Measurement of force components and Ra surface roughness parameter during grinding titanium alloy. Advances in Materials Science Vol.14, nr 3(41)/2014
[Top]

Bainite morphology in two experimental Mo-Cr and Mo-Cr-V-Ti steels

Czasopismo : Advances in Materials Science
Tytuł artykułu : Bainite morphology in two experimental Mo-Cr and Mo-Cr-V-Ti steels

Autorzy :
Stanisławska, A.
Gdansk University of Technology, Department of Materials Science and Welding, Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, alicja.stanislawska@op.pl,
Grdulska, A.
Institute of Machine Tools and Production Engineering, Technical University of Łódź, anna.grdulska@p.lodz.pl,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Skibicki, A.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland,
Abstrakty : The paper presents an investigation of the bainite morphology in two experimental Mo-Cr and Mo-Cr-V-Ti steels using TEM, high speed dilatometry backed by thermodynamic analysis. The microstructure was investigated using metallography and TEM method. After austenitisation at 1200oC followed by bainitic reaction in upper and lower temperatures of isothetmal transformation the bainite was in the form of classical sheaves. The amont, distribution and morphology of retained austenite and bainitic ferrite depend on prior austenitisation and isothermal transformation temperatures within the bainitic range.

Słowa kluczowe : bainite morphology, bainite reaction, low alloy experimental steels,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 3(41)
Strony : 24 – 33
Bibliografia : 1. Aaronson, H.I., Reynolds, W.T., Shiflet, G.J.,Spanos, G.: Bainite Viewed Three Different Ways. Metall. Trans. A, 21A. (1990), 1343-1380.
2. Bhadeshia H.K.D.H.: Bainite in Steels. The Institute of Materials. London, 1992.
3. Barbacki A.: The attempt of the generalization of the carbide precipitation mechanism taking place during austenite to ferrite transformation in the vanadium and molybdenum steels. Dissertations No 73Politechnika Poznańska. Poznań, 1976.
4. Bhadeshia H.K.D.H.: Diffusional and Displacive Transformations. Scripta Metall. 21 (1987), 1017-1022.
5. Bhadeshia H.K.D.H.: Thermodynamic analysis of isothermal transformation diagrams. Metal Science 16, (1982), 159-165.
6. Bhadeshia H.K.D.H., Christian J.W.: Bainite in steels. Metall Trans. A 21A (1990), 767–797.
7. Ławrynowicz Z., Barbacki A.: Carbides precipitation in bainite in an experimental Mo-Cr-V-Ti steel, Conference Proceedings of the 6-th International Conference “Carbides, Nitrides, Borides, ” Poznań-Kołobrzeg. (1993), 42-47.
8. Ławrynowicz Z.: Mechanism of bainite transformation in Fe-Cr-Mo-V-Ti-C steel. International Journal of Engineering. 12, (1999), 81-86.
9. Honeycombe R.W.K.: Ferrite. Met. Sci. 6. (1980), 201-214.
10. Ławrynowicz Z., Barbacki A.: Features of Bainite Transformation in Steels. Advances in Materials Science vol. 2 (2002), 5-32.
11. Ławrynowicz Z.: Transition from Upper to Lower Bainite in Fe-C-Cr Steel. Materials Science and Technology 20 (2004), 1447-1454.
12. Hillert M.: Paradigm shift for bainite. Scripta Materialia 47 (2002), 175-180.
13. Honeycombe R.W.K., Bhadeshia, H.K.D.H.: Steels, microstructure and properties. London: Edward Arnold; (1995).
DOI :
Cytuj : Stanisławska, A. ,Grdulska, A. ,Ławrynowicz, Z. ,Skibicki, A. , Bainite morphology in two experimental Mo-Cr and Mo-Cr-V-Ti steels. Advances in Materials Science Vol.14, nr 3(41)/2014
[Top]

Nanoindentation studies of TNZ and Ti2448 biomaterials after magnetoelectropolishing

Czasopismo : Advances in Materials Science
Tytuł artykułu : Nanoindentation studies of TNZ and Ti2448 biomaterials after magnetoelectropolishing

Autorzy :
Stanisławska, A.
Gdansk University of Technology, Department of Materials Science and Welding, Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, alicja.stanislawska@op.pl,
Grdulska, A.
Institute of Machine Tools and Production Engineering, Technical University of Łódź, anna.grdulska@p.lodz.pl,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Skibicki, A.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland,
Hryniewicz, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland, Tadeusz.Hryniewicz@tu.koszalin.pl,
Rokosz, K.
Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland,
Rokicki, R.
Electrobright, 142 W. Main St, Macungie, PA 18062, USA,
Prima, F.
Ecole Nationale Supérieure de Chimie de Paris, France, fredoprima@gmail.com,
Abstrakty : This work presents the nanoindentation results of two newly developed titanium alloy biomaterials, TNZ and Ti2448, after different surface treatments. The investigations were performed on the samples, AR – as received, MP – after abrasive polishing, EP – after a standard electropolshing, and MEP – after magnetoelectropolishing. The electropolishing processes, both EP and MEP, were conducted in the same proprietary electrolyte based on concentrated sulfuric acid. The mechanical properties of the titanium alloys biomaterials demonstrated an evident dependence on the surface treatment method, with MEP samples revealing extremely different behaviour and mechanical properties. Such a different mechanical behaviour may mean completely different composition and thickness of the surface film formed on the studied samples after MEP.

Słowa kluczowe : Nanoindentation, magnetoelectropolishing MEP, TNZ surface, Ti2448 surface,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 3(41)
Strony : 34 – 44
Bibliografia : 1. Hryniewicz T., Rokosz K., Valíček J., Rokicki R., Effect of magnetoelectropolishing on nano-hardness and Young’s modulus of titanium biomaterial, Materials Letters, 83 (2012), 69–72.
2. Hryniewicz T., Konarski P., Rokicki R., Valíček J., SIMS studies of titanium biomaterial hydrogenation after magnetoelectropolishing, Surf. Coat. Technol., 206 (2012), 4027–4031.
3. Rokicki R., Haider W., Hryniewicz T., Influence of sodium hypochlorite treatment of electro-polished and magnetoelectropolished nitinol surfaces on adhesion and proliferation of MC3T3 pre-osteoblast cells, J. Mater. Sci. Mater. Med., 23 (2012), 2127–2139.
4. Rokicki R., The passive oxide film on electropolished titanium, Met. Finish., 88 (1990), 65–66.
5. Kuhn A., The electropolishing of titanium and its alloys, Met. Finish., 102(6) (2004), 80–86.
6. Hryniewicz T., Rokicki R., Rokosz K., Corrosion and Surface characterization of titanium bio-material after magnetoelectropolishing, Surf. Coat. Technol., 203(10-11) (2009), 1508–1515.
7. Simka W., Kaczmarek M., Baron-Wiecheć A., Nawrat G., Marciniak J., Żak J., Electropolishing and passivation of NiTi shape memory alloy, Electrochimica Acta, 55(7), (2010), 2437–2441.
8. Simka W., Mosiałek M., Nawrat G., Nowak P., Żak J., Szade J., Winiarski A., Maciej A., Szyk-Warszyńska L., Electrochemical polishing of Ti–13Nb–13Zr Alloy, Surf. Coat. Technol., 213, (2012), 239–246.
9. Rokicki R., Hryniewicz T., Rokosz K., Modifying metallic implants with magnetoelectropolish-ing, Med. Device & Diagn. Industry, 30(1), (2008), 102–11.
10. Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolished titanium biomaterial, Chapter 11, in Biomaterials Science and Engineering, Rosario Pignatello (ed.), ISBN 978-953-308-118-2; InTech, (2011), 227–248.
11. Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing for metal surface Modification, Trans. Inst. Met. Finish., 85(6) (2007), 325–32.
12. Hryniewicz T., Rokosz K., On the wear inspection and endurance recovery of nitinol endodontic files, PAK (Measurement Automation and Monitoring), 55(4) (2009), 247–250.
44 ADVANCES IN MATERIALS SCIENCE, Vol. 14, No. 3 (41), September 2014
13. Long M, Rack HJ. Titanium alloys in total joint replacement–a materials science perspective. Biomaterials, 19(18) (1998), 1621-1639.
14. Pluta Z., Hryniewicz T., Quantitative determination of material hardness, J. Quantum Inform. Sci., 1(3) (2011), 127–134.
15. Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing process improves characteristics of finished metal surfaces, Met. Finish., 104(12) (2006), 26–33.
16. Hryniewicz T., Rokosz K., Rokicki R., Surface investigation of NiTi rotary endodonticinstru-ments after magnetoelectropolishing, MRS Proceedings, Biomaterials (XVIII International Mate-rials Research Congress, 9. Biomaterials, Cancun, Mexico, 16–20 August 2009), vol. 1244E978-1-60511-221-3; 2009, 21–32.
17. Rokosz K., Hryniewicz T., Valíček J., Harničárová M., Vyležík M., Nanoindentation measurements of AISI 316L biomaterial samples after annual immersion in Ringer’s solution followed by electrochemical polishing in a magnetic field, PAK (Measurement Automation and Monitoring), 58(5) (2012), 460-463.
18. Shuman D., Computerized Image Analysis Software for Measuring Indents by AFM, Micros-copy-Analysis, P 21, (May 2005)Fischer-Cripps, A.C. Nanoindentation. Springer, New York, 2004.
19. Oliver W.C., and Pharr G.M., Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res., 19 (2004), 3-27.
20. Chuang L.C., Luo C.H., Yang S., The structure and mechanical properties of thick rutile–TiO2 films using different coating treatments, Appl. Surf. Sci., 258 (201), 1297-303.
21. Cheng Y-T., Cheng C-M., Scaling, dimensional analysis, and indentation measurements, Mater. Sci. Eng. R, 44 (2004), 91-149.
22. Rokicki R., US Patent 7632390, 2009.
23. Technical documentation and manual of HYSITRON™. www.hysitron.com
24. Marteleur M., Sun F., Gloriant T., Vermaut P., Jacques P.J., and Prima F., On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects, Scripta Materialia, 66 (2012), 749-752.
25. StatSoft Inc. STATISTICA (data analysis software system), version 10. www.statsoft.com 2011.
DOI :
Cytuj : Stanisławska, A. ,Grdulska, A. ,Ławrynowicz, Z. ,Skibicki, A. ,Hryniewicz, T. ,Rokosz, K. ,Rokicki, R. ,Prima, F. , Nanoindentation studies of TNZ and Ti2448 biomaterials after magnetoelectropolishing. Advances in Materials Science Vol.14, nr 3(41)/2014
[Top]

Effect of carbon content in stainless steels on quantity of grinding energy

Czasopismo : Advances in Materials Science
Tytuł artykułu : Effect of carbon content in stainless steels on quantity of grinding energy

Autorzy :
Stanisławska, A.
Gdansk University of Technology, Department of Materials Science and Welding, Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, alicja.stanislawska@op.pl,
Grdulska, A.
Institute of Machine Tools and Production Engineering, Technical University of Łódź, anna.grdulska@p.lodz.pl,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Skibicki, A.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland,
Hryniewicz, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland, Tadeusz.Hryniewicz@tu.koszalin.pl,
Rokosz, K.
Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland,
Rokicki, R.
Electrobright, 142 W. Main St, Macungie, PA 18062, USA,
Prima, F.
Ecole Nationale Supérieure de Chimie de Paris, France, fredoprima@gmail.com,
Wójcik, R.
Lodz University of Technology, Institute of Machine Tools and Production Engineering, Stefanowskiego 1/15, 90-924 Łódź, rwojcik@p.lodz.pl,
Abstrakty : The paper presents a study of the process of grinding stainless steels with different carbon contents. Verified the size and scope of the energy which is introduced in the surface layers for different types of abrasive grains and binders. The influence of parameters in plunge grinding process was considered in studies. The energy ratio was used for this purpose, which was calculated by multiplying energy and time of grinding wheel contact with the workpiece. To investigate influence of different carbon content on the level of energy density generated during grinding process special parameter Bp have been evaluated. The grinding tests were conducted in dry grinding technique.

Słowa kluczowe : grinding, stainless steel,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 3(41)
Strony : 45 – 52
Bibliografia : 1. Dudek A., Wrońska A: Corrosion of steel type SNOK and ways to prevent it in Polish, Stal. Metale & Nowe Technologie. Vol. 1-2 (2014), 88-91.
2. Cobb H. M.: The History of Stainless Steel, ASM International, 2010.
3. Nowacki J.: Duplex steel and its weldability in Polish. Przegląd Spawalnictwa, 10 (2008), 34-44.
4. Baszkiewicz J., Kamiński M.: Basics of corrosion of materials in Polish. Oficyna wydawnicza Politechniki Warszawskiej, Warszawa 2007.
5. Krakowiak S.: Pitting corrosion of alloy steels. Corrosion processes in Polish. Gdańsk 2007.
6. Korzeniewski H.: Background to the study effect of temperature on the corrosion resistance grinding stainless steel pipe water purification in Polish. XXVII Naukowa Szkoła Obróbki Ściernej, Koszalin 2004.
7. Partington E.: Application of corrosion-resistant steel in the food industry, Euroinox, 7, 2002
8. Metalworking World.: Magazine Business and Technology Corporation, Sandvik Coromant.
9. Burakowski T., Wierzchoń T.: Surface engineering of metals in Polish. WNT Warszawa 1995.
10. Marciniak J.: Biomaterials for bone surgery in Polish. Wydawnictwo Politechniki Śląskiej 1992.
11. Wójcik R.: New media and ways to bring the grinding zone in Polish. Archiwum Technologii Maszyn i Automatyzacji, 28, 4 (2008), 137-145.
12. http//www.atlassteels.co.nz.: The Atlas Steel Technical Handbook of Stainless, Atlas Steel Technical Department, 2010.
13. Kruszyński B., Wójcik R.: Residual Stress in Grinding, Journal of Materials Processing Technology 109 (2001), 254-257.
14. www.hazmetal.com/f/kutu/1236776229.
DOI :
Cytuj : Stanisławska, A. ,Grdulska, A. ,Ławrynowicz, Z. ,Skibicki, A. ,Hryniewicz, T. ,Rokosz, K. ,Rokicki, R. ,Prima, F. ,Wójcik, R. , Effect of carbon content in stainless steels on quantity of grinding energy. Advances in Materials Science Vol.14, nr 3(41)/2014
[Top]

The determination of abrasion resistance of selected biomaterials for the friction pairs in the hip joint endoprosthesis

Czasopismo : Advances in Materials Science
Tytuł artykułu : The determination of abrasion resistance of selected biomaterials for the friction pairs in the hip joint endoprosthesis

Autorzy :
Stanisławska, A.
Gdansk University of Technology, Department of Materials Science and Welding, Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, alicja.stanislawska@op.pl,
Grdulska, A.
Institute of Machine Tools and Production Engineering, Technical University of Łódź, anna.grdulska@p.lodz.pl,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Skibicki, A.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland,
Hryniewicz, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland, Tadeusz.Hryniewicz@tu.koszalin.pl,
Rokosz, K.
Koszalin University of Technology, Faculty of Mechanical Engineering, Division of Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland,
Rokicki, R.
Electrobright, 142 W. Main St, Macungie, PA 18062, USA,
Prima, F.
Ecole Nationale Supérieure de Chimie de Paris, France, fredoprima@gmail.com,
Wójcik, R.
Lodz University of Technology, Institute of Machine Tools and Production Engineering, Stefanowskiego 1/15, 90-924 Łódź, rwojcik@p.lodz.pl,
Zasińska, K.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials and Welding Engineering, Gdansk, Poland, kzasinska@gmail.com,
Seramak, T.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials and Welding Engineering, Gdansk, Poland,
Łubiński, J.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Automotive Technology, Gdansk, Poland,
Abstrakty : The key requirement for the modern endoprosthesis is high durability of the friction components, which results in long and trouble-free operation in the human body. The durability of currently used endoprosthesis is often limited by tribological wear processes of friction components (e.g. between the head and the acetabular component in a hip joint endoprosthesis) [8, 19, 23, 24]. In order to compare the tribological wear, tribological tests were carried out by means of tribometer on friction pairs of the following composition: implantation steel 316 LVM/PE-UHMW and titanium alloy Ti13Nb13Zr/PE-UHMW. Determining of the friction coefficient, measured profiles of surface roughness and microscopic observation allowed to evaluate the abrasive wear of the tested biomaterials.

Słowa kluczowe : abrasive wear, biomaterials, endoprosthesis, titanium alloys, hip joint,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 3(41)
Strony : 53 – 63
Bibliografia : 1. Cho H., Wei W., Kao H., Cheng C.: Wear behavior of PE-UHMW sliding on artificial hip arthroplasty materials. Materials Chemistry and Physics, 88 (2004), 9-16.
2. Deptuła P., Grądzka-Dahlke M., Dąbrowski J. R.: Investigation of near beta-phase titanium implant alloys produced by the powder metallurgy method in Polish. Inżynieria Materiałowa 2009/5, (2009), 455-457.
3. Domingo J.: Vanadium and diabetes. What about vanadium toxicity? Molecular and Cellular Biochemistry 203 (2000), 185-187.
4. Gierzyńska-Dolna M., Sulej-Chojnacka J., Wiśniewski T., Rybak T.: New materials for knee endoprosthesis pads in Polish. Tribologia, rok XLI nr 5/2010 (2010), 223-233.
5. Gispert M., Serro A., Colaco R., Saramago B.: Friction and mechanisms in hip prosthesis: Comparison of joint materials behaviour in several lubricants. Wear 260 (2006), 149-158.
6. Hermawan H., Ramdan D., Djuansjah J.: Metals for Biomedical Applications. Biomedical Engineering – From Theory to Applications. InTech Pub, Croatia (2011), 411-430.
7. Jedynak B., Mierzwińska-Nastalska E.: Titanium – its properties and application in prosthetic dentistry. Dental Forum, Protetyka Stomatologiczna 1/2013/XXXXI (2013), 224-233.
8. Kozierski C., Trzaskacz T., Ferenc Z.: Tribological properties of degenerate synovial joints in Polish. Tribologia, XLI nr 4/2010 (2010), 211-222.
9. Krasicka-Cydzik E., Mstowski J., Ciupik F.: Metallic implant materials: implant steel and titanium alloys. System DERO, Zielona Góra: LfC (2005), 81-91.
10. Kumar P., Oka M., Ikeuchi K., Shimizu K., Yamamuro T., Okumura H., Kotoura Y.: Low wear rate of PEUHMW against zirconia ceramic (Y-PSZ) in comparison to alumina ceramic and SUS 316L alloy. Journal of Biomedical Materials Research, Volume 25, Issue 7, (1991), 813-828.
11. Li X., Dong H., Shi W.: New insights into wear of Ti6Al4V by ultra-high molecular weight polyethylene under water lubricated conditions. Wear 250, (2001), 553-560.
12. Łubiński J., Olszewski H., Olszewski A.: A multi-mass discrete model of tribometer for the research on dynamic friction characteristics. Tribologia, XLI, 6/2010 (2010), 69-78.
K. Zasińska, T. Seramak, J. Łubiński: The determination of abrasion resistance of selected …. 63
13. Marciniak J.: Biomaterials in bone surgery in Polish. Wydawnictwo Politechniki Śląskiej, Gliwice (1992).
14. Marciniak J.: Biomaterials in Polish. Wydawnictwo Politechniki Śląskiej, Gliwice (2002).
15. Morlock M., Schneider E., Bluhm A., Vollmer M., Bergmann G., Müller V., Honl M.: Duration and frequency of everyday activities in total hip patients. Journal of Biomechanics 34 (2001), 873-881.
16. Munuera C., Matzelle T., Kruse N. at all.: Surface elastic properties of Ti alloys modified for medical implants: A force spectroscopy study, Acta Biomaterialia 3 (2007), 113-119.
17. Okazaki Y.: Ito: New Ti alloy without Al and V for medical implants, Advanced Engineering Materials, Volume 2, Issue 5 (2000), 278-281.
18. Pawelec Z., Molenda J., Wolszczak M.: Abrasive wear resistance of metal-polymer composites in Polish. Tribologia, XLI nr 5/2010 (2010), 117-130.
19. Pawlak Z., Jurvelin J., Urbaniak W.: Biotribochemistry of the lubrication of natural joints in Polish. Tribologia, XLI nr 5/2010 (2010), 131-141.
20. Saikko V.: A simulator study of friction in total replacement hip joints. Proc. Inst. Mech. Engrs, 206, (1992), 201-211.
21. Seramak T., Serbiński W., Zieliński A.: Porous biomaterial for orthopedic implants based on titanium alloy. Advances in Materials Science, Vol. 11, 1 (2011), 27-34.
22. Serbiński W., Zieliński A., Seramak T., Ossowska A., Sobieszczyk S., Supernak M., Majkowska B.: Surface treatment of porous Ti13Nb13Zr alloy for biomedical applications in Polish. Inżynieria Materiałowa 2012/1 (2012), 6-12.
23. Wendland J., Gierzyńska-Dolna M., Rybak T., Wiśniewski T., Rajchel B.: Investigation for a new biomaterial for the hip endoprostheses elements in Polish. Obróbka Plastyczna Metali, XX, 2 (2009), 1-17.
24. Wendland J., Wiśniewski T., Rybak T., Gierzyńska-Dolna M.: Preliminary research on new solutions concerning biomaterials used for endoprostheses' friction elements in Polish. Obróbka Plastyczna Metali XIX, 1 (2008), 1-5.
25. http://www.tribologia.eu/ptt/inst/polGdanKoEksMa.htm
DOI :
Cytuj : Stanisławska, A. ,Grdulska, A. ,Ławrynowicz, Z. ,Skibicki, A. ,Hryniewicz, T. ,Rokosz, K. ,Rokicki, R. ,Prima, F. ,Wójcik, R. ,Zasińska, K. ,Seramak, T. ,Łubiński, J. , The determination of abrasion resistance of selected biomaterials for the friction pairs in the hip joint endoprosthesis. Advances in Materials Science Vol.14, nr 3(41)/2014
[Top]

Degradation of microstructure and mechanical properties of 15HM steel after 420 000 hours of service

Czasopismo : Advances in Materials Science
Tytuł artykułu : Degradation of microstructure and mechanical properties of 15HM steel after 420 000 hours of service

Autorzy :
Pietryka, I.
Institue of Materials Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland,
Golański, G.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Jasak, J.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Słania, J.
Welding Departament, Czestochowa University of Technology, Armii Krajowej 19c, 42-200 Częstochowa, Poland,
Urbańczyk, P.
UDT, W. Przybylaka 8, 41-300 Dąbrowa Górnicza, Poland,
Wieczorek, P.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Abstrakty : The results of a microstructure examination and mechanical properties of 15HM (13CrMo4-5) steel are presented in the article. The examined elements are the samples taken from the live steam pipeline serviced for about 420 000 hours at the temperature of about 510°C, and pressure of 11 MPa. It has been shown that after long-term operation the examined steel has a ferritic-pearlitic microstructure with a dominant content of quasipolygonal ferrite. The processes of fragmentation of lamellar precipitates and their spheroidization were observed in pearlite. On the grain boundaries, single lamellar precipitations were observed. Moreover, numerous precipitations at the interface of three grain boundaries were revealed. The examined steel, despite its long-term service time, was characterized by the strength properties (YS, TS) slightly lower than the required minimum, the impact energy value KV equal to 20 J, and the transition temperature shifted to a temperature above zero. Relatively low level of degradation of the microstructure and mechanical properties of the investigated steel can result from high stability of the ferritic-pearlitic microstructure.

Słowa kluczowe : niskie stopy stali, mikrostruktury, właściwości mechaniczne, low alloys steel, microstructure, mechanical properties,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 4(42)
Strony : 5 – 11
Bibliografia : 1. Jasiński A.: Extented operational time of domestic power units – chances and threats in Polish, Energetyka, 3 (2013), 551-556.
2. Dobrzański J.: Materials science interpretation of the life of steels for power plants in Polish, Open Access Library, 3, 2011.
3. Dziuba – Kałuża M., Dobrzański J., Zieliński A.: Mechanical properties of Cr-Mo and Cr-Mo-V low-alloy steel welded joints after long-term service under creep conditions, Arch. Mater. Sc. Eng., 63 (2013), 5-12.
4. Dobrzański J., Krztoń H., Zieliński A.: Development of the precipitation processes in low-alloy Cr-Mo type steel for evolution of the material state after exceeding the assessed lifetime, J. Achiev. Mater. Manufac. Eng., 2, 23, (2007), 19-22.
5. PN-75/H-84024 Steels for elevated temperatures service. Grades.
6. PN-EN ISO 643:2012 Steels – Micrographic determination of the apparent grain size.
7. Khan S. A., Islam M. A.: Influence of prior austenite grain size on the degree of temper embrittlement in Cr-Mo steel, J. Mater. Eng. Perform., 16, (2007), 80-85.
8. Nguyen T. D., Sawada K., Kushima H., Tabuchi M., Kimura K.: Change of precipitation free zone during long – term creep in 2.25Cr-1Mo steel, Mater. Sc. Eng. A, 591A (2014), 130-135.
9. Golański G., Pietryka I., Słania J., Jasak J., Urbańczyk P., Microstructure and mechanical properties of welded joint of 12HMF steel after long – term service in Polish, Welding Technology Review Przegląd Spawalnictwa, 5, 2014, 49-53.
10. Joarder A., Sarma D. S., Cheruvu N. S.: Effect of long – term service exposure on microstructure and mechanical properties of a CrMoV steam turbine rotor steel, Metall. Trans., 22A (1991), 1811-1820.
11. Pigrova P. G.: Carbide diagrams and precipitation of alloying elements during aging of low-alloy steels, Metall. Mater. Trans. A, 27 (1996), 498-502.
12. Janovec J., Svoboda M., Vyrostkova A., Kroupa A.: Time-temperature-precipitation diagrams of carbide evolution in low alloy steels, Mater. Sc. Eng., 402A (2005), 288-293.
13. Stevens R. A., Flewitt P. E. J.: The effect of phosphorus on the microstructure and creep properties of 2¼%Cr1%Mo steel, Acta Metall., 5 (1986), 849-866. CrossRef
14. Dobrzański J., Hernas A.: Correlation between phase composition and life-time of 1Cr-0.5Mo steels during long-term service at elevated temperatures, J. Mater. Proces. Technol., 53 (1995), 101-108.
15. Afrouz A., Collins M. J., Pilikngton R.: Microstructural examination of 1Cr-0.5Mo steel during creep Met. Technol., 12 (1983), 461-463.
16. Stachura S., Stradomski Z., Golański G.: Phosphorus in ferroalloys in Polish, Hutnik – Wiadomości Hutnicze, 5 (2001), 184-193.
17. Janovec J.: Nature of alloy steel intergranular embrittlement, Veda Publ., Bratislava, 1999.
18. Islam M. A., Novovic M., Bowen P., Knott J.F.: Effect of phosphorus segregation on fracture properties of 2.25Cr-1Mo pressure vessel steel, J. Mater. Eng. Perform., 12, 3 (2003), 244-248.
19. Suzuki S., Obata M., Abiko K., Kimura H.: Effect of carbon on the grain boundary segregation of phosphorus in α – iron, Sc. Metall. 17 (1983), 1325-1328.
DOI :
Cytuj : Pietryka, I. ,Golański, G. ,Jasak, J. ,Słania, J. ,Urbańczyk, P. ,Wieczorek, P. , Degradation of microstructure and mechanical properties of 15HM steel after 420 000 hours of service. Advances in Materials Science Vol.14, nr 4(42)/2014
[Top]

Morphological and chemical relationships in nanotubes formed by anodizing of Ti6al4v alloy

Czasopismo : Advances in Materials Science
Tytuł artykułu : Morphological and chemical relationships in nanotubes formed by anodizing of Ti6al4v alloy

Autorzy :
Pietryka, I.
Institue of Materials Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland,
Golański, G.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Jasak, J.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Słania, J.
Welding Departament, Czestochowa University of Technology, Armii Krajowej 19c, 42-200 Częstochowa, Poland,
Urbańczyk, P.
UDT, W. Przybylaka 8, 41-300 Dąbrowa Górnicza, Poland,
Wieczorek, P.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Kaczmarek-Pawelska, A.
University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland, a.kaczmarek@ibem.uz.zgora.pl,
Krasicka-Cydzik, E.
University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland,
Abstrakty : The electrochemical formation of oxide nanotubes on the Ti6Al4V alloy has been so far difficult due to easy dissolution of vanadium reach β-phase of the two phase material. Due to the topographical heterogeneity of the anodic layer in nano and microscale at anodizing of the Ti6Al4V alloy we focused to establish the relationships between nanotube diameters on both phases of the alloy and fluorides concentration in electrolyte. We studied the effect of fluoride concentration (0.5-0.7 wt.%) in 99% ethylene glycol on morphological parameters of nanotube layer on the Ti6Al4V alloy anodized at 20V for 20 min. Nanotubes with diameter ~40-50 nm ±5nm on the entire Ti6Al4V alloy surface in electrolyte containing 0.6% wt. NH4F were obtained. Microscale roughness studies revealed that nanotubular layer on α-phase is thicker than on β-phase. The annealing of nanotube layers at 600°C for 2h in air, nitrogen and argon, typically performed to improve their electrical properties, influenced chemical composition and morphology of nanotubes on the Ti6Al4V alloy. The vanadium oxides (VO2, V2O3, V2O5) were present in surface nanotube layer covering both phases of the alloy and the shape of nanotubes was preserved after annealing in nitrogen.

Słowa kluczowe : Ti-6A-l4V, nanorurki tlenku, tlenki wanadu, dwutlenek tytanu, Ti6Al4V, oxide nanotubes, vanadium oxides, titanium dioxide,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 4(42)
Strony : 12 – 20
Bibliografia : 1. Variola F., Yi J.H., Richert L., Wuest J.D., Rosei F., Nanci A.: Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation. Biomaterials 29 (2008), 1285-1298.
2. Narayanan R., Seshadri S.K.: Phosphoric Acid anodization of Ti6Al4V- structural and corrosion aspects. Corrosion Science 49 (2007), 542-558.
3. Lukacova H., Plesingerova B., Vojtko M., Ban G.: Electrochemical Treatment of Ti6Al4V. Acta Metallurgica Slovaca 3 (2010), 186-193.
4. Abdolldhi Z., Ziaee A.A., Afshar A.: Investigation of titanium oxide layer in thermalelectrochemical anodizing of Ti6Al4V alloy. International Journal of Chemical and Biological Engineering 2 (2009), 44- 47.
5. Brown S.A., Lemons J.E.: Medical Applications of Titanium and Its Alloys: The Material and Biological Issues. Brown S.A. ed., ASTM International, USA, 1996.
6. Mukherjee B., Patra B., Mahapatra S., Banerjee P., Tiwari A., Chatterjee M.: Vanadium an enhancement of atypical biological significance. Toxicology Letters 150 (2004), 135-143.
7. Krasicka- Cydzik E., Kowalski K., Kaczmarek A., Głazowska I., Białas- Heltowski K.: Competition between phosphates and fluorides at anodic formation of titania nanotubes on titanium. Surface and Interface Analysis 42 (2010), 471-474.
8. Kaczmarek A., Klekiel T., Krasicka- Cydzik E.: Fluoride concentration effect on the anodic growth of self-aligned oxide nanotube array on Ti6Al7Nb alloy. Surface and Interface Analysis 42 (2010), 510-514.
9. Dahorte S.N., Vora H.D., Pavani K., Banerjee R.: An integrated experimental and computational approach to laser surface nitriding of Ti6Al4V. Applied Surface Science 271 (2013), 141-148.
10. Wu C., Ramaswamy Y., Gale D., Yang W., Xiao K., Zhang L., Yin Y., Zreiqat H.: Novel sphene coatings on Ti6Al4V for orthopedic implants using sol-gel method. Acta Biomaterialia 4 (2005), 569- 576.
11. Zhang X. L., Jiang Zh. H., Yao Zh. P., Wu Zh.D.: Electrochemical study of growth behavior of plasma electrolytic oxidation coating on Ti6Al4V: Effect of the additive. Corrosion Science 52 (2010), 3465- 3476.
12. Paital S.R., Dahotre N.B.: Calcium phosphate coatings for bio-implant applications: Materials, performance factors and methodologies. Materials Science and Engineering R 66 (2009), 1-70.
13. Macak. J.M., Tsuchiya H., Taveira L., Ghicov A., Schmuki P.: Self- organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. Journal of Biomedical Materials Research 4 (2005), 928-933.
14. Balaur E., Macak J.M., Taveira L., Schmuki P.: Tailoring the wettability of TiO2 nanotube layers.Electrochemistry Communications 7 (2005), 1066-1070.
15. Grimes C.A., Mor G.K.: TiO2 Nanotubes: Synthesis, Properties and Applications. Graims C.A. ed., Springer, U.S.A. 2009.
16. Xiao P., Garcia B.B., Guo Q., Liu D.W., Cao G.: TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing. Electrochemistry Communications 9 (2007), 2441-2447.
17. Liu X., Chu P.K., Ding C.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering R 47 (2004), 49-121.
18. Rehder D.: Bioinorganic Vanadium Chemistry. Wollins D. ed., John Willey& Sons Ltd.Chichester, UK, 2008.
19. Privman M., Hepel T.: Electrochemistry of vanadium electrodes Part 1. Cyclic voltametry in aqueous solutions. Journal of Electroanalytical Chemistry 382 (1995), 137-144.
20. Wu ch., Wei H., Ning B., Xie Y.: New Vanadium Oxide Nanostructures: Controlled Synthesis and Their Smart Electrical Switching Properties. Advanced Materials 22 (2010) 1972-1976.
21. Jung H., Um S.: An experimental feasibility study of vanadium oxide films on metallic bipolar plates for the cold start enhancement of fuel cell vehicles. International Journal of hydrogen Energy 36 (2011), 15826-15837.
22. Yang Y., Kim D., Schmuki P.: Lithium-ion intercalation and electrochromism in ordered V2O5 nanoporous layers. Electrochemistry Communications 13 (2011), 1198-1201.
23. Podraza N.J., Gauntt B.D., Motyka M.A., Dickey E.C., Horn M.W.: Electrical and optical properties of sputtered amorphous vanadium oxide thin films. Journal of Applied Physics 111 (2012), 073522.
24. Yang Y., Lee K., Zobel M., Maćković M., Unruh T., Spiecker E., Schmuki P.: Formation of Highly Ordered VO2 Nanotubular/ Nanoporous Layers and Their Supercooling Effect in Phase Transitions. Advanced Materials 24 (2012), 1571-1575.
25. Martinez- Huerta M.V., Fierro J.L.G., Banares M.A.: Monitoring the states of vanadium during the transformation of TiO2 anatase-to-rutile reactive environments: H2 reduction and oxidative dehydrogenation of ethane. Catalysis Communications 11 (2009), 15-19.
26. Yang B., Ng C.K., Fung M.K., Ling C.C., Djurisic A.B., Fung S.: Annealing study of titanium oxide nanotube arrays. Materials Chemistry and Physics 130 (2011), 1227-1231.
DOI :
Cytuj : Pietryka, I. ,Golański, G. ,Jasak, J. ,Słania, J. ,Urbańczyk, P. ,Wieczorek, P. ,Kaczmarek-Pawelska, A. ,Krasicka-Cydzik, E. , Morphological and chemical relationships in nanotubes formed by anodizing of Ti6al4v alloy. Advances in Materials Science Vol.14, nr 4(42)/2014
[Top]

Comparative in vitro research of the human aortic bioprosthesis

Czasopismo : Advances in Materials Science
Tytuł artykułu : Comparative in vitro research of the human aortic bioprosthesis

Autorzy :
Pietryka, I.
Institue of Materials Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland,
Golański, G.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Jasak, J.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Słania, J.
Welding Departament, Czestochowa University of Technology, Armii Krajowej 19c, 42-200 Częstochowa, Poland,
Urbańczyk, P.
UDT, W. Przybylaka 8, 41-300 Dąbrowa Górnicza, Poland,
Wieczorek, P.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Kaczmarek-Pawelska, A.
University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland, a.kaczmarek@ibem.uz.zgora.pl,
Krasicka-Cydzik, E.
University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland,
Dawidowska, K.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, kindaw@wp.pl,
Abstrakty : Evaluate of the usefulness and reliability of structures based on the analysis of recorded parameters determining the flow through the Human Aortic Bioprosthesis (HAB) have been dealt with. By flow parameters changes determining the performance environment of prosthesis analyzed change of the motion dynamics of the valve leaflets as a function of pressure, thereby determining the degree of alignment of the prosthesis to the performance conditions. Based on the gathered measurement data a comparative analysis of flow rate valve prostheses for different frequency values of the piston pump imitating the heart, different ejection capacity and pressure conditioning work environment prosthesis were studied. Interpretation of the recorded image gave the basis for determining the Effective Orifice Area (EOC).

Słowa kluczowe : bioproteza aorty ludzkiej, proteza aorty zaworu, badania zmęczeniowe, zastawka serca, human aortic bioprosthesis, aortic valve prosthesis, fatigue tests, heart valves,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 4(42)
Strony : 21 – 27
Bibliografia : 1. Li J, Luo XY, Kuang ZB., A nonlinear anisotropic model for porcine aortic heart valves. Journal of Biomechanics 34 (2001), 1279-1289.
2. Dasi LP, Simon HA, Sucosky P, Yoganathan AP., Fluid Mechanics of Artificial Heart Valves. Clin Exp Pharmacol Physiol 36(2) (2009), 225-237.
3. Bartuś K, Sadowski J, Kapelak B, Myć J, Bartuś S, Oleś K, Filip G., Evaluation of the aortic valve gradient in the patients with stentless 3F bioprothesis made of equine pericardium – one year follow-up in Polish. Kardiochirurgia i Torakochirurgia Polska, 8 (3) (2011), 328-331.
4. Maselli D, Pizio R, Bruno LP, Di Bella I, De Gasperis C., Left Ventricular Mass Reduction After Aortic Valve Replacement: Homografts, Stentless and Stented Valves. Ann Thorac Surg. 67 (1999), 966 -971.
5. Kunadian B, Vijayalakshmi K, Thornley AR, de Belder MA, Hunter S, Kendall S, Graham R, Stewart M, Thambyrajah J, Dunning J., Meta-Analysis of Valve Hemodynamics and Left Ventricular Mass Regression for Stentless Versus Stented Aortic Valves. Ann. Thorac. Surg. 84 (2007) 73-79.
6. Rocha Farias F, Diniz Affonso da Costa F, Mendel Balbi Filho E, de Fátima Fornazari D, Collatusso C, Dumsch de Aragon Ferreira A, Veiga Lopes S, Fernandes TA., Aortic valve replacement with the cardioprotese premium bovine pericardium bioprosthesis: four-year clinical results. Interactive Cardio Vascular and Thoracic Surgery 15 (2012), 229-234.
7. Niclauss L, von Segesser LK, Ferrari E., Aortic biological valve prosthesis in patients younger than 65 years of age: transition to a flexible age limit? Interactive CardioVascular and Thoracic Surgery, 16 (2013), 501-508.
8. Polish Standard PN-EN ISO 5840:2009, Cardiovascular implants-implants heart valves
DOI :
Cytuj : Pietryka, I. ,Golański, G. ,Jasak, J. ,Słania, J. ,Urbańczyk, P. ,Wieczorek, P. ,Kaczmarek-Pawelska, A. ,Krasicka-Cydzik, E. ,Dawidowska, K. , Comparative in vitro research of the human aortic bioprosthesis. Advances in Materials Science Vol.14, nr 4(42)/2014
[Top]

Evaluation of strain distribution for the P91 steel under static load using espi system

Czasopismo : Advances in Materials Science
Tytuł artykułu : Evaluation of strain distribution for the P91 steel under static load using espi system

Autorzy :
Pietryka, I.
Institue of Materials Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland,
Golański, G.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Jasak, J.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Słania, J.
Welding Departament, Czestochowa University of Technology, Armii Krajowej 19c, 42-200 Częstochowa, Poland,
Urbańczyk, P.
UDT, W. Przybylaka 8, 41-300 Dąbrowa Górnicza, Poland,
Wieczorek, P.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Kaczmarek-Pawelska, A.
University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland, a.kaczmarek@ibem.uz.zgora.pl,
Krasicka-Cydzik, E.
University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland,
Dawidowska, K.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, kindaw@wp.pl,
Grzywna, P.
Institute of Fundamental Technological Research Polish Academy of Sciences, Department of Strength of Materials, Warsaw, Poland, pgrzywna@ippt.pan.pl,
Kukla, D.
Institute of Fundamental Technological Research Polish Academy of Sciences, Department of Strength of Materials, Warsaw, Poland,
Abstrakty : The goal of the research was to evaluate the change of displacement/strain phases in the P91 steel under static load conditions. Undertaken tests were aimed at estimation and analysis of the impact of the material state, which was subjected to loading conditions, on the distribution of stress pattern using ESPI system. Specimen made of high temperature creep resistant steel X10CrMoVNb9-1 (P91) used as a construction material for boiler steam feed heaters, vapor tanks, pressure vessels and vapor pipelines, is used in the service conditions of temperature range up of 650°C. Test samples were taken from two P91 steel pipes. One sample came from a segment of a pipeline transporting fresh vapor in time 80 000 h, under the pressure of 8.4 MPa and temperature 540 °C. The second sample was the same material but in the delivery state.

Słowa kluczowe : zmęczenie, wzór elektroniczna plamki interferometrii, P91 stali, fatigue, electronic speckle pattern interferometry, P91 steel,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 4(42)
Strony : 28 – 39
Bibliografia : 1. Kukla D., Kowalewski Z., Grzywna P., Kubiak K., Assessment of fatigue damage development in power engineering steel by local strain analysis, Kovove Materialy-Metallic Materials, 52 (2014) 269-277.
2. Dietrich L., Grzywna P., Kukla D., The use of optical methods to the location of fatigue damage in Polish, Welding Technology Review Przegląd Spawalnictwa, 13 (2012), 16-18.
3. Rodríguez-Martín R., et al., Use of electronic speckle pattern interferometry in the detection of fatigue failure in high strength steels, Engineering Failure Analysis, 17 (2010), 226-235.
4. Kim K.-S. et al., Analysis of an internal crack of pressure pipeline using ESPI and shearography, Optics & Laser Technology, 35 (2003), 639 – 643.
DOI :
Cytuj : Pietryka, I. ,Golański, G. ,Jasak, J. ,Słania, J. ,Urbańczyk, P. ,Wieczorek, P. ,Kaczmarek-Pawelska, A. ,Krasicka-Cydzik, E. ,Dawidowska, K. ,Grzywna, P. ,Kukla, D. , Evaluation of strain distribution for the P91 steel under static load using espi system. Advances in Materials Science Vol.14, nr 4(42)/2014
[Top]

Evaluation of microstructural changes of S235 steel after rolling on the basis of microscopic observations and eddy current non-destructive method

Czasopismo : Advances in Materials Science
Tytuł artykułu : Evaluation of microstructural changes of S235 steel after rolling on the basis of microscopic observations and eddy current non-destructive method

Autorzy :
Pietryka, I.
Institue of Materials Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland,
Golański, G.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Jasak, J.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Słania, J.
Welding Departament, Czestochowa University of Technology, Armii Krajowej 19c, 42-200 Częstochowa, Poland,
Urbańczyk, P.
UDT, W. Przybylaka 8, 41-300 Dąbrowa Górnicza, Poland,
Wieczorek, P.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Kaczmarek-Pawelska, A.
University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland, a.kaczmarek@ibem.uz.zgora.pl,
Krasicka-Cydzik, E.
University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland,
Dawidowska, K.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, kindaw@wp.pl,
Grzywna, P.
Institute of Fundamental Technological Research Polish Academy of Sciences, Department of Strength of Materials, Warsaw, Poland, pgrzywna@ippt.pan.pl,
Kukla, D.
Institute of Fundamental Technological Research Polish Academy of Sciences, Department of Strength of Materials, Warsaw, Poland,
Kukla, D.
Institut of Fundamental Technological Research Polish Academy of Science, 02-106 Warszawa, ul. Pawińskiego 5b,, dkukla@ippt.gov.pl,
Bałkowiec, A.
Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Wołoska str. 141, Poland, abalkowiec@inmat.pw.edu.pl,
Grzywna, P.
Institut of Fundamental Technological Research Polish Academy of Science, 02-106 Warszawa, ul. Pawińskiego 5b,
Abstrakty : The aim of the study was to determine the microstructure and residual stress changes which appears in the S235 steel (which is designed for operating in elevated temperatures) during cold rolling. The changes of orientation, both morphological and crystallographic, are occurring as a result of the rolling process. Analysis of the results allowed to determine the change in grain morphology (size, shape), determination of grain morphology of the rolling direction and determination of crystallographic texture. The dislocation density present in the material before and after the cold rolling process was estimated on the basis of dislocation structure images obtained via transmission electron microscope. The observed microstructural changes were correlated with the results of nondestructive testing using eddy current method. They allowed for the identification of the state of stress measured on three different surfaces of the rolled sheet (parallel and perpendicular to the rolling direction). As the result the usability of using the non – destructuve techniques of stress level determination was proved.

Słowa kluczowe : Stal S235, mikrostruktury, prądy wirowe, walcowanie na zimno, S235 steel, microstructure, eddy current, cold rolling,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 4(42)
Strony : 40 – 48
Bibliografia : 1. Norfleet D.M., Dimiduk D.M., Polasik S.J., Uchic M.D., Mills M.J.: Dislocation structures and their relationship to strength in deformed nickel microcrystals, Acta Materialia, 56 (2008), 2988-3001.
2. Kukla D., Grzywna P., Zagórski A.: Development evaluation fatigue degradation of P91 steel based on changes in the phase angle of theeddy current signal in Polish, Welding Technology Review, 13 (2012), 8-11.
3. Oka M., Tsuchida Y., Yakushiji T., Enokizono M.: Fatigue Evaluation for a Ferritic Stainless Steel (SUS430) by the Eddy Current Method Using the Pancake-Type Coil. Idee Transactions On Magnetic 46-2 (2010).
4. Kukla D., Kowalewski Z., Grzywna P., Kubiak K., Assessment of fatigue damage development in power engineering steel by local strain analysis, KOVOVE MATERIALY-METALLIC MATERIALS (ISSN: 0023-432X), Vol.52, 5, 269-277.
5. Kukla D., Grzywna P., Karczewski R., Evaluation of the development of fatigue damage based on changes in strain and eddy current parameters in subsequent cycles load in Polish, Welding Technology Review, 5 (2014), 23-31,
6. Khan S.H., Farhad A., usair Khan A., Iqbal M.A., Eddy current detection of changes in stainless steel after cold reduction, Computational Materials Science, Vol. 43 (2008), 623-628.
7. Kashefi M., Kahrobaee S., Nateq M.H., On the Relationship of Magnetic Response to Microstructure in Cast Iron and Steel Parts, Journal of Materials Engineering and Performance, 21 (2012), 1520-15
DOI :
Cytuj : Pietryka, I. ,Golański, G. ,Jasak, J. ,Słania, J. ,Urbańczyk, P. ,Wieczorek, P. ,Kaczmarek-Pawelska, A. ,Krasicka-Cydzik, E. ,Dawidowska, K. ,Grzywna, P. ,Kukla, D. ,Kukla, D. ,Bałkowiec, A. ,Grzywna, P. , Evaluation of microstructural changes of S235 steel after rolling on the basis of microscopic observations and eddy current non-destructive method. Advances in Materials Science Vol.14, nr 4(42)/2014
[Top]

Characterisation and optical studies of copper oxide nanostructures doped with lanthanum ions

Czasopismo : Advances in Materials Science
Tytuł artykułu : Characterisation and optical studies of copper oxide nanostructures doped with lanthanum ions

Autorzy :
Pietryka, I.
Institue of Materials Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland,
Golański, G.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Jasak, J.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Słania, J.
Welding Departament, Czestochowa University of Technology, Armii Krajowej 19c, 42-200 Częstochowa, Poland,
Urbańczyk, P.
UDT, W. Przybylaka 8, 41-300 Dąbrowa Górnicza, Poland,
Wieczorek, P.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Kaczmarek-Pawelska, A.
University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland, a.kaczmarek@ibem.uz.zgora.pl,
Krasicka-Cydzik, E.
University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland,
Dawidowska, K.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, kindaw@wp.pl,
Grzywna, P.
Institute of Fundamental Technological Research Polish Academy of Sciences, Department of Strength of Materials, Warsaw, Poland, pgrzywna@ippt.pan.pl,
Kukla, D.
Institute of Fundamental Technological Research Polish Academy of Sciences, Department of Strength of Materials, Warsaw, Poland,
Kukla, D.
Institut of Fundamental Technological Research Polish Academy of Science, 02-106 Warszawa, ul. Pawińskiego 5b,, dkukla@ippt.gov.pl,
Bałkowiec, A.
Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Wołoska str. 141, Poland, abalkowiec@inmat.pw.edu.pl,
Grzywna, P.
Institut of Fundamental Technological Research Polish Academy of Science, 02-106 Warszawa, ul. Pawińskiego 5b,
Varughese, G.
Department of Physics, Catholicate College, Pathanamthitta, Kerala, India -689645, gvushakoppara@yahoo.co.in,
Rini, V.
Department of Physics, Catholicate College, Pathanamthitta, Kerala, India -689645,
Suraj, S. P.
Department of Physics, Catholicate College, Pathanamthitta, Kerala, India -689645,
Usha, K. T.
Department of Chemistry, St. Cyril’s College, Adoor, Kerala,
Abstrakty : Copper Oxide is an extensively studied group II-VI semiconductor with optical properties. It exhibits a wide variety of morphologies in the nano regime that can be grown by tuning the growth habit of the CuO crystal. CuO nano materials with an average particle size of 15-27 nm are synthesized by chemical route. XRD, SEM, FTIR UV-Vis and EDS characterize the samples. The percentage of doping material is confirmed from the EDS spectra. The average crystal size of the prepared CuO: La nanopowder is determined by XRD. The UV absorption spectra revealed the absorption edge at wavelength 389 nm indicating the smaller size of CuO:La nano particle. The optical direct band gap energy of doped CuO nanoparticle is found to be in the range 3.149 eV. The increasing red shift with decreasing particle size suggests that the defects responsible for the intra gap states are primarily surface defect. The La doped CuO is highly effective and can significantly enhance the photo catalytic degradation.

Słowa kluczowe : nanomateriały, doping, właściwości optyczne, nanomaterial, doping, optical properties,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 4(42)
Strony : 49 – 60
Bibliografia : 1. Yan L.,Zheng Y.B, Zhao F. Li S., Gao X., Xu B. Weiss P.S, Zhao Y, in: Chemistry and Physics of a single atomic layer in Strategies and challenges for functionalization of graphene and graphene-based materials, Chem.Soc.Rev. 41 (2012), 97-114.
2. Amelia, M.,Lincheneau C.,Silvi S., Credi., in: A. Electrochemical Properties of CdSe and CdTe quantum dots. Chem.Soc. Rev. 41 (2012), 5728-5743.
3. Zheng X.G., Xu C.N., Tomokiyo Y., Tanaka E., Yamada H. and Soejima Y., in: Observation of Charge Stripes in Cupric Oxide, Phys. Rev. Lett. 85 (2000), 5170.
4. Chang M.H., Liu H.-S.,Tai C.Y., in: Preparation of Copper Oxide nanoparticles and its application in nanofluid, Powder P.V.D.S. Technol. 207 (2011), 378.
5. Udani P.P.C., Gunawardana Lee H.C., Kim D.H, in: Steam reforming and oxidative steam reforming of methanol over CuO-CeO2 catalysts, Int. J. Hydrogen Energy 34(2009), 7648.
6. Cao J.L., Shao G.S., Wang Y., Liu Y., Yuan Z.Y.,in: CuO catalysts supported on attapulgite clay for low-temperature CO oxidation, Catal. Commun. 9 (2008), 2555.
7. Chiang C.Y., Aroh K., Franson N., Satsangi V.R., Dass S., Ehrman S.,in: Copper oxide nanoparticle made by flame spray pyrolysis for photo electrochemical water splitting -Part II. Photo electrochemical study, Int. J. Hydrogen Energy 36 (2011), 15519.
8. Langford J.I. Louer D., High-resolution powder diffraction studies of copper (II) oxide,J. Appl. Crystallogr. 24(1991)149.
9. Abaker M., Umar, A. Baskoutas S., Kim S.H., Hwang S.W., in: Structural and optical properties of CuO layered hexagonal discs synthesized by a low-temperature hydro-thermal process, J. Phys. D: Appl. Phys. 44 (2011), 155
10. Williamson G.K., Hall W.H, in: X-ray line broadening from filed Aluminum and wolfram, Acta Metall. 1 (1953), 22.
11. Moss M.A. Burrell T.S, Ellis G.J., in: Semiconductor Opto-Electronics, Butterworth & Co. Ltd, 1973.
12. Honsi H.M., Fayek S.A., El-Sayed S.M., Roushdy M., in: Optical properties and DC electrical conductivity of Ge28−xSe72Sbx thin films, Vacuum 81 (2006), 54.
13. Sawaby A., Selim M.S., Marzouk S.Y., Mostafa M.A. Hosny A, in: Structure, optical and electrochromic properties of NiO thin films”, Physica B 405 3412 (2010).
14. Ken Ohwade and Ginji Pujiswas in: Optical vibration of doped Lanthanum Copper Oxide compound, Applied Spectroscopy, 47, 3(1993), 296-99.
15. Golosovsky I.V ,Gukasov A.G,Polyakov V.A, in : nonlinear anti- ferromagnetic structure with the propagation vector and the transition temperature of 130K was found in monoclinic compound La2Cu2O5 by single crystal neutron diffraction, J Phys-Condensed Matter,11,36(1999)6959-67
16. Neeleshwar S, Chen C.L, Tsai C.B., Chen Y.Y., Chen C.C., Shyu S.G., Seehra M.S., in: dependent properties of CdSe quantum dots, Phys. Rev. B 71 (2005) 201,307
17. Nanda K K., Kruis F E., Hassan H., Phys.Rev.Lett. 89 (2002) 256103.
18. Gizhevskii B.A., Sukhorukov Y.P., Moskvin. A.S.,Loshkareva N.N., Mostovshchikova E.V., Ermakov A.E., Kozlov E.A., Uimin M.A., Gaviko V.S in : Anomalies in the Optical properties of Nanocrystalline Copper Oxides CuO and Cu2O near the fundamental absorption edge, JETP 102 (2006) 297.
19. Sukhorukov Y.P., Gizhevskii B.A., Mostovshchikova E.V., Yermakov A.Y., Tugushev S.N., Kozlov E.A., in: Nano-crystalline Copper Oxide for selective solar energy absorbers, Tech. Phys.Lett. 32 (2006) 132.
20. Ovchinnikov S.G., Gizhevskii B.A, Sukhorukov Y.P., Ermakov A.E., Uimin M.A., Kozlov E.A., Kotov Y., Bagazeev A.A.V, in: Specific features of the electronic structure and optical spectra of nanoparticles with strong electron correlations, Phys. Solid State 49 (2007), 1116
21. Rehman S., Mumtaz A Hasanain S.K., in: Size effects on the Magnetic and Optical properties of CuO nanoparticles”, J. Nanopart. Res. 13 (2011), 2497.
22. Koffyberg F.P., Benko F.A., in: A Photoelectrochemical determination of the position of the conduction and valence band edges of p‐type CuO , J. Appl. Phys. 53 (1982), 1173.
23. Neeleshwar S., C. Chen., Tsai L. C.B., Y. Chen., C.Y. Chen., C. Shyu S.G., Seehra M.S., in: Size-dependent properties of CdSe quantum dots, Phys. Rev. B 71 (2005), 201307.
24. Sukhorukov Y.P., Gizhevskii B.A., Mostovshchikova E.V., Yermakov A.Y., Tugushev S.N., Kozlov E.A.,in: Nano-crystalline Copper Oxide for selective solar energy absorbers, Tech. Phys.Lett. 32 (2006), 132.
25. Ovchinnikov S.G., Gizhevskii B.A., Sukhorukov Y.P., Ermakov A.E., Uimin A., Kozlov E.A., Kotov Y.,Bagazeev A.A.V.,in: Specific features of the Electronic structure and Optical spectra of nanoparticles with strong electron correlations, Phys. Solid State 49 (2007) 1116.
26. Koffyberg F.P., Benko F.A.,in: A photoelectrochemical determination of the position of the conduction and valence band edges of p‐type CuO , J. Appl. Phys. 53 (1982), 1173.
27. Mushtaq A.D,Sang H, in: Synthesis character and Electrochemical properties of CuO nanostructure,J.Solid state Electrochemical 14(2010), 1719-26.
28. Kannaki k,Remesh PS, Hydrothermal synthesisi of CuO Nanostructure and their charactgerisation, In.J. of Scientific & Engg.Res. 3,9 (2012), 1-4
DOI :
Cytuj : Pietryka, I. ,Golański, G. ,Jasak, J. ,Słania, J. ,Urbańczyk, P. ,Wieczorek, P. ,Kaczmarek-Pawelska, A. ,Krasicka-Cydzik, E. ,Dawidowska, K. ,Grzywna, P. ,Kukla, D. ,Kukla, D. ,Bałkowiec, A. ,Grzywna, P. ,Varughese, G. ,Rini, V. ,Suraj, S. P. ,Usha, K. T. , Characterisation and optical studies of copper oxide nanostructures doped with lanthanum ions. Advances in Materials Science Vol.14, nr 4(42)/2014
[Top]

Novel mechanically stable, heat resistant and nonflammable functionalized polystyrene/expanded graphite nanocomposites

Czasopismo : Advances in Materials Science
Tytuł artykułu : Novel mechanically stable, heat resistant and nonflammable functionalized polystyrene/expanded graphite nanocomposites

Autorzy :
Pietryka, I.
Institue of Materials Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland,
Golański, G.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Jasak, J.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Słania, J.
Welding Departament, Czestochowa University of Technology, Armii Krajowej 19c, 42-200 Częstochowa, Poland,
Urbańczyk, P.
UDT, W. Przybylaka 8, 41-300 Dąbrowa Górnicza, Poland,
Wieczorek, P.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Kaczmarek-Pawelska, A.
University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland, a.kaczmarek@ibem.uz.zgora.pl,
Krasicka-Cydzik, E.
University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland,
Dawidowska, K.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, kindaw@wp.pl,
Grzywna, P.
Institute of Fundamental Technological Research Polish Academy of Sciences, Department of Strength of Materials, Warsaw, Poland, pgrzywna@ippt.pan.pl,
Kukla, D.
Institute of Fundamental Technological Research Polish Academy of Sciences, Department of Strength of Materials, Warsaw, Poland,
Kukla, D.
Institut of Fundamental Technological Research Polish Academy of Science, 02-106 Warszawa, ul. Pawińskiego 5b,, dkukla@ippt.gov.pl,
Bałkowiec, A.
Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Wołoska str. 141, Poland, abalkowiec@inmat.pw.edu.pl,
Grzywna, P.
Institut of Fundamental Technological Research Polish Academy of Science, 02-106 Warszawa, ul. Pawińskiego 5b,
Varughese, G.
Department of Physics, Catholicate College, Pathanamthitta, Kerala, India -689645, gvushakoppara@yahoo.co.in,
Rini, V.
Department of Physics, Catholicate College, Pathanamthitta, Kerala, India -689645,
Suraj, S. P.
Department of Physics, Catholicate College, Pathanamthitta, Kerala, India -689645,
Usha, K. T.
Department of Chemistry, St. Cyril’s College, Adoor, Kerala,
Kausar, A.
Nanosciences and Catalysis Division, National Centre For Physics, Quaid-i-Azam University Campus, 44000, Islamabad, Pakistan., asheesgreat@yahoo.com,
Ullah, W.
Nanosciences and Catalysis Division, National Centre For Physics, Quaid-i-Azam University Campus, 44000, Islamabad, Pakistan.,
Muhammad, B.
Department of Chemistry, Hazara University, Pakistan,
Siddiq, M.
Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan,
Abstrakty : This study examined effect of inclusion of expanded graphite (Exp-G) on morphology, thermal, mechanical and flame retardant properties of PS, nitro-substituted polystyrene (N-PS) and amino-functional polystyrene (A-PS). FESEM showed exfoliated sheet morphology due to intercalation of N-PS and A-PS in expanded galleries. Tensile strength of A-PS materials (31.5-56.9 MPa) was higher than PS and N-PS. 10 % weight loss of A-PS nanocomposites (482-518 °C) was higher relative to pristine polymer and other nanocomposites. Cone calorimetry results revealed that there was lowering in PHHR of A-PS nanocomposites with 0.5 wt.% filler (428 kW/m2), while PS nanocomposites showed PHHR of 443 kW/m2.

Słowa kluczowe : polistyren funkcjonalny, rozszerzony grafit, dyspersja, wytrzymałość na rozciąganie, stożek kalorymetrii, functional polystyrene, expanded graphite, dispersion, tensile strength, cone calorimetry,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 4(42)
Strony : 61 – 74
Bibliografia : 1. Pluta M., Alexandre M., Blacher S., Dubois P., Jerome R.: Metallocene-catalyzed polymerization of ethylene in the presence of graphite, Structure and electrical properties of the composites, Polymer 42 (2001) 9293-9300.
2. Celzard A., Krzesinska M., Begin D., Mareche J. F., Puricelli S., Furdin G.: Preparation, electrical and elastic properties of new anisotropic expanded graphite-based composites. Carbon 40 (2002) 557-566.
3. Zheng W. G., Wong S. C., Sue H. J.: Transport behavior of PMMA/expanded graphite nanocomposites. Polymer 43 (2002) 6767-6773.
4. Chen G. H., Wu D. J., Weng W. G., Yan W. L.: Preparation of Polystylene-Graphite Conducting Nanocomposites via Intercalation Polymerization. Journal of Applied Polymer Science 82 (2001) 2506-2513.
5. Uhl F. M., Wilkie C. A.: Polystyrene/graphite nanocomposites: effect on thermal stability. Polymer Degradation and Stability 76 (2002) 111-122.
6. Liu P. G., Gong K. C.: Synthesis and characterization of polyaniline intercalated graphite oxide composite. Acta Polymerica Sinica 4 (2000) 492-495.
7. Pan Y. X., Yu Z. Z., Ou Y. C., Feng Y. P.: Preparation and properties of nylon 6/graphite nanocomposite. Acta Polymerica Sinica 1 (2001) 42-47.
8. Xiao P., Xiao M., Liu P. G., Gong K. C.: Direct synthesis of a polyaniline-intercalated graphite oxide nanocomposite. Carbon 38 (2000) 626-628.
9. Chen G. H., Wu D. J., Weng W. G., Yan W. L.: Dispersion of graphite nanosheets in a polymer matrix and the conducting property of the nanocomposites. Polymer Engineering and Science 41 (2001) 2148-2154.
10. Panwar V., Kang B., Park J. O., Park S., Mehta R. M.: Study of dielectric properties of styreneacryloni- trile graphite sheets composites in low and high frequency region. European Polymer Journal 45 (2009) 1777-1784.
11. Stankovich S., Dikin D. A., Piner R. D., Kohlhaas K. A., Kleinhammes A., Jia Y., Wu Y., Nguyen S. T., Ruoff R. S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45 (2007) 1558-1565.
12. Sudhakara P., Kannan P., Obireddy K., Rajulu A. V.: Flame retardant diglycidylphenylphosphate and diglycidyl ether of bisphenol-A resins containing Borassus fruit fiber composites. Journal of Materials Science 46 (2011) 5176-5183.
13. D. Konnicke, A. Kuhn, T. Mahrholz, M. Sinapius. ‘Polymer nanocomposites based on epoxy resin and ATH as a new flame retardant for CFRP: preparation and thermal characterization. Journal of Materials Science 46 (2011) 7046-7055.
14. He Q. L., Song L., Hu Y., Zhou S.: Synergistic effects of polyhedral oligomeric silsesquioxane (POSS) and oligomeric bisphenyl A bis(diphenyl phosphate) (BDP) on thermal and flame retardant properties of polycarbonate. Journal of Materials Science 44 (2009) 1308-1316.
15. Murariu M., Dechief A. L., Bonnaud L., Paint Y., Gallos A., Fontaine G., Bourbigot S., Dubois P.: The production and properties of polylactide composites filled with expanded graphite. Polymer Degradation and Stability 95 (2010) 889-900
16. Bian X. C., Tang J. H., Li Z. M., Lu Z. Y., Lu A.: Dependence of flame-retardant properties on density of expandable graphite filled rigid polyurethane foam. Journal of Applied Polymer Science 104 (2007) 3347-3355.
17. S. Peeterbroeck, F. Laoutid, J. M. Taulemesse, F. Monteverde, J. Lopez-Cuesta, J. B. Nagy, M.Alexandre, P. Dubois. Mechanical properties and flame-retardant behavior of ethylene vinyl acetate/high-density polyethylene coated carbon nanotube nanocomposites. Advanced Functional Materials 17 (2007) 2787-2791.
18. Isitman N. A., Kaynak C.: Nanoclay and carbon nanotubes as potential synergists of an organophosphorus flame-retardant in poly(methyl methacrylate). Polymer Degradation and Stability 95 (2010) 1523-1532.
19. Lee Y. C. R., Kim S. C., Lee H., Jeong H. M., Raghu A. V., Reddy K. R., Kim B. K.: Graphite oxides as effective fire retardants of epoxy resin. Macromolecular Research 19 (2011) 66-71.
20. Shi Y., Li L. J.: Chemically modified graphene: flame retardant or fuel for combustion. Journal of Materials Chemistry 21 (2011) 3277-3279.
21. Wang X., Song L., Yang H., Lu H., Hu Y.: Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites. Industrial & Engineering Chemistry Research 50 (2011) 5376-5383.
22. Bao C. L., Guo Y., Yuan B., Hu Y., Song L.: Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies. Journal of Materials Chemistry 22 (2012) 23057-23063.
23. Wen-Pin W., Cai-Yuan P.: Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization. Polymer 45 (2004) 3987-3995.
24. Guo-Hua C., Da-Jun W., Wen-Gui W., Bin H., Wen-li Y.: Preparation of polystyrene-graphite conducting nanocomposites via intercalation polymerization. Polymer International 50 (2001) 980-985.
25. Kausar A., Zulfiqar S., Sarwar M. I.: An investigation on new high performance Schiff base polyurethanes. High Performance Polymers 24 (2012) 125-134.
26. Kausar A., Zulfiqar S., Sarwar M. I.: High performance segmented polyurethanes derived from a new aromatic diisocyanate and polyol. Polymer Degradation and Stability 98 (2012) 368-376.
27. Wang J. Q., Han Z. D.: The combustion behavior of polyacrylate ester/graphite oxide composites. Polymer for Advance Technology 17 (2006) 335-340.
DOI :
Cytuj : Pietryka, I. ,Golański, G. ,Jasak, J. ,Słania, J. ,Urbańczyk, P. ,Wieczorek, P. ,Kaczmarek-Pawelska, A. ,Krasicka-Cydzik, E. ,Dawidowska, K. ,Grzywna, P. ,Kukla, D. ,Kukla, D. ,Bałkowiec, A. ,Grzywna, P. ,Varughese, G. ,Rini, V. ,Suraj, S. P. ,Usha, K. T. ,Kausar, A. ,Ullah, W. ,Muhammad, B. ,Siddiq, M. , Novel mechanically stable, heat resistant and nonflammable functionalized polystyrene/expanded graphite nanocomposites. Advances in Materials Science Vol.14, nr 4(42)/2014
[Top]

Electrochemical characterization of gelatine derived ceramics

Czasopismo : Advances in Materials Science
Tytuł artykułu : Electrochemical characterization of gelatine derived ceramics

Autorzy :
Pietryka, I.
Institue of Materials Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland,
Golański, G.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Jasak, J.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Słania, J.
Welding Departament, Czestochowa University of Technology, Armii Krajowej 19c, 42-200 Częstochowa, Poland,
Urbańczyk, P.
UDT, W. Przybylaka 8, 41-300 Dąbrowa Górnicza, Poland,
Wieczorek, P.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Kaczmarek-Pawelska, A.
University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland, a.kaczmarek@ibem.uz.zgora.pl,
Krasicka-Cydzik, E.
University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland,
Dawidowska, K.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, kindaw@wp.pl,
Grzywna, P.
Institute of Fundamental Technological Research Polish Academy of Sciences, Department of Strength of Materials, Warsaw, Poland, pgrzywna@ippt.pan.pl,
Kukla, D.
Institute of Fundamental Technological Research Polish Academy of Sciences, Department of Strength of Materials, Warsaw, Poland,
Kukla, D.
Institut of Fundamental Technological Research Polish Academy of Science, 02-106 Warszawa, ul. Pawińskiego 5b,, dkukla@ippt.gov.pl,
Bałkowiec, A.
Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Wołoska str. 141, Poland, abalkowiec@inmat.pw.edu.pl,
Grzywna, P.
Institut of Fundamental Technological Research Polish Academy of Science, 02-106 Warszawa, ul. Pawińskiego 5b,
Varughese, G.
Department of Physics, Catholicate College, Pathanamthitta, Kerala, India -689645, gvushakoppara@yahoo.co.in,
Rini, V.
Department of Physics, Catholicate College, Pathanamthitta, Kerala, India -689645,
Suraj, S. P.
Department of Physics, Catholicate College, Pathanamthitta, Kerala, India -689645,
Usha, K. T.
Department of Chemistry, St. Cyril’s College, Adoor, Kerala,
Kausar, A.
Nanosciences and Catalysis Division, National Centre For Physics, Quaid-i-Azam University Campus, 44000, Islamabad, Pakistan., asheesgreat@yahoo.com,
Ullah, W.
Nanosciences and Catalysis Division, National Centre For Physics, Quaid-i-Azam University Campus, 44000, Islamabad, Pakistan.,
Muhammad, B.
Department of Chemistry, Hazara University, Pakistan,
Siddiq, M.
Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan,
Nowak, A. P.
Gdansk University of Technology, Chemical Faculty, Department of Chemistry and Technology of Functional Materials, Narutowicza 11/12, 80-233 Gdańsk, Poland, andnowak@pg.gda.pl,
Trzciński, K.
Gdansk University of Technology, Chemical Faculty, Department of Chemistry and Technology of Functional Materials, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Lisowska-Oleksiak, A.
Gdansk University of Technology, Chemical Faculty, Department of Chemistry and Technology of Functional Materials, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Abstrakty : New materials obtained by pyrolysis of gelatine (G) and poly(1,2-dimethylsilazane) (PSN) (weight ratio: G/PSN 70/30) at temperatures 700 and 900 °C were characterized by SEM and Raman spectroscopy. The presence of ceramics influences on the cluster size of the materials. Electrochemical tests were performed by cyclic voltammetry and galvanostatic cyclic polarization. The capacity of G/PSN was 464 and 527 mAh/g for materials pyrolysed at 700 and 900 °C. The capacity fading was 1 % after 17th cycle for G/PSN at 900 °C. This value is higher of 185 mAh/g in comparison to capacity of gelatine pyrolysed at the same conditions.

Słowa kluczowe : akumulatory litowo-jonowe, materiały ceramiczne, SICN, twardy węgiel, materiał anodowy, Lithium-ion batteries, SICN ceramic materials, hard carbon, anode material,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 4(42)
Strony : 75 – 81
Bibliografia : 1. Pistoia G.: Lithium batteries: New materials, Developments, and Perspectives. Elsevier, Amsterdam, 1994.
2. Takami N., Satoh A., Hara M., Ohsaki T.: Rechargeable Lithium-Ion Cells Using Graphitized Mesophase-Pitch-Based Carbon Fiber Anodes. J Electrochem Soc 142 (1995) 2564-2571.
3. Ahn D., Raj R.: Cyclic stability and C-rate performance of amorphous silicon and carbon based anodes for electrochemical storage of lithium. J Power Sources 196 (2011) 2179-2186.
4. Fukui H., Eguchi K., Ohsuka H., Hino T., Kanamura K.: Structures and lithium storage performance of Si-O-C composite materials depending on pyrolysis temperatures. J Power Sources 243 (2013) 152-158.
5. Sanchez-Jimenez P.E., Raj R.: Lithium Insertion in Polymer-Derived Silicon Oxycarbide Ceramics. J Am Ceram Soc 93 (2010) 1127-1135.
6. Dibandjo P., Graczyk-Zajac M., Riedel R., Pradeep V.S., Soraru G.D.: Lithium insertion into dense and porous carbon-rich polymer-derived SiOC ceramics. J Eur Ceram Soc 32 (2012) 2495-2503.
7. Graczyk-Zajac M., Toma L., Fasel C., Riedel R.: Carbon-rich SiOC anodes for lithium-ion batteries: Part I. Influence of material UV-pre-treatment on high power properties. Solid State Ionics 225 (2012) 522-526.
8. Kaspar J., Graczyk-Zajac M., Riedel R.: Lithium insertion into carbon-rich SiOC ceramics: Influence of pyrolysis temperature on electrochemical properties. J Power Sources 244 (2013) 450-455.
9. Graczyk-Zajac M., Mera G., Kaspar J., Riedel R.: Electrochemical studies of carbon-rich polymer-derived SiCN ceramics as anode materials for lithium-ion batteries. J Eur. Ceram. Soc. 30 (2010) 3235-3243.
10. Li W., Chen M., Wang C.: Spherical hard carbon prepared from potato starch using as anode material for Li-ion batteries. Mater Lett 65 (2011) 3368-3370.
11. Nowak A.P., Wicikowska B., Lisowska-Oleksiak A.: New ceramic materials derived from pyrolyzed poly(1,2-dimethylsilazane) and starch as a potential anode for Li-ion batteries. Solid State Ionics 263 (2014) 131-139.
12. Tuinstra F., Koenig J.I.: Raman Spectrum of Graphite. J Chem Phys 53 (1970) 1126-1130.
13. Ferrari A.C., Robertson J.: Interpretation of Raman spectra of disordered and amorphous carbon. Physial Rev B 61 (2000) 14095-14107.
14. Cançado L.G., Takai K., Enoki T., i in.: General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88 (2006) 163106(1)-163106(3).
DOI :
Cytuj : Pietryka, I. ,Golański, G. ,Jasak, J. ,Słania, J. ,Urbańczyk, P. ,Wieczorek, P. ,Kaczmarek-Pawelska, A. ,Krasicka-Cydzik, E. ,Dawidowska, K. ,Grzywna, P. ,Kukla, D. ,Kukla, D. ,Bałkowiec, A. ,Grzywna, P. ,Varughese, G. ,Rini, V. ,Suraj, S. P. ,Usha, K. T. ,Kausar, A. ,Ullah, W. ,Muhammad, B. ,Siddiq, M. ,Nowak, A. P. ,Trzciński, K. ,Lisowska-Oleksiak, A. , Electrochemical characterization of gelatine derived ceramics. Advances in Materials Science Vol.14, nr 4(42)/2014
[Top]

Analysis of the possibility of applying of alloy and composite coatings after plastic working in shipbuilding

Czasopismo : Advances in Materials Science
Tytuł artykułu : Analysis of the possibility of applying of alloy and composite coatings after plastic working in shipbuilding

Autorzy :
Pietryka, I.
Institue of Materials Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland,
Golański, G.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Jasak, J.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Słania, J.
Welding Departament, Czestochowa University of Technology, Armii Krajowej 19c, 42-200 Częstochowa, Poland,
Urbańczyk, P.
UDT, W. Przybylaka 8, 41-300 Dąbrowa Górnicza, Poland,
Wieczorek, P.
Institue of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
Kaczmarek-Pawelska, A.
University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland, a.kaczmarek@ibem.uz.zgora.pl,
Krasicka-Cydzik, E.
University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland,
Dawidowska, K.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, kindaw@wp.pl,
Grzywna, P.
Institute of Fundamental Technological Research Polish Academy of Sciences, Department of Strength of Materials, Warsaw, Poland, pgrzywna@ippt.pan.pl,
Kukla, D.
Institute of Fundamental Technological Research Polish Academy of Sciences, Department of Strength of Materials, Warsaw, Poland,
Kukla, D.
Institut of Fundamental Technological Research Polish Academy of Science, 02-106 Warszawa, ul. Pawińskiego 5b,, dkukla@ippt.gov.pl,
Bałkowiec, A.
Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Wołoska str. 141, Poland, abalkowiec@inmat.pw.edu.pl,
Grzywna, P.
Institut of Fundamental Technological Research Polish Academy of Science, 02-106 Warszawa, ul. Pawińskiego 5b,
Varughese, G.
Department of Physics, Catholicate College, Pathanamthitta, Kerala, India -689645, gvushakoppara@yahoo.co.in,
Rini, V.
Department of Physics, Catholicate College, Pathanamthitta, Kerala, India -689645,
Suraj, S. P.
Department of Physics, Catholicate College, Pathanamthitta, Kerala, India -689645,
Usha, K. T.
Department of Chemistry, St. Cyril’s College, Adoor, Kerala,
Kausar, A.
Nanosciences and Catalysis Division, National Centre For Physics, Quaid-i-Azam University Campus, 44000, Islamabad, Pakistan., asheesgreat@yahoo.com,
Ullah, W.
Nanosciences and Catalysis Division, National Centre For Physics, Quaid-i-Azam University Campus, 44000, Islamabad, Pakistan.,
Muhammad, B.
Department of Chemistry, Hazara University, Pakistan,
Siddiq, M.
Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan,
Nowak, A. P.
Gdansk University of Technology, Chemical Faculty, Department of Chemistry and Technology of Functional Materials, Narutowicza 11/12, 80-233 Gdańsk, Poland, andnowak@pg.gda.pl,
Trzciński, K.
Gdansk University of Technology, Chemical Faculty, Department of Chemistry and Technology of Functional Materials, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Lisowska-Oleksiak, A.
Gdansk University of Technology, Chemical Faculty, Department of Chemistry and Technology of Functional Materials, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Dyl, T.
Gdynia Maritime University, Faculty of Marine Engineering, Department of Marine Materials and Technology, Gdynia, Poland, dylu@am.gdynia.pl,
Abstrakty : Alloy and composite coatings are widely used in engineering, automotive and shipbuilding because of the possibility of improving the operational characteristics of the surface layer (mechanical, tribological, corrosion and decorative). The welding technology of applying alloy and composite coatings is widely used. The technology of infrasound thermal spraying of metal matrix composite coatings was presented. It is a simple technology and a very useful one in ship machinery regeneration during the cruise craft (e.g. internal combustion engines, torque pumps, separators). The metal matrix composite coatings must undergo finishing due to high surface roughness after application. Coatings obtained by thermal spraying have a large surface roughness, it is therefore necessary to make finishing coatings. Due to economic and technological developments it is essential that the coating was thin, abrasion-resistant, high smoothness, and the finishing was of chip that is not cause material loss. In order to ensure quality of technology offered the elements of the of machines used in shipbuilding of cold working by rolling, with small values of strain ratio, ultimately as a finishing alloy and composite coating is planned to use surface plastic forming of machine parts.

Słowa kluczowe : powłoki stopowe, powłoki kompozytowe, praca z tworzyw sztucznych, odporność na korozję, alloy and composite coatings, plastic working, corrosion resistance,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2014
Numer : Vol.14, nr 4(42)
Strony : 82 – 91
Bibliografia : 1. Starosta R., Zieliński A.: Effect of chemical composition on corrosion and wear behaviour of the composite Ni-Fe-Al2O3 coating, Journal of Materials Processing Technology, 157-158 (2004), 434.
2. Adamiec P., Dziubiński J.: Regeneration and production of surface layers of transport machinery elements, in Polish WPŚ, Gliwice 1999.
3. Klimpel A.: Welding and thermal spraying: Technologies, in Polish, WNT, Warszawa 2000.
4. Specification of application and processing technology of powder coatings ProXon 21021, Castolin – Eutectic 2003.
5. Starosta R.: Properties of Thermal Spraying Ni-Al Alloy Coatings, Advances in Materials Science, Vol. 9, 1 (19) (2009) 30.
6. Dyl T.: Microstructure, microhardness and corrosion resistance of steel tubes after the piercing – spreading process, Advances in Materials Science Vol. 6, 1-2 (9-10) (2006) 5.
7. Dyl T., Skoblik R., Starosta R.: The Effect of the Ceramic Dispersion on the Nickel Matrix Composite Coating Properties after Plastic Working, Solid State Phenomena, 147-149 (2009) 813.
8. Starosta R.: Potentiodynamic tests flame sprayed composite coatings, dispersion of nickel matrix, Composite, 2 (2008) p.195.
9. Dyl T., Starosta R.: Effect of the Ceramic Dispersion in the Nickel Matrix Composite Coatings on Corrosion Properties after Plastic Working, Solid State Phenomena, 183 (2012) 43.
10. Dyl T., Starosta R.: The influence of rolling on the distribution of stress and strain in nickel – aluminum alloy coatings, Materials Engineering, 3-4 (2007) 524.
11. Dyl T., Starosta R.: Numerical and experimental research of flat rolling of alloy coatings Ni-Al, Periodical of Mechanical, (2012) 36.
DOI :
Cytuj : Pietryka, I. ,Golański, G. ,Jasak, J. ,Słania, J. ,Urbańczyk, P. ,Wieczorek, P. ,Kaczmarek-Pawelska, A. ,Krasicka-Cydzik, E. ,Dawidowska, K. ,Grzywna, P. ,Kukla, D. ,Kukla, D. ,Bałkowiec, A. ,Grzywna, P. ,Varughese, G. ,Rini, V. ,Suraj, S. P. ,Usha, K. T. ,Kausar, A. ,Ullah, W. ,Muhammad, B. ,Siddiq, M. ,Nowak, A. P. ,Trzciński, K. ,Lisowska-Oleksiak, A. ,Dyl, T. , Analysis of the possibility of applying of alloy and composite coatings after plastic working in shipbuilding. Advances in Materials Science Vol.14, nr 4(42)/2014
[Top]

Novel Polyurethanes as Antifouling Paint Matrices

Czasopismo : Advances in Materials Science
Tytuł artykułu : Novel Polyurethanes as Antifouling Paint Matrices

Autorzy :
Kucińska-Lipka, J.
Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, 80-233 Gdansk, Poland, juskucin@pg.gda.pl,
Janik, H.
Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, 80-233 Gdansk, Poland,
Gubańska, I.
Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, 80-233 Gdansk, Poland,
Abstrakty : The new poly(ester-ether urethane)s (PEEUR) were prepared in two stage synthesis from formerly obtained oligo(alkylene ester-ether)diols (OAEE) and 4,4‘-diphenylmethane diisocyanate (MDI). PEEUR samples were subjected to crosslinking with styrene in the presence of radical polymerization initiators: methyl ethyl ketone peroxide (MEKPO) or cobalt 2-ethyl cyclohexanoate (EtHCo). Crosslinked PEEUR were characterized by their physicochemical and mechanical properties. Tensile strength of crosslinked PEEURs was in the range 63-29 MPa, hardness values were from 92 to 97°ShA, and glass transition temperature was in the range 59-74°C. For PEEURs filled with biocides tensile strength was in the range 6,8-8,5MPa, hardness values were from 82 to 92°ShA, and glass transition temperature was in the range 57-72°C. Optical microscopic observations showed that the materials obtained were homogeneous in micrometric scale.

Słowa kluczowe : polyurethane, antifouling protection, unsaturated oligo(alkylene ester-ether)diols, poly(esteretherurethane) s, styrene crosslinking,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 1(35)
Strony : 5 – 10
Bibliografia : 1. Hellio C., Yerba D. M.: Advances in marine antifouling coatings and technologies, Woodhead Publishing, Cambridge, May 2009.
2. Morrison S.: Antifouling coatings, Surface Coatings Association of New Zealand Inc. 5-10.
3. Turner A.: Marine pollution from antifouling paint particles, Marine Pollution Bulletin 60 (2010), 159-171.
4. Yerba D. M., Kill S., Dam-Johansen K.: Antifouling technology-past, present and future stepstowards efficient and environmentally friendly antifouling coatings, PIOC, 50/2004, 75-104.
5. Mirabedini S.M., Pazoki S.,. Esfandeh M, Mohseni M., Akbari Z.: Comparison of dragcharacteristics of self-polishing co-polymers and silicone foul release coatings: A study of wettability and surface roughness Progress in Organic Coatings 57 (2006), 421-429.
6. Meseguer Yebra D., Kiil S., Kim Dam-Johansen: Progress in Organic Coatings, Volume 50, Issue 2, July 2004, 75-104.
7. Chambers L.D., Stokes K.R., Walsh F.C., Wood R.J.K.: Surface and Coatings Technology, Volume 201, Issue 6, December 2006, 3642-3652.
8. Chapman R.: What's involved in selecting the correct antifouling, PCE 1998.
9. Hellio C. Yebra D.: Advances in marine antifouling coatings and technologies. Washington 2009.
10. Schiff K., Diehl D., Valkirs A.: Marine Pollution Bulletin, Volume 48, Issues 3-4, February 2004, 371-37.
DOI :
Cytuj : Kucińska-Lipka, J. ,Janik, H. ,Gubańska, I. , Novel Polyurethanes as Antifouling Paint Matrices. Advances in Materials Science Vol.13, nr 1(35)/2013
[Top]

Cr/Fe Ratio by Xps Spectra of Magnetoelectropolished Aisi 316L SS Using Linear, Shirley and Tougaard Methods of Background Subtraction

Czasopismo : Advances in Materials Science
Tytuł artykułu : Cr/Fe Ratio by Xps Spectra of Magnetoelectropolished Aisi 316L SS Using Linear, Shirley and Tougaard Methods of Background Subtraction

Autorzy :
Kucińska-Lipka, J.
Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, 80-233 Gdansk, Poland, juskucin@pg.gda.pl,
Janik, H.
Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, 80-233 Gdansk, Poland,
Gubańska, I.
Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, 80-233 Gdansk, Poland,
Hryniewicz, T.
Koszalin University of Technology, Division of Surface Electrochemistry and Engineering, Faculty of Mechanical Engineering, Racławicka 15-17, 75-620 Koszalin, Poland, Tadeusz.Hryniewicz@tu.koszalin.pl,
Rokosz, K.
Koszalin University of Technology, Division of Surface Electrochemistry and Engineering, Faculty of Mechanical Engineering, Racławicka 15-17, 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl,
Abstrakty : In the paper, the analyses of Fe2p3/2 and chromium Cr2p3/2 XPS spectra with fitting by symmetrical and asymmetrical line shapes as well as using Linear, Shirley and Tougaard Method of Background Subtraction are presented. The calculations are performed on AISI 316L SS biomaterial after magnetoelectropolishing MEP operation. It was found, the chromium-to-iron ratio after magnetoelectropolishing MEP for other analyses could be in the range from 2.2 to 6.2 depending on the line shapes as well as type of backgrounds used to XPS spectra fitting. The most important for comparison the surface layers concerning the Cr/Fe ratio is to use the same line shape and backgrounds for all analyses.

Słowa kluczowe : XPS spectra fitting, Linear, Shirley, Tougaard Backgrounds, 316L SS, Magnetoelectropolishing MEP, Cr/Fe ratio,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 1(35)
Strony : 11 – 20
Bibliografia : 1. Rokosz K., Polerowanie elektrochemiczne stali w polu magnetycznym (Electrochemical polishing of steels in the magnetic field), Monograph Nr 219, Publisher: Koszalin University of Technology, Koszalin 2012, ISSN 0239-7129, (211 pages, in Polish).
2. Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing for metal surface modification, Transactions of the Institute of Metal Finishing, 2007, 85(6), 325-332.
3. Hryniewicz T., Concept of microsmoothing in electropolishing process, Surfaceand Coatings Technology, 1994, 64(2), 75-80.
4. Hryniewicz T., Rokosz K., Polarization Characteristics of Magnetoelectropolishing Stainless Steels, Materials Chemistry and Physics, 2010, 122, 169-174.
5. Simka W., Mosiałek M., Nawrat G., Nowak P., Żak J., Szade J., Winiarski A., Maciej A., Szyk-Warszyńska L., Electrochemical polishing of Ti-13Nb-13Zr Alloy, Surface and Coatings Technology, 2012, 213, 239-246.
6. Hryniewicz T., Rokicki R., Rokosz K., Surface characterization of AISI 316L biomaterials obtained by electropolishing in a magnetic field, Surface & Coatings Technology, 2008, 202(9), 1668-1673.
7. Hryniewicz T., Rokosz K., Rokicki R., Electrochemical and XPS Studies of AISI 316L Stainless Steel after Electropolishing in a Magnetic Field, Corrosion Science, 2008, 50(9), 2676-2681.
8. Hryniewicz T., Rokicki R., Rokosz K., Corrosion Characteristics of Medical Grade AISI 316L Stainless Steel Surface after Electropolishing in a Magnetic Field, CORROSION (The Journal of Science and Engineering), Corrosion Science Section, 2008, 64(8), 660-665.
9. Rokicki R., US Patent No 7632390, http://www.patentgenius.com/patent/7632390.html
10. Product Data Bulletin, 316/316L Stainless Steel, AK Steel Corporation, PD-140 7180-0127 PDF 7/00, 2000; www.aksteel.com
11. Hryniewicz T., Rokosz K., Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing, Materials Chemistry and Physics, 2010, 123, 47-55; DOI: 10.1016/j.matchemphys.2010.03.060
12. Fairley N., http://www.casaxps.com, © Casa software Ltd., 2005,
13. Walton J., Carrick A., The Casa Cookbook-The CasaXPS User’s Manual, Part 1: Recipes for XPS data proceedings, 2009, ISBN: 9780954953300, Publisher: Acolyte Science.
14. CasaXPS Processing Software, CasaXPS Manual 2.3.15 Rev 1.0, Copyright © 2010 Casa Software Ltd, 19-20.
15. Herrera-Gomez A., The Peak-Shirley Background (Shirley background in overlapping peaks), Centro de Investigación y de Estudios Avanzados del IPN Unidad Querétaro, Internal Report Created 8/2011, Last Update 2/2012, (14 pages).
16. Biesinger M.C., Payne B.P., Grosvenor A. P., Lau L. W. M., Gerson A. R., Smart R. St. C., Resolving surface chemical states in XPS analysis of first row transmission metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Applied Surface Science, 2011, 257, 2717-2730.
DOI :
Cytuj : Kucińska-Lipka, J. ,Janik, H. ,Gubańska, I. ,Hryniewicz, T. ,Rokosz, K. , Cr/Fe Ratio by Xps Spectra of Magnetoelectropolished Aisi 316L SS Using Linear, Shirley and Tougaard Methods of Background Subtraction. Advances in Materials Science Vol.13, nr 1(35)/2013
[Top]

Optical Properties of ZnO Thin Film

Czasopismo : Advances in Materials Science
Tytuł artykułu : Optical Properties of ZnO Thin Film

Autorzy :
Kucińska-Lipka, J.
Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, 80-233 Gdansk, Poland, juskucin@pg.gda.pl,
Janik, H.
Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, 80-233 Gdansk, Poland,
Gubańska, I.
Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, 80-233 Gdansk, Poland,
Hryniewicz, T.
Koszalin University of Technology, Division of Surface Electrochemistry and Engineering, Faculty of Mechanical Engineering, Racławicka 15-17, 75-620 Koszalin, Poland, Tadeusz.Hryniewicz@tu.koszalin.pl,
Rokosz, K.
Koszalin University of Technology, Division of Surface Electrochemistry and Engineering, Faculty of Mechanical Engineering, Racławicka 15-17, 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl,
Bouchenak-Khelladi, N.
University of Tlemcen – Bp 119 – 13000 – Algeria, bknesr18@yahoo.fr,
Chabane-Sari, N. E.
University of Tlemcen – Bp 119 – 13000 – Algeria,
Abstrakty : In this work, we studied with a Matlab program, some of optical properties of zinc oxide (ZnO) deposited on glass (SiO2). The parameters studied include the refraction index, extinction coefficient, optical band gap, and complex dielectric constant versus incident photon energy, and transmittance, absorbance and reflectance spectrum of ZnO thin film deposited on glass (SiO2) for different thickness. The films were found to exhibit high transmittance (75- 95%), low absorbance and low reflectance in the visible / near infrared region up to 1000 nm. However, the absorbance of the films was found to be high in the ultra violet region with peak around 380 nm.

Słowa kluczowe : ZnO, Thin film, optical properties, Sol gel deposition, Matlab,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 1(35)
Strony : 21 – 29
Bibliografia : 1. M. Willander, et al., Nanotechnology, 20 332001 (2009 ).
2. X. Sun and H. Kwork, J. of Appl. Phys, 86 408 (1999).
3. Hsin-Chiang You and Yu-Hsien Lin, Int. J. Electrochem. Sci., 7 9085 – 9094 (2012).
4. Feng Shi and Chengshan Xue, Cryst. Eng. Comm, 14, 4173-4175 (2012).
5. Li Shao-Juan, He Xin, Han De-Dong, Sun Lei, Wang Yi, Han Ru-Qi, Chan Man-Sun and Zhang Sheng-Dong, CHIN. PHYS. LETT., Vol. 29, No. 1 018501 (2012).
6. Lorenz M., Hochmuth H., Grüner C., Hilmer H., Lajn A., Spemann D., Brandt M., Zippel J., Schmidt-Grund R., Wenckstern H. and Grundmann M., Laser Chemistry, Hindawi Publishing Corporation, 1-27 (2011).
7. Hu W.S et al J.Phy.Chem.Solids 58853 (2003).
8. Ahmad A., Alsaad A., Eur. Phys. J. B 52, p 41- 46 (2006).
9. Wang Ming- Dong et al. Chin. Phys. Lett, Vol. 25, No. 2, p 743- 746 (2008).
10. Holden T., Ram P., Pollak H., Freeouf J., Yang B., Tamargo M., Phys.Rev. B56, 4037 (1997).
11. Yoshikawa H., Adachi S. Jpn Appl. Phys. I 36, 6237 (1997).
12. Teng C., Muth J., Ozgur U., Bergmann M., Everitt H., Sharama A., Jin C., Narayan J., Appl. Phys. Lett. 76, 979 (2000).
13. Bai L., Xu Ch., Schunemann P., Nagashio N., Feigelson R., Giles N., J. Phys. Condens. Matter. 17, 549 (2005).
14. Zebbar N., Aida M.S., Hafdallah A., Daranfad W., Lekiket H., and Kechouane M., Materials Science Forum, 609, 133-137 (2009).
15. Chopra K.L., Thin Film Phenomena, McGraw Hill Book Company, USA, p.729 (1969).
16. Rosete-Aguilar M., et al. Investigacion, Rev. Mex. Fis, 54 (2), 141-148 (2008).
DOI :
Cytuj : Kucińska-Lipka, J. ,Janik, H. ,Gubańska, I. ,Hryniewicz, T. ,Rokosz, K. ,Bouchenak-Khelladi, N. ,Chabane-Sari, N. E. , Optical Properties of ZnO Thin Film. Advances in Materials Science Vol.13, nr 1(35)/2013
[Top]

The Influence of Added Inhibitors on Corrosion of Steel in Concrete Exposed to Chloride Containing Solutions

Czasopismo : Advances in Materials Science
Tytuł artykułu : The Influence of Added Inhibitors on Corrosion of Steel in Concrete Exposed to Chloride Containing Solutions

Autorzy :
Masadeh, S.
Al-Baha University, Faculty of Engineering, Mechanical Engineering Department, Al-Baha, Saudi Arabia, masadeh@bau.edu.jo,
Abstrakty : Durability of concrete structures decrease due to corrosion in structures exposed to corrosive conditions. Several methods are adopted to minimize corrosion of steel in concrete; one of the methods is the use of inhibitors. In this work, the effect of inhibitor addition on corrosion of steel in concrete was investigated. Inhibitors added to concrete mix in different ratios, samples then immersed in 3.5% NaCl, and in Dead Sea Water for 15 months. Potential of steel reinforcement was measured by copper sulfate electrode according to ASTM C876. Results showed that an addition of 2% calcium nitrate or more was acceptable for adequate protection.

Słowa kluczowe : concrete, steel, inhibitors, Calcium nitrate,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 2(36)
Strony : 5 – 11
Bibliografia : 1.Elsenei B.: Corrosion Inhibitors for Steel in Concrete – State of the Art Report. EFC Publications (2001).
2.Rincon de O. T., Perez O., E. Paredes, Caldera Y., Urdaneta C., Sandoval I.: Long-Term Performance of ZnO as a Rebar Corrosion Inhibitor. Cem. Concr. Compos. 24 (2002), 79-87.
3.Sagoe-Crentsil K. K., Yilmaz V. T., Glasser F. P.: Properties of Inorganic Corrosion Inhibiting Admixtures in Steel-Containing OPC Mortars: Chemical and Electrochemical Properties. Adv. Cem. Res 4 (1996), 91-102.
4. Gonzales J. A., Ramirez E.. Bautista A.: Protection of Steel Embedded in Chloride -Containing Concrete by Means of Inhibitor. Cem. Concr. Res. 28 (1998), 577-589.
5.Sagoe-Crentsil K. K., Glasser F. P., Yilmaz V. T.: Corrosion Inhibitors for Mild Steel; Stannous Tin in Ordinary Portland Cement. Cem. Concr. Res. 24 (1994), 313-318.
6.Sagoe-Crentsil K. K., Yilmaz V. T., Glasser F. P.: Corrosion Inhibition of Steel in Concrete by Carboxylic Acids. Cem. Concr. Res. 23 (1993), 1380-1388.
7.Monticelli C., Frignani A., Trabanelli G.: A Study on Corrosion Inhibitors for Concrete Application. Cem. Concr. Res. 30 (2000). 635-642.
8. Saraswathy V., Muralidharan S., Kalyanasundaram R.M., Thangavel K., Srinivasan S.: Evaluation of a Composite Corrosion-Inhibiting Admixture and Its Performance in Concrete Under Macro Cell Corrosion Conditions. Cem. Concr. Res. 31 (2001), 789-794.
9. Ann K. Y., Song H. W.: Chloride Threshold Level for Corrosion of Steel in Concrete. Corr. Sci. 49 (2007), 4113-4133.
10. Bolzoni F., Fumagalli G., Lazzari L., Ormellese M., Pedeferri M. P., Fontana F.: Inhibition Effect of Organic Molecules on Carbon Steel Corrosion in Alkaline Solution With Chlorides. European Corrosion Congress Eurocorr, Riva del Garda, Italy (2001).
11.Nmai C. K., Farrington S. A., Bobrowsky G. S.: Organic Based Corrosion Inhibiting Admixtures for Reinforced Concrete. Concr. Int. 14(4) (1992), 45-51.
12. Buffenbarger K., Miltenberger M. A., Miller B. D., Casal H. L.: Long-Term Performance of an Organic Corrosion Inhibiting: A Decade of Mechanism Study and Its Impact on Concrete Service Life. International Congress on Advanced Materials, Their Processes and Applications, Munich (2000).
13.Nmai C. K.: Multi-Functional Organic Corrosion Inhibitor. Cem. Concr. Compos. 26 (2004), 199-207.
14. Gaidis J. M.: Chemistry of Corrosion Inhibitors. Cem. Concr. Compos. 26 (2004), 181-189.
15. Saraswath, V., Ha-won Song.: Improving the durability of concrete by using inhibitors. Building and Environment 42 (2007), 464-472.
16. Zoltanetzky J.R., Gordon C., Parnes J.: New developments in corrosion inhibiting admixture systems for reinforced concrete. In: Page CL, Treadaway KWJ, Bamforth PB, editors. Corrosion of reinforcement in concrete. London: Elsevier (1990), 825-50.
17. Rozenfeld I.L.: Corrosion inhibitors. New York: McGraw-Hill Inc. (1981), 327.
18.Muller B., Fischer S.: Epoxy ester resins as corrosion inhibitors of aluminium and zinc pigments. Corrosion Science 48 (2006), 2406-2416.
DOI :
Cytuj : Masadeh, S. , The Influence of Added Inhibitors on Corrosion of Steel in Concrete Exposed to Chloride Containing Solutions. Advances in Materials Science Vol.13, nr 2(36)/2013
[Top]

Bainite Transformation in Experimental Fe-Cr-Mo-V-Ti-C Steel

Czasopismo : Advances in Materials Science
Tytuł artykułu : Bainite Transformation in Experimental Fe-Cr-Mo-V-Ti-C Steel

Autorzy :
Masadeh, S.
Al-Baha University, Faculty of Engineering, Mechanical Engineering Department, Al-Baha, Saudi Arabia, masadeh@bau.edu.jo,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Abstrakty : The mechanism and kinetics of bainite transformation have been studied in Fe-Cr-Mo-V-Ti-C steel using high speed dilatometry and transmission electron microscopy (TEM) backed by thermodynamic analysis. At any temperature investigated did not occur the complete transformation of austenite. Obtained results confirm the incomplete reaction phenomenon with the cessation of the bainite transformation well before paraequilibrium is achieved. These experimental data indicate that bainitic ferrite forms by a displacive transformation mechanism, but soon afterwards, excess of carbon is partitioned into the residual austenite.

Słowa kluczowe : mechanism of bainite transformation, kinetics, lower, upper bainite,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 2(36)
Strony : 12 – 18
Bibliografia : 1. Aaronson H.I., Reynolds W.T., Shiflet G.J., Spanos G.: Bainite Viewed Three Different Ways. Metallurgical Transactions. 21A (1990), 1343-1380.
2. Bhadeshia H.K.D.H., Christian J.W.: Bainite in Steels. Metallurgical Transactions A 21A (1990), 767-797.
3. Barbacki A.: Próba uogólnienia mechanizmu wydzielania węglików stopowych podczas przemiany austenitu w ferryt na przykładzie węglików wanadu i molibdenu. Rozprawy nr 73, Politechnika Poznańska, Poznań, 1976.
4. Ławrynowicz Z., Barbacki A.: Carbides precipitation in bainite in an experimental Mo-Cr-V-Ti steel, Conference Proceedings of the 6-th International Conference “Carbides, Nitrides, Borides, ” Poznań-Kołobrzeg, (1993), 42-47.
5. Ławrynowicz Z., Barbacki A.: Features of Bainite Transformation in Steels. Advances in Materials Science 2 (2002), 5-32.
6. Bhadeshia H.K.D.H.: Thermodynamic analysis of isothermal transformation diagrams. Metal Science 16 (1982), 159-165.
7. Ławrynowicz Z., Barbacki A.: The mechanism of bainite transformation in Fe-Cr-Mn-Si-C steel, Proc. of the Scientific Con. AMTECH’95, Rousse, Bułgaria, pp. 1-8, 19-21 April 1995.
8. Ławrynowicz Z., Barbacki A.: Analiza mechanizmu izotermicznej przemiany bainitycznej w stali Cr-Mn-Si. Archiwum Nauki o Materiałach 17, (1996), 127-147.
9. Bhadeshia H.K.D.H.: Diffusional and Displacive Transformations. Scripta Metall. 21 (1987), 1017-1022.
10. McLellan R.B., Dunn W.W.: J. Phys. Chem. Solids. 30 (1969), 2631.
11. Siller, R.H., McLelan, R.B.: The Application of First Order Mixing Statistics to the Variation of the Diffusivity of Carbon in Austenite. Metallurgical Transactions 1 (1970), 985-988.
12. Christian J.W.: Theory of transformations in metals and alloys. 778 Oxford, Pergamon Press, 1965.
13. Ławrynowicz Z.: Transition from Upper to Lower Bainite in Fe-C-Cr Steel. Materials Science and Technology 20 (2004), 1447-1454.
14. Bhadeshia H.K.D.H.: Bainite in Steels, Institute of Materials, 1-458, London, 1992.
15. Ławrynowicz, Z., Dymski, S.: Application of the mechanism of bainite transformation to modelling of processing window in ductile iron ADI. Archives of Foundry Engineering l (2006), 177-182.
DOI :
Cytuj : Masadeh, S. ,Ławrynowicz, Z. , Bainite Transformation in Experimental Fe-Cr-Mo-V-Ti-C Steel. Advances in Materials Science Vol.13, nr 2(36)/2013
[Top]

Degradation of GFRP Marine Laminates with Nano Particle Modified Coatings

Czasopismo : Advances in Materials Science
Tytuł artykułu : Degradation of GFRP Marine Laminates with Nano Particle Modified Coatings

Autorzy :
Masadeh, S.
Al-Baha University, Faculty of Engineering, Mechanical Engineering Department, Al-Baha, Saudi Arabia, masadeh@bau.edu.jo,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Landowski, M.
Gdańsk University of Technology, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, mlandowski@gmail.com,
Imielińska, K.
Gdańsk University of Technology, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Abstrakty : Water absorption and surface blistering behaviour was studied for polyester-matrix laminates with SiO2 nanoparticle reinforced gel coats. Accelerated water immersion tests at 37°C showed that addition of 10% nanoparticles increases blisters incubation time by ca. 50% compared to 5% and 0% nanoparticles composites.

Słowa kluczowe : polymer composites, nano composite, durability, scanning electron microscopy (SEM),
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 2(36)
Strony : 19 – 22
Bibliografia : 1. R.Verleg, F Grandchamp, Blistering of FRP boat hull due to osmosis, Composite Applications for Marine, Feb 28-March 1 2005 Moscow Russia.
2. Nanoresins – http://www.nanoresins.ag.com
3. Weiping Liu, Song V.Hoa, Martin Pugh: Fracture toughness and water uptake of high performance epoxy/nanoclay nanocomposites. Composites Science and Technology 65 2005 , 2066-2072.
4. Almari H., Low IM., Effect of water absorption on the mechanical properties of nano-clay filled recycled fibre reinforced epoxy hybrid nanocomposites: Composites: Part A 44 2013, 23-31.
5. Almari H., Low IM., Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites: Materials and Design 42, 2012, 214-222.
6. Prolongo S.G., Gude M.R., Urena A., Water uptake of epoxy composites reinforced with carbon nanofillers: Composites: Part A 43, 2169-2175.
7. Kojima Y, Usuki A, Kwashmi M, Okada A, Kurauchi T, Kamigalto O, Sorption of water in nylon 6-clay hybrid. Journal of Applied Polymer Science 1993 49, 1259-64.
DOI :
Cytuj : Masadeh, S. ,Ławrynowicz, Z. ,Landowski, M. ,Imielińska, K. , Degradation of GFRP Marine Laminates with Nano Particle Modified Coatings. Advances in Materials Science Vol.13, nr 2(36)/2013
[Top]

Properties of Fe-Al Type Intermetallic Layers Produced by AC TIG Method

Czasopismo : Advances in Materials Science
Tytuł artykułu : Properties of Fe-Al Type Intermetallic Layers Produced by AC TIG Method

Autorzy :
Gontarz, G.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland, dgol@wip.pw.edu.pl,
Golański, D.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland,
Chmielewski, T.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland,
Abstrakty : The paper presents the results of two new in-situ methods of Fe-Al intermetallic compounds layers fabrication on the steel substrates. The layers were produced by hardfacing of pure aluminum and titanium on the steel (S235JR) substrate as well as in the two-step process: the thermal spraying of pure aluminum on a steel substrate and subsequent remelting of aluminum coating with iron from the substrate using AC TIG method. As a result of the synthesis of Fe, Al and Ti components (for the hardfacing method) the new layer material based on the ordered intermetallic phases was achieved. The effects were confirmed by metallographic examinations, hardness tests and the diffraction patterns of the analyzed remelted layers. In addition, measurements of residual stresses in the layer and substrate were carried out.

Słowa kluczowe : Intermetallic phases, hardfacing, thermal spraying, AC TIG,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 3(37)
Strony : 5 – 16
Bibliografia : 1. Wiliama J.C.: Intermetallics for structural applications: potential, reality and road ahead. Structural Intermetallics. M.V. Nathalat al. ed., TMS 1997, 3-8.
2. Bystrzycki J., Varin R.A., Bojar Z.: Progress in investigation of intermetallics with aluminum participation. Inżynieria Materiałowa 5 (1996), 137-149.
3. Gontarz G.: The remelting od surface layers deposited by welding methods. Scientific Papers. Mechanics series No.230: Joining in modern technology. Edited by Publishing House of Warsaw University of Technology, Warsaw 2010, 115-129.
4. Gontarz G., Chmielewski T., Golański D.: Modification of sprayed aluminum layers on steel substrate by the concentrated heat source Przegląd Spawalnictwa 12 (2011), 52-54.
5. Stoney G.G.: The Tension of Metallic Films deposited by Electrolysis. Proc. R. Soc. London, A82 (1909), 172-175.
6. Clyne T.W., Gill S.C.: Residual Stresses in Surface Coatings and Their Effects on Interfacial Debonding: A Review of Recent Work. J. Thermal Spray Technology 5(4) (1996), 401-418.
DOI :
Cytuj : Gontarz, G. ,Golański, D. ,Chmielewski, T. , Properties of Fe-Al Type Intermetallic Layers Produced by AC TIG Method. Advances in Materials Science Vol.13, nr 3(37)/2013
[Top]

Perspectives of Materials for Fin Tubes

Czasopismo : Advances in Materials Science
Tytuł artykułu : Perspectives of Materials for Fin Tubes

Autorzy :
Gontarz, G.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland, dgol@wip.pw.edu.pl,
Golański, D.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland,
Chmielewski, T.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland,
Pikos, I.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland, izabela.pikos@gmail.com,
Kocurek, R.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Adamiec, J.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Abstrakty : Modern design solutions of power boiler using the welded fin tubes for heat exchangers. Depending on thermal parameters (pressure and temperature), the heat transfer fluid and flue gas these constructions can be preheater, economizers or superheaters. Their use can significantly increase the energy efficiency of boilers. For the manufacture of welded fin tubes are used non-alloy steels and low-alloy C-Mo, C-Cr-Mo. Analysis of project assumptions supercritical blocks indicates that the range of conventional steel for power and martensitic steels has been depleted. Designing higher performance outlet of steam to 720°C and 35MPa requires the use of austenitic steels and nickel alloys. These materials are not easily available and not fully recognized, both technologically and in terms of materials, especially in the area of their weldability. In this work, performed the review of probably directions of development of materials for the finned tubes, with a particular focus on laser welding technology.

Słowa kluczowe : fin tubes, steel for energy, nickel superalloys, heat exchangers,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 3(37)
Strony : 17 – 25
Bibliografia : 1. Key World Energy Statistic 2012, International Energy Agency, http://www.iea.org.
2. Polish Energy Policy until 2030, Annex to Resolution No. 202/2009 of the Council of Ministers dated November 10, 2009.
3. http://epp.eurostat.ec.europa.eu.
4. Hernas A., Pasternak J., Brózda J., Moskal G.: Austenitic steels and nickel superalloys used in the construction of supercritical boilers and ultra-supercritical, Publisher SITPH, Katowice 2009.
5. Creep-resistant steels. F. Abe, T. Kern, R. Viswanathan ed, Woodhead Publishing Ltd., New York, 2008.
6. Hald J.: Microstructure and long-term creep properties of 9-12% Cr steels. International Journal of Pressure Vessels and Piping 85(2008) 30-37.
7. Hernas A., Moskal G. ,Rodak K.,Pasternak J.: Properties and microstructure of 12% Cr-W steels after long-term service. Journal of Achievements in Materials and Manufacturing Engineering, (1,2)2006 69-72.
8. Rodak K., Hernas A.,Kiełbus A.: Characteristics of new low-alloy steel T23 for power industry. Proc. 10th Jubilee International Scientific Conference Achievements in Mechanical & Materials Engineering, Gliwice, Cracow, Zakopane, Poland, 2001, pp. 483-486.
9. Dobrzański J.,Zieliński A., Sroka M.: Microstructure, properties investigations and methodology of the state evaluation of T23 (2.25Cr-0.3Mo-1.6W-V-Nb) steel in boilers application. Journal of Achievements in Materials and Manufacturing Engineering, (32)2009 142-153.
10. Nagode A., Koces L., Ule B., Kosec G.: Review of creep resistant alloys for power plant applications. Metalurgija 50(2011) 45-48.
11. Zheng-Fei H.: Heat-resistant steels, Microstructure evolution and life assessment in power plants. In Thermal power plants, M. Rasul ed., Intech, Rijeka, 2012, pp. 196-226.
12. Onoro J.: Weld metal microstructure analysis of 9-12% Cr steels. International Journal of Pressure Vessels and Piping 83(2006) 540-545.
13. Viswanathan R., Bakker W.: Materials for ultra-supercritical coal power plants-boiler materials. Journal of Materials Engineering and Performance 10(2001) 81-95.
14. Arndt J., Haarmann K., Kottmann G., Vaillant J.C.: The T23/T24 Book New Grades for Waterwalls and Superheaters. Vallourec and Mannesmann Tubes, Chine, 2000.
15. P91/T91 Data Sheet, Thyssen Krupp Materials International http://www.s-kh.com/media/de/Service/Werkstoffblaetter_englisch/Kesselrohre_ASTM/P91_T91_engl.pdf.
16. Material Data Sheet for HCM 12A, an Unclassified high-strength steel, including information regarding Fracture, Creep, Tensile, Elastic, Hardness, Density or mass, Thermal, Chemical composition, Heat treating, 1993.
17. http://www.smst-tubes.com/fileadmin/media/pdf_datasheets/.
18. Datasheet_DMV_347_HFG_20081118.pdf.
19. http://www.smt.sandvik.com/en/materials-center/material-datasheets/tube-and-pipeseamless/esshete-1250.
20. http://www.tubular.nssmc.com/product-services/specialty-tube/product/hr3c.
21. http://www.specialmetals.com/documents/Inconel%20alloy%20617.pdf.
22. http://www.specialmetals.com/documents/Inconel%20alloy%20625.pdf.
23. http://www.specialmetals.com/documents/Inconel%20alloy%20740.pdf.
24. Nikulin I., Kipelova A., Kaibyshev R.: Effect of high-temperature exposure on the mechanical properties of 18Cr-8Ni-W-Nb-V-N stainless steel. Materials Science and Engineering A 554(2012) 61-66.
25. Lee B.S., Oh Y.J., Yoon J.H., Kuk I.H., Hong J.H.: J-R fracture properties of SA508-1a ferritic steels and SA312-TP347 austenitic steels for pressurized water reactor’s (PWR) primary coolant piping. Nuclear Engineering and Design 199(2000) 113-123.
26. Vu The Ha, Woo Sang Jung, Jin Yoo Suh: Improved creep behavior of a high nitrogen Nbstabilized 15Cr-15Ni austenitic stainless steel strengthened by multiple nanoprecipitates. Metallurgical and Materials Tranactions A 42(2011) 3378-3385.
27. Cheng-yu Chi, Hong-yao Yu, Jian-xin Dong, Wen-qing Liu, Shi-chang Cheng, Zheng-dong Liu, Xi-shan Xie: The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe-Cr Ni type austenitic heat resistant steel for USC power plant application. Progress in Natural Science: Materials International 22(2012) 175-185.
28. Caminada S., Cumino G., Cipolla L., Venditti D., Di Gianfrancesco A., Minami Y, Ono T.: Creep properties and microstructural evolution of austenitic TEMPALOY steels. International Journal of Pressure Vessels and Piping 87(2010) 336-344.
29. Yulai Xu, Heng Nie, Jun Li, Xueshan Xiao, Changchun Zhu, Junliang Zhao: Growth of creep life of type-347H austenitic stainless steel by micro-alloying elements. Materials Science and Engineering A 528(2010) 643-649.
30. Pilarczyk J.: Engineers Hanbook, Welding part 1, Publisher of Science and Technology, Warsaw, 2003.
31. Shah Hosseini H., Shamanian M., Kermanpur A.: Characterization of microstructure and mechanical properties of Inconel 617/310 stainles steel dissimilar welds. Materials Characterization 62(2011) 425-431.
32. Dilthey U., Risch A.: Laser welding of stainless steel and stainless / low-alloy material combinations. Welding in the World 36(1995) 135-142.
DOI :
Cytuj : Gontarz, G. ,Golański, D. ,Chmielewski, T. ,Pikos, I. ,Kocurek, R. ,Adamiec, J. , Perspectives of Materials for Fin Tubes. Advances in Materials Science Vol.13, nr 3(37)/2013
[Top]

Manufacturing Technologies of Finned Tubes

Czasopismo : Advances in Materials Science
Tytuł artykułu : Manufacturing Technologies of Finned Tubes

Autorzy :
Gontarz, G.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland, dgol@wip.pw.edu.pl,
Golański, D.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland,
Chmielewski, T.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland,
Pikos, I.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland, izabela.pikos@gmail.com,
Kocurek, R.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Adamiec, J.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Kocurek, R.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland, robert.kocurek@polsl.pl,
Adamiec, J.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Abstrakty : The increase in demand for electricity in Europe requires a continuous search for new sources of energy, engineering and technology solutions. Maintaining the current level of electricity production requires not only repair and modernization of the operating units, as well as construction of new blocks of supercritical and ultrasupercritical. Increasing thermal efficiency while reducing energy costs is possible through the use of finned tubes for heat exchangers. This paper presents the technologies of finned tubes, with particular emphasis on innovative laser welding technology developed in the Energoinstal SA company. The use of high power disk laser allows the welding of finned tubes several times more efficient compared to arc welding technology, while maintaining stringent quality and technical requirements.

Słowa kluczowe : finned tubes, laser welding, power boiler, energy efficiency,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 3(37)
Strony : 26 – 35
Bibliografia : 1. Breeze P.: Raising steam plant efficiency – Pushing the steam cycle boundaries. PEI Magazine 20(2012).
2. Huseman R.: Advanced (700oC) PF Power Plant. A Clean Coal European Technology. Advanced Material for AD700 Boilers, Cesi Auditorium, Milano, 2005.
3. Najgebauer E., Patrycy A.: Commitments of Polish energy to the EU. www.geoland.pl.
4. Dziemidowicz Z., Szyszka P., Krupa I.: Power units on the horizon. The technical requirements of new generation units at PGE Power Plant Opole S.A. Electric Heat and Vocational Education 11 (2011).
5. Information on http://www.energy.siemens.com.
6. Kusiński J.: Lasers and their applications in materials science, Scientific Publishers Akapit, Cracow, 2000.
7. Gawrysiuk W., Adamiec J., Więcek M.: Possibilities of laser welding and hybrid welding membrane walls and finned tubes, The Conference Welding in Energy, Opole – Jarmołtówek 2008.
8. Mitrovic J.: „Heat Exchanger and Condenser Tubes, Tube Types – Materials – Attributes – Machning. Publico Publications 2004.
9. Richert J.: Innovative methods of plastic working, Publisher AGH, Cracow, 2010.
10. Pasierb A.: New developments in the technology of rolling finned tubes. Non-ferrous Ores and Metals, 10-11(2002), 505-507.
11. Adamiec J., Gawrysiuk W., Więcek M.: Automated station for welding finned tubes by laser disk. Bulletin of the Institute of Welding 5(2010), 55-59.
12. Information on http://www.fivesgroup.com.
13. Information on http://www.hiwtc.com.
DOI :
Cytuj : Gontarz, G. ,Golański, D. ,Chmielewski, T. ,Pikos, I. ,Kocurek, R. ,Adamiec, J. ,Kocurek, R. ,Adamiec, J. , Manufacturing Technologies of Finned Tubes. Advances in Materials Science Vol.13, nr 3(37)/2013
[Top]

Low-Energy Welding Methods Used for Semi-Automatic Thin-Walled Automotive Steels

Czasopismo : Advances in Materials Science
Tytuł artykułu : Low-Energy Welding Methods Used for Semi-Automatic Thin-Walled Automotive Steels

Autorzy :
Gontarz, G.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland, dgol@wip.pw.edu.pl,
Golański, D.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland,
Chmielewski, T.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland,
Pikos, I.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland, izabela.pikos@gmail.com,
Kocurek, R.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Adamiec, J.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Kocurek, R.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland, robert.kocurek@polsl.pl,
Adamiec, J.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Korzeniowski, M.
Wroclaw University of Technology, Faculty of Mechanical Engineering, Lukasiewicza 5, 50-371 Wroclaw, Poland, marcin.korzeniowski@pwr.wroc.pl,
Piwowarczyk, T.
Wroclaw University of Technology, Faculty of Mechanical Engineering, Lukasiewicza 5, 50-371 Wroclaw, Poland,
Kustroń, P.
Wroclaw University of Technology, Faculty of Mechanical Engineering, Lukasiewicza 5, 50-371 Wroclaw, Poland,
Czubak, A.
HSETeam S. C.,
Abstrakty : The paper deals with the issues of welding modern car-body steels (including dual phase (DP), high strength low alloy (HSLA) and deep-drawing (DC) grades) using low-energy methods. In view of small thickness of elements to be joined, welding them with conventional arc methods has becoming more and more rare and has been replaced with methods which, while ensuring required strength properties of joints, deliver substantially less heat to the weld, thus limiting its effect on the structure being welded. Examinations (visual inspections, strength tests, hardness measurements) allowed an objective evaluation of selected low-energy methods with respect to MAG welding with CO2shielding.

Słowa kluczowe : semi-automatic low energy welding, automotive steels, strength testing od welding joints,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 3(37)
Strony : 36 – 48
Bibliografia : 1. Grzybicki M., Jakubowski J., Comparative tests of welding of sheets made of car body steel using the CMT and MIG/MAG methods, Welding Technology Review, no. 10, 2009, in polish.
2. Kiszka A., Technological properties of low-energy welding methods ColdArc, CMT, AC Pulse and Cold Process, Welding Departments and Institutes symposium ”Modern Applications of welding technology”, Byczyna 2012, in polish
3. Matusiak J., Pfeifer T.,Low-energy arc welding methods in shield gases – the influence of material and technological conditions for quality of joints and pollution emissions to the environment, Institute of Welding Bulletin, 5 (2008), in polish
4. Jastrzębski A., Tasak E., Influence of pulsation of the MIG arc on the structure of aluminium alloys welds, Welding Technology Review, no. 7-8, 2009, in polish.
5. Klimpel A., Janicki D., Cyroń M., Pulse arc GTA automatic welding process of thin austenitic AISI 321 steel, Welding Technology Review, no. 2-3, 2006, in polish.
6. Bruckner J., The CMT – revolution of welding technology, Welding Technology Review, no. 2-3, 2006, in polish.
7. EWM Information brochure, Innovative welding processes MIG/MAG EWM, 2012.
8. Ignasiak A., Korzeniowski M., Ambroziak A., Investigation of microstructure of resistance spot-welded joints made of HSLA340 and DP600 Steel, Archives of Metallurgy and Materials, Vol. 57, Iss. 4/2012.
9. Senkara J., Contemporary car body steels for automotive industry and technological guidelines of their pressure welding, Welding Technology Review, no. 11, 2009, in polish.
10. Prodromos T., Mechanical properties of Dual-Phase steel, Research at the Institute For Materials Science and Mechanics of Materials of TU- Munich 2006.
11. ThyssenKrupp Steel, Product information Deep-drawing steels, September 2008.
12. Multi-author work, Welding Handbook, Volume 1, American Welding Society 1998.
13. Multi-author work, ASM Handbook; Welding, Brazing and Soldering Volume 6, USA 1993.
DOI :
Cytuj : Gontarz, G. ,Golański, D. ,Chmielewski, T. ,Pikos, I. ,Kocurek, R. ,Adamiec, J. ,Kocurek, R. ,Adamiec, J. ,Korzeniowski, M. ,Piwowarczyk, T. ,Kustroń, P. ,Czubak, A. , Low-Energy Welding Methods Used for Semi-Automatic Thin-Walled Automotive Steels. Advances in Materials Science Vol.13, nr 3(37)/2013
[Top]

Pulsed Arc Welding Applied to Robotized Joining of Thin Car-Body Steel Sheets

Czasopismo : Advances in Materials Science
Tytuł artykułu : Pulsed Arc Welding Applied to Robotized Joining of Thin Car-Body Steel Sheets

Autorzy :
Gontarz, G.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland, dgol@wip.pw.edu.pl,
Golański, D.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland,
Chmielewski, T.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland,
Pikos, I.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland, izabela.pikos@gmail.com,
Kocurek, R.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Adamiec, J.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Kocurek, R.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland, robert.kocurek@polsl.pl,
Adamiec, J.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Korzeniowski, M.
Wroclaw University of Technology, Faculty of Mechanical Engineering, Lukasiewicza 5, 50-371 Wroclaw, Poland, marcin.korzeniowski@pwr.wroc.pl,
Piwowarczyk, T.
Wroclaw University of Technology, Faculty of Mechanical Engineering, Lukasiewicza 5, 50-371 Wroclaw, Poland,
Kustroń, P.
Wroclaw University of Technology, Faculty of Mechanical Engineering, Lukasiewicza 5, 50-371 Wroclaw, Poland,
Czubak, A.
HSETeam S. C.,
Piwowarczyk, T.
Wrocław University of Technology, Faculty of Mechanical Engineering, Institute of Production Engineering and Automation, Department of Welding, Wrocław, Poland, tomasz.piwowarczyk@pwr.wroc.pl,
Korzeniowski, M.
Wrocław University of Technology, Faculty of Mechanical Engineering, Institute of Production Engineering and Automation, Department of Welding, Wrocław, Poland,
Kustroń, P.
Wrocław University of Technology, Faculty of Mechanical Engineering, Institute of Production Engineering and Automation, Department of Welding, Wrocław, Poland,
Gąbka, M.
HS Wrocław sp. z o.o.,
Abstrakty : The paper presents the potential of robotized welding applied for thin steel sheets using variable parameters of arc (different welding programs: Standard, Pulse, Twin Pulse, and Speed Pulse). Trial welded joints were made for sheets 0.8 to 1.25 mm thick and relevant welding parameters were selected for them during the first stage of examinations. The properties of welded joints were determined with non-destructive and destructive testing. In turn, visual inspection allowed to evaluate the shape and dimensional conformities of joints and to detect superficial imperfections. In order to improve detection accuracy, penetration testing was used for confirmation purposes. Tensile strength testing was also made to determine mechanical properties of the weld and the heat-affected zone. Metallographic examinations were used for sheets of all thickness values and for all welding programs to verify that the structure of joints was correct. All examinations and tests made on trial joints enabled to find how pulsing arc welding affects quality and strength properties of welds as compared with standard method.

Słowa kluczowe : pulsed arc welding, robotized welding, welding programs,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 3(37)
Strony : 49 – 63
Bibliografia : 1. Kruczyński M.: Robotized welding process, Mechanical engineering and design, no 1-2/2011, (in polish).
2. Kruczyński M.: Kawasaki, Friendly robotic, friendly welding, Welding of construction materials, no 3/2009, (in polish).
3. Pilarczyk J.: Handbook of Welding Technology, vo.l II, WNT, Warszawa 2005, (in polish)
4. User guide S SpeedPulse, LORCH Schweißtechnik GmbH, 2008, (in polish).
5. Jastrzębski A., Tasak E., Influence of pulsation of the MIG arc on the structure of aluminium alloys welds, Welding Technology Review, no. 7-8, 2009, (in polish).
6. Lange A.: MIG/MAG welding, educational materials of the project “Improving the competitiveness of the automotive industry through staff training”, Wrocław 2008, (in polish).
7. Mizerski J.: MAG and MiG Gas-shielded welding methods, Handbook for welders and welding supervision personnel, REA, Warszawa 2005, (in polish).
8. Kiszka A., Technological properties of low-energy welding methods ColdArc, CMT, AC Pulse and Cold Process, Welding Departments and Institutes symposium ”Modern Applications of welding technology”, Byczyna 2012, (in polish).
9. Klimpel A., Janicki D., Cyroń M., Pulse arc GTA automatic welding process of thin austenitic AISI 321 steel, Welding Technology Review, no. 2-3, 2006, (in polish).
DOI :
Cytuj : Gontarz, G. ,Golański, D. ,Chmielewski, T. ,Pikos, I. ,Kocurek, R. ,Adamiec, J. ,Kocurek, R. ,Adamiec, J. ,Korzeniowski, M. ,Piwowarczyk, T. ,Kustroń, P. ,Czubak, A. ,Piwowarczyk, T. ,Korzeniowski, M. ,Kustroń, P. ,Gąbka, M. , Pulsed Arc Welding Applied to Robotized Joining of Thin Car-Body Steel Sheets. Advances in Materials Science Vol.13, nr 3(37)/2013
[Top]

Preparation of Aluminium Foam Edges for Welding

Czasopismo : Advances in Materials Science
Tytuł artykułu : Preparation of Aluminium Foam Edges for Welding

Autorzy :
Gontarz, G.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland, dgol@wip.pw.edu.pl,
Golański, D.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland,
Chmielewski, T.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland,
Pikos, I.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland, izabela.pikos@gmail.com,
Kocurek, R.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Adamiec, J.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Kocurek, R.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland, robert.kocurek@polsl.pl,
Adamiec, J.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Korzeniowski, M.
Wroclaw University of Technology, Faculty of Mechanical Engineering, Lukasiewicza 5, 50-371 Wroclaw, Poland, marcin.korzeniowski@pwr.wroc.pl,
Piwowarczyk, T.
Wroclaw University of Technology, Faculty of Mechanical Engineering, Lukasiewicza 5, 50-371 Wroclaw, Poland,
Kustroń, P.
Wroclaw University of Technology, Faculty of Mechanical Engineering, Lukasiewicza 5, 50-371 Wroclaw, Poland,
Czubak, A.
HSETeam S. C.,
Piwowarczyk, T.
Wrocław University of Technology, Faculty of Mechanical Engineering, Institute of Production Engineering and Automation, Department of Welding, Wrocław, Poland, tomasz.piwowarczyk@pwr.wroc.pl,
Korzeniowski, M.
Wrocław University of Technology, Faculty of Mechanical Engineering, Institute of Production Engineering and Automation, Department of Welding, Wrocław, Poland,
Kustroń, P.
Wrocław University of Technology, Faculty of Mechanical Engineering, Institute of Production Engineering and Automation, Department of Welding, Wrocław, Poland,
Gąbka, M.
HS Wrocław sp. z o.o.,
Krajewski, S.
West Pomeranian University of Technology, Szczecin, Institute of Materials Science and Engineering, Al. Piastow 19 St., 70 – 310 Szczecin, Poland,
Nowacki, J.
West Pomeranian University of Technology, Szczecin, Institute of Materials Science and Engineering, Al. Piastow 19 St., 70 – 310 Szczecin, Poland, jnowacki@zut.edu.pl,
Abstrakty : This paper presents the results of cutting aluminum foams. The experiment includes the following mechanical methods of cutting: circular saw cutting, band-saw cutting, EDM cutting, water-jet cutting, and thermal cutting methods: laser cutting and air plasma cutting. The influence of the cutting method on the edge geometry was specified in the paper. EDM was defined as the most advantageous method of Al foam cutting, as providing the best aluminium foam edges surface quality for welding.

Słowa kluczowe : aluminum foam, metal foam cutting, edge preparation for welding,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 3(37)
Strony : 64 – 75
Bibliografia : 1. Kathuria Y.P., A preliminary study on laser assisted aluminum foaming, Journal of Materials Science 38 (2003) 2875 – 2881.
2. Kathuria Y.P., Nd-YAG laser assisted aluminum foaming, Journal of Materials Processing Technology Volume 142, Issue 2, 25 November 2003, Pages 466-470.
3. Malekjafarian M., Sadrnezhaad S.K., Closed-cell Al alloy composite foams: Production and characterization, Materials and Design 42 (2012) 8-12.
4. PN-EN ISO 9013:2008 Thermal cutting – Classification of thermal cuts – Geometrical product specification and quality tolerances (in polish: PN-EN ISO 9013:2008 Cięcie termiczne – Klasyfikacja cięcia termicznego – Specyfikacja geometrii wyrobu i tolerancje jakości.)
5. Ashby M.F., Evans A.G., Fleck N.A., Gibson L.J., Hutchinson J.W., Wadley H.N.G., Metal Foams: A Design Guide, Butterworth-Heinemann 2000.
6. Yilbas B.S., Akhtar S.S., Keles O., Laser Cutting of triangular geometries in aluminum foam: Effect of cut size on thermal stress levels, Optics & Laser Technology Volume 48 (2013), 523-529.
7. Yilbas B.S., Akhtar S.S., Keles O., Laser hole cutting in aluminum foam: Influence of hole diameter on thermal stress, Optics and Lasers in Engineering Volume 51, Issue 1, January 2013, 23-29.
8. De Jaeger P., T’Joen C., Huisseune H., Ameel B., De Schampheleire S., De Paepe M., Assessing the influence of four cutting methods on the thermal contact resistance of open-cell aluminum foam, International Journal of Heat and Mass Transfer 55 (2012) 6142-6151.
9. Abolghasemi Fakhri M. Bordatchev E. V., Tutunea-Fatan O. R., An image-based methodology to establish correlations between porosity and cutting force in micromilling of porous titanium foams, Int J Adv Manuf Technol (2012) 60:841-851.
10. Rajput V., Mondal D. P., Das S., Ramakrishnan N., Jha A. K., Effect of SiCp addition on agehardening of aluminium composite and closed cell aluminium composite foam, Journal of Materials Science 2007, Volume 42, Issue 17, 7408-7414.
11. Duflou J.R., Kruth J-P., Bohez E.L., Contour cutting of pre-formed parts with abrasive waterjet using 3-axis nozzle control, Journal of Materials Processing Technology Volume 115, Issue 1, 22 August 2001, 38-43.
12. Eltawahni H.A., Hagino M., Benyounis K.Y., Inoue T, Olabi A.G., Effect of CO2 laser cutting process parameters on edge quality and operating cost of AISI316L, Optics & Laser Technology 44 (2012) 1068-1082.
13. Furong Cao, Zhuoliang Li, Nianxian Zhang, Hua Ding, Fuxiao Yu, Liang Zuo Superplasticity, flow and fracture mechanisminan Al-12.7Si-0.7 Mg alloy, Materials Science&EngineeringA571(2013)167-183.
14. Stakhniv N.E., L. N. Devin, and A. G. Sulima, A Study of Cutting Force Variations in Turning Silumins Using Round Polycrystalline Diamond Inserts, ISSN 10634576, Journal of Superhard Materials, 2010, Vol. 32, No. 5, 356-364.
DOI :
Cytuj : Gontarz, G. ,Golański, D. ,Chmielewski, T. ,Pikos, I. ,Kocurek, R. ,Adamiec, J. ,Kocurek, R. ,Adamiec, J. ,Korzeniowski, M. ,Piwowarczyk, T. ,Kustroń, P. ,Czubak, A. ,Piwowarczyk, T. ,Korzeniowski, M. ,Kustroń, P. ,Gąbka, M. ,Krajewski, S. ,Nowacki, J. , Preparation of Aluminium Foam Edges for Welding. Advances in Materials Science Vol.13, nr 3(37)/2013
[Top]

Cracking of High-Strength Steel Welded Joints

Czasopismo : Advances in Materials Science
Tytuł artykułu : Cracking of High-Strength Steel Welded Joints

Autorzy :
Gontarz, G.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland, dgol@wip.pw.edu.pl,
Golański, D.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland,
Chmielewski, T.
Warsaw University of Technology, Faculty of Production Engineering, Department of Welding Engineering, 02-524 Warsaw, Narbutta 85, Poland,
Pikos, I.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland, izabela.pikos@gmail.com,
Kocurek, R.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Adamiec, J.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Kocurek, R.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland, robert.kocurek@polsl.pl,
Adamiec, J.
Silesian University of Technology, Department of Material Science, Faculty of Material Science and Metallurgy, Katowice, Poland,
Korzeniowski, M.
Wroclaw University of Technology, Faculty of Mechanical Engineering, Lukasiewicza 5, 50-371 Wroclaw, Poland, marcin.korzeniowski@pwr.wroc.pl,
Piwowarczyk, T.
Wroclaw University of Technology, Faculty of Mechanical Engineering, Lukasiewicza 5, 50-371 Wroclaw, Poland,
Kustroń, P.
Wroclaw University of Technology, Faculty of Mechanical Engineering, Lukasiewicza 5, 50-371 Wroclaw, Poland,
Czubak, A.
HSETeam S. C.,
Piwowarczyk, T.
Wrocław University of Technology, Faculty of Mechanical Engineering, Institute of Production Engineering and Automation, Department of Welding, Wrocław, Poland, tomasz.piwowarczyk@pwr.wroc.pl,
Korzeniowski, M.
Wrocław University of Technology, Faculty of Mechanical Engineering, Institute of Production Engineering and Automation, Department of Welding, Wrocław, Poland,
Kustroń, P.
Wrocław University of Technology, Faculty of Mechanical Engineering, Institute of Production Engineering and Automation, Department of Welding, Wrocław, Poland,
Gąbka, M.
HS Wrocław sp. z o.o.,
Krajewski, S.
West Pomeranian University of Technology, Szczecin, Institute of Materials Science and Engineering, Al. Piastow 19 St., 70 – 310 Szczecin, Poland,
Nowacki, J.
West Pomeranian University of Technology, Szczecin, Institute of Materials Science and Engineering, Al. Piastow 19 St., 70 – 310 Szczecin, Poland, jnowacki@zut.edu.pl,
Pańcikiewicz, K.
AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder Metallurgy, 30-059 Cracow, Poland, krzysztof.pancikiewicz@agh.edu.pl,
Zielińska-Lipiec, A.
AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder Metallurgy, 30-059 Cracow, Poland,
Tasak, E.
AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder Metallurgy, 30-059 Cracow, Poland,
Abstrakty : Fracture evaluation of welded joints in high-strength steels, with bainitic and martensitic structures, is presented and cracking mechanisms discussed. Hot cracks or microcracks formed during welding are further expanded as cold cracks on cooling. The cause of cracking is shown to be low temperature of weld solidification and deformation-induced contraction. Hydrogen can also be an important factor in this cracking.

Słowa kluczowe : hot cracking, cold cracking, hydrogen cracking, 7CrMoVTiB10-10 welded joint,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 3(37)
Strony : 76 – 85
Bibliografia : 1. Ćwiek J.: Hydrogen enhanced-cracking of high-strength steel welded joints. Advances in Materials Science 4 (2008) 4-13.
2. Łabanowski J., Fydrych D., Rogalski G.: Underwater welding – A review. Advances in Materials Science 3 (2009) 11-22.
3. Kozak T. Resistance to cold cracking of welded joints made of P460NL1 steel. Advances in Materials Science 3 (2011) 20-27.
4. Fydrych D., Kozak T.: Underwater welded joint properties investigation. Advances in Materials Science 4 (2010) 4-14.
5. Muszka K., Majta J., Bienias Ł.: Effect of grain refinement on mechanical properties of microalloyed steels. Metallurgy and Foundry Engineering 2 (2006) 87-97.
6. Skubisz P., Sińczak J., Bednarek S., Łukaszek-Sołek A.: Effect of deformation degree on properties of forgings after thermomechanical treatment. Metallurgy and Foundry Engineering 2 (2006) 107-115.
7. Stefańska-Kądziela M., Majta J., Muszka K.: Effects of strain rate on work hardening of HSLA and Ti-IF steels. Metallurgy and Foundry Engineering 1 (2006) 19-29.
8. Fydrych D., Łabanowski J., Rogalski G.: Weldability of high strength steels in wet welding conditions. Polish Marine Research 2 (2013) 67-73.
9. ASM Handbook Volume 01: Properties and Selection: Irons, Steels, and High-Performance Alloys. ASM International. 1990
10. EN 10025-6 Hot rolled products of structural steels – Technical delivery conditions for flat products of high yield strength structural steels in the quenched and tempered condition.
11. EN 10216-2 Seamless steel tubes for pressure purposes – Technical delivery conditions – Nonalloy and alloy steel tubes with specified elevated temperature properties
12. PN-EN ISO 4063 Welding and allied processes – Nomenclature of processes and reference numbers.
13. Adamiec J.: Hot Cracking of welded joints of the 7CrMoVTiB10-10 steel. IOP Conf. Ser.: Mater. Sci. Eng. 22 (2011) 1-11.
14. PN-EN ISO 5817 Welding – Fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded) – Quality levels for imperfections.
15. Tasak E., Ziewiec A., Adamiec J.: Influence of hydrogen on welded joint cracking in bainitic and microalloyed steels. Metallurgy – Metallurgical Engineering News 4 (2008) 170-176 (in Polish).
16. Ziewiec A., Pańcikiewicz K., Tasak E.: Cracking in the welds metal of 7CrMoVTiB10-10 (T24) steel during welding, commissioning and operating of power units. Welding Technology Review 5 (2012) 2-7 (in Polish).
17. Adamiec J.: Cracking of welded joints made from 7CrMoVTiB10-10 steel. Proc. 2nd Int. Conf. Power welding, Ostaniec, Kroczyce, 2011, 7-19 (in Polish).
18. Kou S.: Welding Metallurgy, Wiley-Interscience, Hoboken, New Jersey, 2003.
19. Tasak E.: Welding Metallurgy, Jak, Kraków, 2008 (in Polish).
DOI :
Cytuj : Gontarz, G. ,Golański, D. ,Chmielewski, T. ,Pikos, I. ,Kocurek, R. ,Adamiec, J. ,Kocurek, R. ,Adamiec, J. ,Korzeniowski, M. ,Piwowarczyk, T. ,Kustroń, P. ,Czubak, A. ,Piwowarczyk, T. ,Korzeniowski, M. ,Kustroń, P. ,Gąbka, M. ,Krajewski, S. ,Nowacki, J. ,Pańcikiewicz, K. ,Zielińska-Lipiec, A. ,Tasak, E. , Cracking of High-Strength Steel Welded Joints. Advances in Materials Science Vol.13, nr 3(37)/2013
[Top]

Dynamic mechanical behaviour of gfrp composites with SiO2 nano particles reinforced epoxy matrix

Czasopismo : Advances in Materials Science
Tytuł artykułu : Dynamic mechanical behaviour of gfrp composites with SiO2 nano particles reinforced epoxy matrix

Autorzy :
Landowski, M.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk Narutowicza 11/12 Gdańsk, Poland, mlandowski@gmail.com,
Budzik, M.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk Narutowicza 11/12 Gdańsk, Poland,
Imielińska, K.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk Narutowicza 11/12 Gdańsk, Poland,
Abstrakty : Dynamic mechanic (DMA) tests were performed to compare the mechanical behaviour of glass fibre reinforced epoxy laminate composites with SiO2nanoparticle reinforced matrix. The selection of the most promising nanoparticle concentrations was considered in terms of elastic modulus and glass transition temperature. The reference specimens (0% nanoparticles) did not contain diluent accordingly the results do not allow the exact comparison with unreinforced composite, nevertheless the ranking of the nanocomposites was made. In terms of stiffness requirements 20% nanoparticles composites offer the best behaviour, 25% higher elastic modulus than 5% nanoparticles. For nano composites the glass transition temperature TG is the highest: 80°C, 77°C for 3%, 5% nanoparticles respectively and the lowest 75°C, 72°C , 71°C for 15%, 10% and 20% nanoparticles is respectively .

Słowa kluczowe : Polymer composites, nano composite, DMA, glass transition temperature,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 4(38)
Strony : 5 – 8
Bibliografia : 1. Barbezat M., Brunner AJ, Necola A., Rees M, Gasser Ph., Terassi G., Fracture behaviour of GFRP laminates with nanocomposite epoxy resin matrix: Journal of composites materials 43, 9/2009.
2. Hussain F., Hojjati M., Okamoto M., and Gorga RE, Polymer matrix nanocomposites. Processing, manufacturing and Applications: an Overview, Journal Composite materials 40 (17) (2006): 1511-1575.
3. Zhou Y., Pervin RF, Biswas MA, Rangari V.K. and Jeelani S., Fabrication and characterization of Montmorillonite Clay filled SC-15 Epoxy, Materials and Letters, 60(7) (2006): 869-873.
4. Brunner A.J. Necola A. Rees M., Gasser Ph., Kornmann X., Thomann R., and Barbezat M.: The influence of silicate based nanofiller on the fracture toughness of epoxy resin, Engineering Fracture Mechanics , 73(16) (2006) 2336-2345.CrossRef
5. Haque A., Shamsuzzoha. M. Hussain and Dean D.: S-2Glass.epoxy Polymer nanocomposites: Manufacturing, structures, Thermal and Mechanical Properties Journal of Composite materials 37(2003) 1821-1837.
6. Zhao S, Schadler L. S. H. Hillborg H., Auletta T. : Improvements and mechanisms of fracture and fatigue properties of well dispersed alumina /epoxy nanocomposites, Composites Science and Technology 68 (2008) 2976-29.Web of Science
7. Zhao S., Schadler LS, Duncan R., Hillborg H., Auletta T.: Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy: Composites Science and Technology 68 (2008) 2965-2975.Web of Science
DOI :
Cytuj : Landowski, M. ,Budzik, M. ,Imielińska, K. , Dynamic mechanical behaviour of gfrp composites with SiO2 nano particles reinforced epoxy matrix. Advances in Materials Science Vol.13, nr 4(38)/2013
[Top]

Ausferritic or bainitic transformation in adi

Czasopismo : Advances in Materials Science
Tytuł artykułu : Ausferritic or bainitic transformation in adi

Autorzy :
Landowski, M.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk Narutowicza 11/12 Gdańsk, Poland, mlandowski@gmail.com,
Budzik, M.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk Narutowicza 11/12 Gdańsk, Poland,
Imielińska, K.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk Narutowicza 11/12 Gdańsk, Poland,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Abstrakty : The purpose of the present paper is to demonstrate how a thermodynamic method can be used for solving a problem of the decarburisation of bainite laths and carbon diffusion distances in the matrix of ADI. This should in principle enable to examine the partitioning of carbon from supersaturated ferrite laths into adjacent austenite and the carbon content in retained austenite using analytical method. The paper presents an investigation of the time required for the diffusion of carbon out of supersaturated laths of ferrite into the retained austenite. A consequence of the precipitation of cementite from austenite during austempering is that the growth of bainitic ferrite can continue to larger extent and that the resulting microstructure is not an ausferrite but it is a mixture of bainitic ferrite, retained austenite and carbides. In case of this microstructure the product of austempering reaction in ductile iron is rather bainite than “ausferrite”.

Słowa kluczowe : ausferrite, bainite transformation in ADI, carbon redistribution,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 4(38)
Strony : 9 – 18
Bibliografia : 1. Chang L.C.: Carbon content of austenite in austempered ductile iron. Scripta Materialia. 39 (1998), 35-38.CrossRef
2. Pietrowski S.: Nodular cast iron of bainitic ferrite structure with austenite or bainitic structure.Archives of Materials Science. 18 (1997), 253-273. (in Polish)
3. Guzik S.E.: Austempered cast iron as a modern constructional material. Inżynieria Materiałowa. 6 (2003), 677-680. (in Polish).
4. Ławrynowicz Z., Dymski S.: Analysis of carbon diffusion during bainite transformation in ADI.Archives of Foundry Engineering. 7 (2007), 87-92.
5. Takahashi M., Bhadeshia H.K.D.H.: A Model for the Microstructure of Some Advanced Bainitic Steels. Materials Transaction. JIM. 32 (1991) 689-696.
6. Ławrynowicz Z.: Transition from upper to lower bainite in Fe-Cr-C steel. Materials Science and Technology. 20 (2004), 1447-1454.
7. Ławrynowicz Z.: A discussion on the mechanism of bainite transformation in steels. Technology and Materials. Gdańsk. Politechnika Gdańska. 4 (2006), 149-155 (in Polish).
8. Ławrynowicz Z.: Mechanism of bainite transformation in Fe-Cr-Mo-V-Ti-C steel. International Journal of Engineering. 12 (1999), 81-86.
9. Christian J.W.: Theory of transformations in metals and alloys, 778, Oxford, Pergamon Press, 1965.
10. Bhadeshia H.K.D.H.: Bainite in Steels. Institute of Materials. 1-458, London, 1992.
11. Kinsman K.R., Aaronson H.I., The transformation and hardenability in steels, Climax Molybdenum Company, Ann Arbor, MI, p.39, 1967.
12. Bhadeshia H.K.D.H., Christian J.W.: Bainite in Steels. Metallurgical Transactions A. 21A (1990), 767-797.CrossRef
13. H.K.D.H. Bhadeshia: Diffusion of carbon in austenite. Metal Science. 15 (1981), 477-479.
14. Siller R.H., McLelan R.B.: The Application of First Order Mixing Statistics to the Variation of the Diffusivity of Carbon in Austenite. Metallurgical Transactions. 1 (1970), 985-988.
15. Ławrynowicz Z.: Criticism of selected methods for diffusivity estimation of carbon in austenite.Zeszyty Naukowe ATR. nr 216, Mechanika 43 (1998), 283-287. (in Polish).
16. Ławrynowicz Z.: Bainitic transformation: estimation of carbon diffusivity in austenite on the basis of measured austenite film thickness. Zeszyty Naukowe ATR. nr 216 Mechanika 43, (1998) 289-297. (in Polish).
17. Ławrynowicz Z.: A discussion on the mechanism of bainite transformation in steels. Technology and Materials. Gdańsk, Politechnika Gdańska. 4, (2006), 149-155. (in Polish)
18. Ławrynowicz Z.: Observation of interphase boundary: bainite-non-pearlitic eutectoid in Cr-Mo-C alloy by TEM. Technology and Materials. Gdańsk, Politechnika Gdańska. 4 (2006), 156-160. (in Polish)
DOI :
Cytuj : Landowski, M. ,Budzik, M. ,Imielińska, K. ,Ławrynowicz, Z. , Ausferritic or bainitic transformation in adi. Advances in Materials Science Vol.13, nr 4(38)/2013
[Top]

The analysis of the effect of time and temperature of air on the colouring of the surface layer of O-Ti2AlNb based titanium alloy

Czasopismo : Advances in Materials Science
Tytuł artykułu : The analysis of the effect of time and temperature of air on the colouring of the surface layer of O-Ti2AlNb based titanium alloy

Autorzy :
Landowski, M.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk Narutowicza 11/12 Gdańsk, Poland, mlandowski@gmail.com,
Budzik, M.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk Narutowicza 11/12 Gdańsk, Poland,
Imielińska, K.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk Narutowicza 11/12 Gdańsk, Poland,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Małecka, J.
Opole University of Technology, Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Poland, j.malecka@po.opole.pl,
Abstrakty : This study presents the test results of Ti-20Nb-15Al alloy isothermal oxidation in air at 700°C with the consideration of the effect of annealing time on the condition of the surface layer. It was determined that, depending on the heating time, the surface of the tested alloy was characterized by a different colouring. This phenomenon was observed only at 700°C.

Słowa kluczowe : intermetallics, high temperature corrosion, oxidation, coatings,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 4(38)
Strony : 19 – 24
Bibliografia : 1. Clemens H., Kestler H.: Processing and Applications of Intermetallic γ-TiAl-Based Alloy.Advanced Engineering Materials 9 (2000), pp. 551-570.CrossRef
2. Yoshihara M., Kim Y.W.: Oxidation behaviour of gamma alloys designed for high temperature oxidation. Intermetallics 13 (2005), pp. 952-958.Web of Science CrossRef
3. Yamaguchi M., Inui H., Ito K.: High-temperature structural intermetallics. Acta Materialia 48 (2000), pp. 307-322.CrossRef
4. Loria E.A.: Gamma titanium aluminides as prospective structural materials. Intermetallics 8 (2000), pp. 1339-1345.CrossRef
5. Szkliniarz W.: The alloys from the binary system of Ti-Al. Z. Bojar, W. Przetakiewicz, (Eds.), Metallic materials with the participation of intermetallic phases, Technical Military Academy, Warsaw (2006), pp. 66-88 (Chapter 2.2, in Polish).
6. Appel F., Paul J.D.H., Oerhing M.: Gamma Titanium Aluminide Alloys, Science and Technology (2011) Wiley-VCH, GmbH & Co. KgaA.
7. Kumpfert J., Leyens C.: Orthorombic titanium aluminides: Intermetallics with improved damage tolerance. Titanium and titanium alloys Fundamentals and applications. Ch. Leyens, M. Peters (Eds.) Wiley-VCH, GmbH & Co. KgaA 2003 (chapter 3)
8. Kakare S.A., Toney J.B., Aswath P.B.: Oxidation of ductile particle reinforced Ti-48Al composite. Metallurgical and Materials Transactions 26A (1995), pp. 1835-1845.
9. Chan K.S.: Developing Hydrogen Tolerant Microstructures for an Alpha-2 Titanium Aluminide Alloy. Metallurgical and Materials Transactions 23A (1992), pp. 497-507.
10. Takasaki A., Furuya Y., Taneda Y.: Hydrogen uptake in titanium aluminides covered with oxide layers. Metallurgical and Materials Transactions 29A (1998), pp. 307-314.
11. Kakare S.A., Toney J.B., Aswath P.B.: Oxidation of ductile particle reinforced Ti-48Al composite. Metallurgical and Materials Transactions 26A (1995), pp. 1835-1845.
12. Shen Y., Ding, Wang F.: High temperature oxidation behaviour of Ti-Al-Nb ternary alloys.Journal of Materials Science 39 (2004), pp. 6583-6589.
13. Toshio N., Takeshi I., Yatagai M., Yoshioka T.: Sulfidation processing and Cr addition to improve oxidation resistance of TiAl intermetallics in air at 1173 K. Intermetallics 8 (2000), pp. 371-379.
14. Schaaf1 P., Quadakkers W.J., Zheng N., Wallura E., Gil A.: Beneficial and detrimental effects of nitrogen on the oxidation behaviour of TiAl-based intermetallics. Materials and Corrosion 48, Issue 1 (1997), pp. 28-34.
15. Król S. : Cyclic oxidation of c-TiAl based multicomponent alloys with addition of Ta. Protection against Corrosion 11s/A (2005), pp. 94-198 (in Polish).
16. Wu Y., Hagihara K., Umakoshi Y.: Improvement of cyclic oxidation resistance of Y-containing TiAl-based alloys with equiaxial gamma microstructures. Intermetallics 13 (2005), pp. 879-884.CrossRef
17. Król S., Małecka J., Zemčik L.: The effect of niobium on the kinetics oxidation behaviour of γ- TiAl. Protection against Corrosion 11s/A (2007), pp. 124-128 (in Polish).
18. Shemet V., Tyagi A.K., Becker J.S., Lersch P., Singheiser L., Quadakkers W.J.: The formation of protective alumina-based scales during high-temperature air oxidation of γ -TiAl alloys.Oxidation of Metals 54 (2000), pp. 211-235
19. Małecka J., Grzesik W., Hernas A.: An investigation on oxidation wear mechanisms of Ti-46Al-7Nb-0.7Cr-0.1Si-0.2Ni. Corrosion Science 52 (2010), pp. 263-272.
20. Małecka J., Król S., Zemčik L.: The influence of selected parameters on the course of cyclic oxidation of Ti-46Al-7Nb, Advances in Materials Science Vol. 7, No 4/14 (2007) pp. 57-62.
21. Małecka J. , Krzak-Roś J.: Preparation of SiO2 coating by sol-gel method, to improve hightemperature corrosion resistance of a γ-TiAl phase based alloy. Advances in Materials Science Vol. 12, No 4/34 (2012), pp. 5-12.
22. Swadźba L., Moskal G., Hetmańczyk M., Mendala B., Jarczyk G.: Long-term cyclic oxidation of Al-Si diffusion coatings deposited by Arc-PVD on TiAlCrNb alloy. Surface and Coatings technology 184 (2004), pp. 93-101.
23. Kumpfert J.: Intermetallic alloys based on orthorhombic titanium aluminide. Advanced Engineering Materials 3 (2001), pp. 851-864. CrossRef
DOI :
Cytuj : Landowski, M. ,Budzik, M. ,Imielińska, K. ,Ławrynowicz, Z. ,Małecka, J. , The analysis of the effect of time and temperature of air on the colouring of the surface layer of O-Ti2AlNb based titanium alloy. Advances in Materials Science Vol.13, nr 4(38)/2013
[Top]

Assessment of material behaviour and structural integrity of engineering structures based on R6 procedure

Czasopismo : Advances in Materials Science
Tytuł artykułu : Assessment of material behaviour and structural integrity of engineering structures based on R6 procedure

Autorzy :
Landowski, M.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk Narutowicza 11/12 Gdańsk, Poland, mlandowski@gmail.com,
Budzik, M.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk Narutowicza 11/12 Gdańsk, Poland,
Imielińska, K.
Gdańsk University of Technology, Mechanical Faculty, 80-233 Gdańsk Narutowicza 11/12 Gdańsk, Poland,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Małecka, J.
Opole University of Technology, Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Poland, j.malecka@po.opole.pl,
Kossakowski, P. G.
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Chair of Strength of Materials and Concrete Structures, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland, kossak@tu.kielce.pl,
Abstrakty : The R6 procedure is one of the most advanced, innovative and effective method developed and recommended for use in problems of material behaviour and structural integrity of engineering structures with defects. The idea and basic assumptions of R6 procedure are described in the paper as well as example of its practical application in analysis of damaged bridge structural element. As a result of the research, the highly conservative approach of R6 procedure was observed, which estimated the level of hazardous loads as the elastic limit load for analysed element.

Słowa kluczowe : R6 procedure, Failure Assessment Diagram (FAD), structural integrity, material behaviour,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2013
Numer : Vol.13, nr 4(38)
Strony : 25 – 32
Bibliografia : 1. R6: Assessment of the integrity of structures containing defects. British Energy Generation Report R/H/R6, Revision 4, 2001.
2. SINTAP: Structural integrity assessment procedures for European industry. Brite-Euram Project No. BE95-1426, Contract No. BRPR-CT95-0024, Final Report, 1999.
3. Ranatowski E.: Relation Structure – Fracture Resistance in Process of Estimate the Weldability of Low Alloy Steels: Part II, Advances in Materials Science, 10, 2010, 41-47.
4. Koçak M., Hadley I., Szavai S., Tkach Y., Taylor N.: FITNET Fitness-for-Service (FFS) Procedure – Volume 1, Revision MK8. Joint Research Centre, GKSS Research Centre Geesthacht, 2008.
5. Koçak M., Hadley I., Szavai S., Tkach Y., Taylor N.: FITNET Fitness-for-Service (FFS) Annex – Volume 2, Revision MK8. Joint Research Centre, GKSS Research Centre Geesthacht, 2008.
6. Neimitz A., Fracture Mechanics in Polish, PWN, Warszawa, 1998.
7. Kossakowski P.: The Evaluation of Load-Carrying Capacity of Elements of Steel Structures Using R-6 And FITNET Methods in Polish, Proceedings of 56th Annual Conference of KILiW PAN i KN PZITB on Scientific Problems of Civil Engineering, Kielce 19-24 September 2010, Kielce-Krynica, 667-674.
8. PN-EN 10002-1:2004 Metallic Materials – Tensile Testing – Part 1: Method of Test at Ambient Temperature.
9. PN-88/H-04336 Metals – Test method of fracture toughness by measurement critic value J integral.
DOI :
Cytuj : Landowski, M. ,Budzik, M. ,Imielińska, K. ,Ławrynowicz, Z. ,Małecka, J. ,Kossakowski, P. G. , Assessment of material behaviour and structural integrity of engineering structures based on R6 procedure. Advances in Materials Science Vol.13, nr 4(38)/2013
[Top]

Optically transparent and structurally sound silica aerogels: insights from a process study

Czasopismo : Advances in Materials Science
Tytuł artykułu : Optically transparent and structurally sound silica aerogels: insights from a process study

Autorzy :
Athmuri, K.
North Dakota State University, Industrial and Manufacturing Engineering, Fargo, ND 58102, USA,, val.marinov@ndsu.edu,
Abstrakty : Aerogels are internally nanostructured materials characterized with a plethora of unique properties. Monoliths with high optical transparency made of silica aerogels were some of the first and still one of the most important classes of aerogels. Experiments and theory indicate that optical transparency and structural integrity of silica aerogels are negatively correlated. Other than optimal combination of processing conditions during aerogel fabrication can result in either highly transparent but cracked or in crack-free but less transparent and even opaque aerogels monoliths. Results are presented from the study of the relationship between the properties of single-step tetramethoxysilane (TMOS) base-catalyzed silica aerogels and the processing conditions, both at the alcogel preparation step and during the supercritical liquid CO2 drying process. Crack-free aerogel monoliths with good optical transparency were obtained with TMOS:methanol (MeOH) molar ratios of 1:16 and TMOS:ammonia (NH4OH) molar ratios of 1:0.05, CO2-MeOH exchange rates of about 1.25 ml/min, and autoclave decompression rates of 70 KPa/min. Adding glycerol in the sol-gel stage had a positive effect on the aerogel monolithicity but, even without glycerol, crack-free silica aerogels can be obtained by reducing the depressurization rate of the autoclave. A strict control and careful selection of the aerogel’s processing conditions within the set of parameters identified will enable the fabrication of structurally sound silica aerogels with good optical properties essential for a number of applications.

Słowa kluczowe : silica aerogel, transparent aerogel monolith,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2012
Numer : Vol.12, nr 1(31)
Strony : 5 – 16
Bibliografia : 1. Aegerter M.A., Leventis N., Koebel M.M.: Aerogels Handbook. Springer, New York, 2011.
2. Hirashima H., Kojima C., Imai H.: Application of alumina aerogels as catalysts. Journal of Sol-Gel Science and Technology 8 (1997), 843-846.
3. Smirnova A., Dong X., Hara H., Vasiliev A., Sammes N.: Novel carbon aerogel-supported catalysts for PEM fuel cell application. International journal of hydrogen energy 30 (2005), 149-158.
4. Moreno-Castilla C., Maldonado-Hódar F.: Carbon aerogels for catalysis applications: An overview. Carbon 43 (2005), 455-465.
5. Pajonk G.: Aerogel catalysts. Applied Catalysis 72 (1991), 217-266.
6. Smith D.M., Maskara A., Boes U.: Aerogel-based thermal insulation. Journal of non-crystalline solids 225 (1998), 254-259.
7. Cantin M., Casse M., Koch L., Jouan R., Mestreau P., Roussel D., Bonnin F., Moutel J., Teichner S.: Silica aerogels used as Cherenkov radiators. Nuclear Instruments and Methods 118 (1974), 177-182.
8. Mandarino J.: The Gladstone-Dale relationship. Part I: Derivation of new constants. Canadian Mineralogist 14 (1976), 498-502.
9. Emmerling A., Petricevic R., Beck A., Wang P., Scheller H., Fricke J.: Relationship between optical transparency and nanostructural features of silica aerogels. Journal of non-crystalline solids 185 (1995), 240-248.
10. Fricke J.: Aerogels. Springer-Verlag, Berlin, 1986.
11. Hüsing N., Schubert U.: Aerogels—Airy Materials: Chemistry, Structure, and Properties. Angewandte Chemie International Edition 37 (1998), 22-45.
12. Kistler S.: Coherent Expanded Aerogels and Jellies. Nature 127 (1931), 741.
13. Nicolaon G., Teichner S.: New preparation process for silica xerogels and aerogels, and their textural properties. Bulletin de la Société Chimique de France 5 (1968), 1900-1906.
14. Box M., Lo S., McKellar B., Reich M.: The application of the Rayleigh–Gans approximation to scattering by polydispersions. Quarterly Journal of the Royal Meteorological Society 104 (1978), 959-969.
15. Beck A., Gelsen O., Wang P., Fricke J.: Light scattering for structural investigations of silica aerogels and alcogels. Le Journal de Physique Colloques 50 (1989), 4-4.
16. Van de Hulst H.: Light scattering by small particles. Dover Publications, Mineola, N.Y., 1981.
17. Schaefer D.: What factors control the structure of silica aerogels? Le Journal de Physique Colloques 50 (1989), 4-4.
18. Voorhees P.: The theory of Ostwald ripening. Journal of Statistical Physics 38 (1985), 231-252.
19. Pajonk G., Venkateswara Rao A., Sawant B., Parvathy N.: Dependence of monolithicity and physical properties of TMOS silica aerogels on gel aging and drying conditions. Journal of non-crystalline solids 209 (1997), 40-50.
20. Pajonk G.M.: Some applications of silica aerogels. Colloid & Polymer Science 281 (2003), 637-651.
21. Venkateswara Rao A., Pajonk G., Haranath D., Wagh P.: Effect of sol-gel processing parameters on optical properties of TMOS silica aerogels. Journal of Materials Synthesis and Processing 6 (1998), 37-48.
22. Scherer G.W.: Theory of drying. Journal of the American Ceramic Society 73 (1990), 3-14.
23. Hosticka B., Norris P., Brenizer J., Daitch C.: Gas flow through aerogels. Journal of non-crystalline solids 225 (1998), 293-297.
24. Calas S., Sempere R.: Textural properties of densified aerogels. Journal of non-crystalline solids 225 (1998), 215-219.
25. Rogacki G., Wawrzyniak P.: Diffusion of ethanol-liquid CO2 in silica aerogel. Journal of non-crystalline solids 186 (1995), 73-77.
26. Masmoudi Y., Rigacci A., Ilbizian P., Cauneau F., Achard P.: Diffusion during the supercritical drying of silica gels. Drying technology 24 (2006), 1121-1125.
27. Tewari P., Hunt A., Lofftus K.: Ambient-temperature supercritical drying of transparent silica aerogels. Materials Letters 3 (1985), 363-367.
28. Wagh P., Begag R., Pajonk G., Rao A.V., Haranath D.: Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors. Materials chemistry and physics 57 (1999), 214-218.
29. Athmuri K.: Transparent and Crack-free Silica Aerogels. M.Sc. Thesis, North Dakota State University, 2012.
30. Haranath D., Rao A.V., Wagh P.: Influence of DCCAs on optical transmittance and porosity properties of TMOS silica aerogels. Journal of Porous Materials 6 (1999), 55-62.
31. Sorensen L.M.: Embedding Luminescent Nanocrystals in Silica Sol-Gel Matrices. M.Sc. Thesis, Florida State University, 2006.
32. Rao A.V., Kulkarni M.M.: Effect of glycerol additive on physical properties of hydrophobic silica aerogels. Materials chemistry and physics 77 (2003), 819-825.
33. Novak Z., Knez Ž.: Diffusion of methanol–liquid CO2 and methanol–supercritical CO 2 in silica aerogels. Journal of non-crystalline solids 221 (1997), 163-169.
DOI :
Cytuj : Athmuri, K. , Optically transparent and structurally sound silica aerogels: insights from a process study. Advances in Materials Science Vol.12, nr 1(31)/2012
[Top]

The iron-nickel-molybdenum (Fe-Ni-Mo) electrodeposited alloy on n-type silicon

Czasopismo : Advances in Materials Science
Tytuł artykułu : The iron-nickel-molybdenum (Fe-Ni-Mo) electrodeposited alloy on n-type silicon

Autorzy :
Athmuri, K.
North Dakota State University, Industrial and Manufacturing Engineering, Fargo, ND 58102, USA,, val.marinov@ndsu.edu,
Fekih, Z.
1U.D.T.S, 2Bd Frantz-Fanon, B.P .140, 7merveilles Algiers, Algeria, fe_zakia@yahoo.fr,
Abstrakty : In the present work, the electrodeposition of iron-nickel-molybdenum (Fe-Ni-Mo) alloy on n-type silicon (Si) is investigated. A voltamperometric study has been carried out. According to the composition of the solution and of its pH, the properties of final deposit have been investigated and analyzed by X-rays diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Under our conditions an amorphous FeNiMo alloy was formed. The morphology of deposited layer was strongly influenced by the polarization and the molybdenum dominance in the final chemical composition of the deposited film. Moreover, high percentages of molybdenum can be obtained from high molybdate concentrations and grain size increase with increasing Mo concentration. We also noticed that an absence of nickel was accomplished by applying more negative potential.

Słowa kluczowe : electrodeposition, metallic alloy, pH solution,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2012
Numer : Vol.12, nr 1(31)
Strony : 17 – 26
Bibliografia : 1. A. A. Pasa and W. Schwarzacher: Electrodeposition of Thin Films and Multilayers on Silicon. phys. stat. sol. (a) 73 (1999), 173.
2. H. L. Gaigher and N. G. VanDerBerg: The fcc-hcp phase transition in electrodeposited epitaxial cobalt films. Electrochimica. Acta. 21 (1976), 45.
3. M. M. Sartorelli, A. Q. Shervensky, R. G. Delatorre, P. Klauss, A. M. Maliska and A. A. Pasa: Cu–Ni Thin Films Electrodeposited on Si: Composition and Current Efficiency, phys. Stat. Sol. (a) 187, N°. 1, (2001), 91-95.
4. E. Gómez, E. Pellicer and E. Valles: Electrodeposited cobalt/molybdenum magnetic materials. J. Electroanal. Chem. 517 (2001), 109.
5. C.M. Rodia, Metal Finishing, Guidebook and Directory Issue’91, (1991), 330.
6. N.V. Myung, D.-Y. Park, D.E. Urgiles, T. George: Electroformed iron and FeCo alloy. Electrochimica Acta 49, (2004), 4397– 4404.
7. R.D. Srivastava, R.C. Mukerjee: Electrodeposition of binary alloys: an account of recent developments J. Appl. Electrochem. 6, (1976), 321.
8. P.J. Grundy: Thin film magnetic recording media, J. Phys. D: Appl. Phys. 31, (1998), 2975.
9. M. Futamoto, N. Inaba, A. Nakamura, Y. Honda: Microstructures and basic magnetic properties of Co-based epitaxial magneticthin films. Acta Mater. 46, (1998), 3777.
10. G. Bordin, G. Buttino, A. Cecchetti, M. Poppi: Temperature dependence of magnetic properties and phase transitions in a soft magnetic Co-based nanostructured alloy, J. Phys. D: Appl. Phys. 32, (1999), 1795.
11. O. Gutfleisch: Controlling the properties of high energy density permanent magnetic materials by different processing routes, J. Phys. D: Appl. Phys. 33, (2000), R157.
12. D. Landolt: Electrodeposition Science and Technology in the Last Quarter of the Twentieth Century, J. Electrochem. Soc. 149, (2002), S9-S20.
13. T. Osaka: Electrochemical aspects of advanced electronic materials. Electrochim. Acta 37 (1992) 989.
14. P.L. Cavallotti, B. Bozzini, L. Nobili, G. Zangari: Alloy electrodeposition for electronic applications. Electrochim. Acta 39 (1994), 1123.
15. B. Lochel, A. Maciossek: Electrodeposited Magnetic Alloys for Surface Micromachining, J. Electrochem. Soc. 14 (1996) 3343-3348.
16. W.P. Taylor, M. Schneider, H. Baltes, M.G. Allen: Electroplated soft magnetic materials for microsensors and microactuators, in: Proceedings of the International Conference on Solid-State Sensors and Actuators, Transducers’97, Chicago, 1997.
17. P. Råback, R. Nieminen, R. Yakimova, M. Tuominen, and E. Janzén. Thermodynamic considerations on the role of hydrogen in sublimation growth of silicon carbide. J. Electrochem. Soc. 144 (1997) 1209.
18. O. Shinoura, T. Koyanagi: Magnetic thin film head with controlled domain structure by electroplating technology. Electrochim. Acta 42 (1997) 3361.
19. Despitc Aleksandar; Popov, Konstantin. “Transport Controlled Deposition and Dissolution of Metals” In Modern Aspects of Electrochemistry, Vol. 7, Brian E. Conway, John O’M. Bockris, eds. New York, NY: Plenum Press, 1972.
20. Y. Sverdlov, Y. Rosenberg, Yu.I. Rozenberg, R. Zmood, R. Erlich, S. Natan, Y. Shacham-Diamand: The electrodeposition of cobalt–nickel–iron high aspect ratio thick film structures for magnetic MEMS applications Microelectronic Engineering 76, (2004), 258–265.
21. Taylor WP, Schneider M, Baltes H, Allen MG In: Proceedings of the international conference on solid-state sensors and actuators, Transducers’97, Chicago. Transducer, Chicago, (1997), 1445.
22. J. Robin, “Introduction aux méthodes électrochimiques”, Ed. Masson et Cie, Paris, 1967.
23. E.Gómez, J.M.García-Torres, E. Vallés : Study and preparation of silver electrodeposits at negative potentials. Journal of Electroanalytical Chemistry 594 (2006), 89-95.
24. A. Brenner: Electrodeposition of Alloys. vol. 1–2, Academic Press, New York, (1963).
25. 25. E. Gómez, E. Pellicer, E. Vallés: Influence of the bath composit ion and the pH on the induced cobalt/molybdenum electrodeposition. J. Electroanal. Chem. 556, (2003), 137.
26. K. I. Popov, S. S. Djokic, B. N. Grgur, “Fundamental aspects of electrometallurgy”, Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow, 2002.
27. W. Plieth, “Electrochemistry for Materials Science”, Elsevier, Oxford, 2008.
28. E Goemez, E Pellicer, E Valles: Influence of the bath composition and the pH on the induced cobalt–molybdenum electrodeposition. J. Electroanalytical Chem.556, (2003), 137-145.
29. F. Miomandre, S. Sadki, P. Audbert, R. Miallet-Renault. ‘’Électrochimie des concepts aux applications’’, Ed. Dunod, Paris, (2005).
30. E. Navarro-Flores, Zhiwen Chong, Sasha Omanovic: Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium Journal of Molecular. Catalysis A: Chemical 226, 179–197, (2005).
31. A. Fikus, R. Pelz, E. Kern, W. Plieth; Morphology of electrochemically prepared polybithiophene film electrodes by digital scanning microscopy with low acceleration voltage. Electrochim. Acta, 43, 2233 (1998).
32. W. Hu, Y. Zhang, D. Song, Z. Zhou, Y. Wang: Electrode properties of amorphous nickel-iron-molybdenum alloy as a hydrogen electrocatalyst in alkaline solution Materials Chemistry and Physics 41, 141-145, (1995).
33. L. Ramesh, B. S. Sheshadri and S. M. Mayanna: Electrolytic preparation and characterization of Ni–Fe–Mo alloys: cathode materials for alkaline water electrolysis. Int. J. Energy Res., 23, 919-924 (1999).
34. L. N. Mendome « Surfaces nanostructurees de nickel électrodéposé sur divers substrats de dépôt : étude de la croissance d'interface et des caractéristiques magnétiques”, Thèse de doctorat, l’université de Reims Champagne-Ardenne, 2007.
DOI :
Cytuj : Athmuri, K. ,Fekih, Z. , The iron-nickel-molybdenum (Fe-Ni-Mo) electrodeposited alloy on n-type silicon. Advances in Materials Science Vol.12, nr 1(31)/2012
[Top]

The analysis of influence of Tvergaard's parameters on S235JR steel response in high stress triaxiality

Czasopismo : Advances in Materials Science
Tytuł artykułu : The analysis of influence of Tvergaard's parameters on S235JR steel response in high stress triaxiality

Autorzy :
Athmuri, K.
North Dakota State University, Industrial and Manufacturing Engineering, Fargo, ND 58102, USA,, val.marinov@ndsu.edu,
Fekih, Z.
1U.D.T.S, 2Bd Frantz-Fanon, B.P .140, 7merveilles Algiers, Algeria, fe_zakia@yahoo.fr,
Kossakowski, P.
Kielce University of Technology, Faculty of Civil and Environmental Engineering, Chair of Strength of Materials and Concrete Structures, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland, kossak@tu.kielce.pl,
Abstrakty : The influence of Tvergaard’s parameters qi of Gurson-Tvergaard-Needleman (GTN) material model on S235JR steel response was considered in the study. The analysis concerns the strength curves simulated numerically for notched tensile elements under static tension in complex stress state defined by high initial stress triaxiality > 1. Typical and material-dependent values of Tvergaard’s parameters qi were examined. The influence of the Tvergaard’s parameters qi on material response was noticed at the failure range for S235JR steel in the case of high stress triaxiality.

Słowa kluczowe : Tvergaard’s parameters, Gurson-Tvergaard-Needleman material model, GTN, high stress triaxiality, S235JR steel,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2012
Numer : Vol.12, nr 1(31)
Strony : 27 – 35
Bibliografia : 1. PN-EN 1993-1-10:2005 Eurocode 3 – Design of Steel Structures – Material Toughness and Through-thickness Properties.
2. Sedlacek G., Feldmann M., Kühn B., Tschickardt D., Höhler S., Müller C., Hensen W., Stranghöner N., Dahl W., Langenberg P., Münstermann S., Brozetti J., Raoul J., Pope R., Bijlaard F.: Commentary and Worked Examples to EN 1993-1-10 “Material toughness and through thickness properties“ and other toughness oriented rules in EN 1993, JRC Scientific and Technical Reports, European Commission Joint Research Centre, 2008.
3. Kossakowski P.G: An analysis of the load-carrying capacity of elements subjected to complex stress states with a focus on the microstructural failure. Archives of Civil and Mechanical Engineering 10 (2010), pp. 15-39.
4. Kossakowski P., Trąmpczyński W.: Numerical simulation of damage of steel S235JR including the influence of microstructural damage. Mechanical Review (Przegląd Mechaniczny) 4 (2011) (in Polish), p. 15-22.
5. Simulation of ductile fracture of S235JR steel using computational cells with microstructurally-based length scales. Journal of Theoretical and Applied Mechanics 50 (2012), pp. 589-607.
6. Kossakowski P.: Simulation of the plastic range work of structural steel in a complex stress state on the model Gursona-Tvergaarda-Needleman. Building Review (Przegląd Budowlany) 3 (2012), (in Polish), p. 43-49.
7. Gurson A.L.: Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I – Yield Criteria and Flow Rules for Porous Ductile Media. Journal of Engineering Materials and Technology, Transactions of the ASME 99 (1977), pp. 2-15.
8. Tvergaard V.: Influence of Voids on Shear Band Instabilities under Plane Strain Condition, International Journal of Fracture 17 (1981), pp. 389-407.
9. Tvergaard V., Needleman A.: Analysis of The Cup-Cone Fracture in a Round Tensile Bar, Acta Metallurgica 32 (1984), pp. 157-169.
10. Needleman A., Tvergaard V.: An Analysis of The Ductile Rupture in Notched Bars, Journal of the Mechanics and Physics of Solids 32 (1984), pp. 461-490.
11. Cordigliano A., Mariani S., Orsati B.: Identification of Gurson-Tvergaard material model parameters via Kalman filtering technique. I. Theory. International Journal of Fracture, 104 (2000), pp. 349-373.
12. Tvergaard V.: Material failure by void growth to coalescence. Advanced in Applied Mechanics 27 (1989), pp. 83-151.
13. Faleskog J., Gao X., Shih C.F.: Cell model for nonlinear fracture analysis – I. Micromechanics calibration. International Journal of Fracture 89 (1998), pp. 355-373.
14. PN-EN 10002-1:2001 Metallic Materials – Tensile Testing – Part 1: Method of Test at Ambient Temperature.
15. Abaqus 6.10 Analysis User’s Manual, Dassault Systèmes, 2010.
DOI :
Cytuj : Athmuri, K. ,Fekih, Z. ,Kossakowski, P. , The analysis of influence of Tvergaard's parameters on S235JR steel response in high stress triaxiality. Advances in Materials Science Vol.12, nr 1(31)/2012
[Top]

Quantum chemical study of organic inhibitors of corrosion and hydrogen absorption an investigation of the mechanism of bainite transformation in experimental 0.2c-1v-2mn steel

Czasopismo : Advances in Materials Science
Tytuł artykułu : Quantum chemical study of organic inhibitors of corrosion and hydrogen absorption an investigation of the mechanism of bainite transformation in experimental 0.2c-1v-2mn steel

Autorzy :
Beloglazov, G.
State University of Russia, Department of Chemistry, 236040 Kaliningrad, drgeorge59@mail.ru,
Abstrakty : Results of quantum chemical calculations of the molecules of organic inhibitors (Oin) of corrosion and hydrogen absorption by metals (particularly, p-R-C6H4-SO2-NH2 where R= F, Cl, Br, CH3) both in free state and adsorbed on cluster modeling aluminium surface containing 20 atoms of Al are compared to experimental data on efficiencies of protective action (EPA) against corrosion by this metal. Energies of boundary orbitals (HOMO, LUMO) and dipole moments of isolated molecules of Oin as well as changes of atomic charges on Oin atoms when Oin molecule adsorbed have been computed using semi-empiric MNDO quantum chemistry method. It was found that correlation coefficients between EPA and changes of electric charge on N atom [?Q(N)] and O atom [?Q(O)] due to adsorption of Oin on the metal surface are the most significant. At adsorption and eventually the protection action of Oin, the specific role of polar groups (such as hydroxile) and specific role of heteroatoms (such as N, S etc) in the framework of the concepts of molecular orbitals and donor-acceptor interaction between adsorbent and adsorbate.

Słowa kluczowe : Quantum Chemistry, Corrosion Inhibitor, Protective Action, Boundary Orbitals, HOMO, LUMO, Mulliken Charges, MNDO, Heteroatom, Adsorption, Hydrogen Absorption, Pair Correlation, QuantumChemical Descriptors,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2012
Numer : Vol.12, nr 2(32)
Strony : 5 – 18
Bibliografia : 1. Beloglazov S.M., Beloglazov G.S., Uss S.N. Corrosion and hydrogen absorption inhibitors with biocide action against sulphate reducing bacteria, in: Progress in the Understanding and Prevention of Corrosion // Progress in the Understanding and Prevention of Corrosion: Proc. / 10th European Congress. Barcelona. 1993. J.M. Costa, A. D. Mercer (Eds.). Vol. 2, pp. 1185-1189.
2. Beloglazov S.M., Beloglazov G.S. Correlation of Quantum Chemical Study of Organic Compounds with their Corrosion and Hydrogen Absorption Efficiency // Eurocorrosion-94: Conference Papers. Bournemouth. 1994. Vol. 3, pp. 94-100.
3. Beloglazov S.M., Beloglazov G.S. Inhibitors of Steel Corrosion and Hydrogen Adsorption in Two-Phase System of Gas Pipelines // Abstracts: 3rd European Federation of Corrosion Workshop on Microbial Corrosion / Estoril Portugal, March 1994, pp. 64.
4. Beloglazov S.M., Beloglazov G.S., Myamina A.A. Corrosion and Hydrogen Absorption Inhibitors with Biocyde Action Against Sulphate Reducing Bacteria // Proc.: 46th Ann. Meeting Int. Soc. of Electrochem. / Xiamen, China. 1995, pp. 7-11.
5. Beloglazov S.M., Gorilenko N.N., Beloglazov G.S. Microbiological corrosion of mild steel at the presence of sulphate reducing bacteria: The influence of inhibitors and stimulators of hydrogen absorption // Corrosion in natural and industrial environments: Problems and industrial solutions. Grado, 1995, pp. 211-218.
6. Beloglazov S.M., Beloglazov G.S., Poljudova V.P. Inhibitors of Steel Corrosion and Hydrogen Absorption in Two-Phase System of Gas Pipelines // Ann. Univ. Ferrara N.S.Sez. V Suppl. 1995. N 10, pp.1327-1331.
7. Beloglazov G.S., Beloglazov S.M. Quantum chemical study of nitrogen and sulphur containing substances as inhibitors of the corrosion and hydrogenation of steel // Development in Marine Corrosion, S.A. Campbell, N. Campbell and F.C. Walsh (Eds.), The Royal Soc. Chem., Cambridge. 1998, pp. 143 -154.
8. Beloglazov G.S., Beloglazov S.M., Gryaznova M.V. // EMCR'2006: Proc. France, 2006, p. 37.
9. Beloglazov G.S., Gryaznova M.V., Beloglazov S.M. Prediction of Efficiency of Organic Inhibitors using Quantum Chemical Modeling of Inhibition of Corrosion and Hydrogen Absorption of Metals // EUROCORR 2004. Nice, France. 2004 / Proc. CD ROM. 6 p.
10. Beloglazov G.S., Myamina A.A., Beloglazov S.M. Understanding Mechanisms of Inhibiting Action of N-containing Organic Compounds on Corrosion and Hydrogen Absorption of Steel using Quantum Chemical Computations // EUROCORR 2004. Nice, France. 2004 / Abstracts, p. 39.
11. Gaussian 94 // Revision E3 / M.J. Frisch, G.W. Trucks e.a., Gaussian, Inc., Pittsburgh PA. 1995.
12. Beloglazov G.S., Gryaznova M.V., Beloglazov S.M. Quantum chemical study of pyrazoline derivatives as inhibitors of hydrogenation and SRB-induced corrosion of steel // 55th ISE Annual Meeting of ISE. Thessalonica, Greece. 2004 / Abstracts, Vol. 2. p. 942.
13. Beloglazov S.M., Beloglazov G.S., Laykova M.N. Experimental and quantum chemical study of benzenesulfonamide derivatives as inhibitors of hydrogen absorption and microbiological corrosion of Ni-coated steel in aqueous media // Proc. 10 Europ. Symp. on Corros. and Scale Inhib. (SEIC) / Ferrara, 2005. Sez. 5, Suppl. 12, pp. 505-516.
14. Beloglazov G.S., Beloglazov S.M. Quantum chemical study of adsorption of organic inhibitors on Al and Cd surfaces // Achievements and prospects in development of new medicinal drugs: Material Russ. Sci.-Pract. Conf… 70 Anniv. PSPhA. Perm. 2007, pp. 163-167.
15. Beloglazov G.S., Beloglazov S.M., Gladysh O.D. Quantum Chemical Study of Corrosion Inhibitive Action of Organic Substances // Progress in the Understanding and Prevention of Corrosion: Proc. / 10th European Congress. Barcelona, 1993, pp. 900-905.
16. Beloglazov S.M., Myamina A.A., Beloglazov G.S. Corrosion and Hydrogen Absorption Inhibitors with Biocyde Action Against Sulphate Reducing Bacteria // IX Int. Congress on Marine Corrosion and Fouling / Abstracts. Portsmouth. 1995.
17. Landau M.A. Molecular Mechanisms of Action of Physiologically Active Compounds, 3-rd edition. M., 1979. – p. 323
DOI :
Cytuj : Beloglazov, G. , Quantum chemical study of organic inhibitors of corrosion and hydrogen absorption an investigation of the mechanism of bainite transformation in experimental 0.2c-1v-2mn steel. Advances in Materials Science Vol.12, nr 2(32)/2012
[Top]

An investigation of the mechanism of bainite transformation in experimental 0.2c-1v-2mn steel

Czasopismo : Advances in Materials Science
Tytuł artykułu : An investigation of the mechanism of bainite transformation in experimental 0.2c-1v-2mn steel

Autorzy :
Beloglazov, G.
State University of Russia, Department of Chemistry, 236040 Kaliningrad, drgeorge59@mail.ru,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Abstrakty : The paper presents an investigation of the mechanism of bainite transformation in 0.2C-1V-2Mn steel using high speed dilatometry and TEM backed by thermodynamic analysis. Obtained results confirm the incomplete reaction phenomenon with the cessation of the bainite transformation well before paraequilibrium is achieved. These experimental data indicate that bainitic ferrite forms by a displacive transformation mechanism, but soon afterwards, excess of carbon is partitioned into the residual austenite. The results are discussed in terms of the mechanism of bainite transformation.

Słowa kluczowe : mechanism of bainite transformation, lower, upper bainite, carbon partitioning,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2012
Numer : Vol.12, nr 2(32)
Strony : 19 – 30
Bibliografia : 1. Aaronson H.I., Reynolds W.T., Shiflet G.J.,Spanos G.: Bainite Viewed Three Different Ways. Metall. Trans. A 21A (1990), 1343-1380.
2. Bhadeshia HKDH, Christian JW.: Bainite in steels. Metall Trans. A 21A (1990), 767-797.
3. Ławrynowicz Z.: Mechanism of bainite transformation in Fe-Cr-Mo-V-Ti-C steel. International Journal of Engineering 12 (1999), 81-86.
4. Ławrynowicz Z., Barbacki A.: Features of Bainite Transformation in Steels. Advances in Materials Science 2 (2002), 5-32.
5. Ławrynowicz Z.: Ausferritic or Bainitic Transformation in ADI, Proceedings of the 12th International Symposium on Advanced Materials, Paper No: 98, Rawalpindi, Pakistan, ISAM 2011.
6. Bhadeshia HKDH.: Bainite in steels 2nd ed., London, The Institute of Materials, (2001).
7. Ławrynowicz Z.: Decarburisation of bainitic ferrite laths and its influence on the microstructure in Fe-Cr-Si-C steel. Advances in Materials Science 11 (2011), 56-64.
8. Ławrynowicz Z.: Affect of decarburisation times of bainitic ferrite laths on the microstructure in Fe- Cr-C steel. Journal of Polish CIMAC 6 (2011), 127-136.
9. Bhadeshia H.K.D.H., David S.A., Vitek J.M. and Reed R.W.: Stress induced transformation to bainite in Fe-Cr-Mo-C pressure vessel steel. Materials Science and Technology 7 (1991), 686-698.
10. Ławrynowicz Z.: Affect of cementite precipitation on the extend of bainite transformation in Fe-Cr-C steel. Advances in Materials Science. 11 (2011), 13-19.
11. Dyson D.J., Holmes, B.: Effect of alloying additions on the lattice parameter of austenite. J. Iron Steel Inst. 208 (1970), 469-474.
12. Hehemann R.F., Kinsman K.R., Aaronson H.I.: A debate on the bainite reaction. Metall. Trans. 3 (1972), 1077-1094.
13. Hultgren A.: Isothermal transformation of austenite. ASM Transactions. 39 (1947) 915-1005.
14. McLellan, R.B., Dunn, W.W.: J.Phys.Chem. Solids. 30 (1969), 2631-2637.
15. Caballero, F.G., Miller, M.K., Babu, S.S., Garcia-Mateo, C., Atomic scale observations of bainite transformation in a high carbon high silicon steel, Acta Materialia, 55, 381-390, 2007.
DOI :
Cytuj : Beloglazov, G. ,Ławrynowicz, Z. , An investigation of the mechanism of bainite transformation in experimental 0.2c-1v-2mn steel. Advances in Materials Science Vol.12, nr 2(32)/2012
[Top]

Heat treatment enhancement of natural orange-red sapphires

Czasopismo : Advances in Materials Science
Tytuł artykułu : Heat treatment enhancement of natural orange-red sapphires

Autorzy :
Beloglazov, G.
State University of Russia, Department of Chemistry, 236040 Kaliningrad, drgeorge59@mail.ru,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Bgasheva, T.
D. Mendeleyev University of Chemical Technology of Russia, Department of chemistry and technology of crystals, 125480, Geroev Panfilovtsev str. 20/1, Moscow, Russia, T.B@live.ru,
Abstrakty : Certain variety of Madagascar color sapphires (fancy sapphires) has orange-red color, which shades don't let to consider them as the rubies. Heat treatment experiments in reducing atmosphere were carried out on such sapphires for the purpose of improving their color characteristics. Chromium (III), iron (II and III), titanium (IV) chromophore impurities in natural corundum and chromophore centers with their participitation are considered. A special attention is paid to spectral characteristics of chromophore centers. Behavior of the chromophore centers under heat treatment and their influence on the color of fancy sapphires are studied. Color modification mechanism was proposed on the basis of microprobe and spectral analyses data. The proposed enhancement technique allows to improve color characteristics of fancy sapphires.

Słowa kluczowe : corundum, fancy sapphires, enhancement, heat treatment, chromophore center,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2012
Numer : Vol.12, nr 2(32)
Strony : 31 – 44
Bibliografia : 1. Winotai P., Limsuwan P., Tang I.M., Limsuwan S.: Quality enhancement of Vietnamese ruby by heat treatments. Australian Gemmologist, 22 (2004), 72-77.
2. Бахтин А.И., Горобец Б.С.: Оптическая спектроскопия минералов и руд и ее применение в геологоразведочных работах. Изд-во Казан. ун-та, Казань, 1992.
3. Платонов А.Н., Таран М.Н., Балицкий В.С.: Природа окраски самоцветов. Недра, Москва, 1984.
4. Свиридов Д.Т., Свиридова Р.К., Смирнов Ю.Ф.: Оптические спектры ионов переходных металлов в кристаллах. Наука, Москва, 1976.
5. Lehmann G., Harder H.: Optical spectra of di- and trivalent iron in corundum. The American Mineralogist, 55 (1970), 98-105.
6. Nikolskaya L. V., Terekhova V. M., Samoilovich M. I.: On the origin of natural sapphire color. Physics and Chemistry of Minerals, 3 (1978), 213-224.
7. Burns R.G.: Intervalence Transitions in Mixed Valence Minerals of Iron and Titanium. Annual Review of Earth and Planetary Sciences, 9 (1981), 345-383.
8. Fontana I., Le Donne A., Palanza V., Binetti S., Spinolo G.: Optical spectroscopy study of type 1 natural and synthetic sapphires. Journal of Physics: Condensed Matter, 20 (2008), 125228-125232.
9. Eigenmann K., Gunthard Hs. H.: Valence states, redox reactions and biparticle formation of Fe and Ti doped sapphire. Chemical Physics Letters, 13 (1972), 58-61.
10. Townsend M.G.: Visible charge transfer band in blue sapphire. Solid State Communications, 6 (1968), 81-83.
11. Maxwell M.: The processing & heat treatment of Subera (Queensland) sapphire rough. Australian Gemmologist, 21 (2002), 279-286.
12. Emmett J.L., Douthit T.R.: Heat Treating the Sapphires of Rock Creek, Montana. Gems&Gemology, 29 (1993), 250-272.
13. Nassau K.: Gemstone Enhancement. Butterworth-Heinemann, Oxford , 1994.
14. Здорик Т.Б., Фельдман Л.Г.: Минералы и горные породы. Т. 1. (Ювелирные камни и драгоценные металлы). Энциклопедия природы России. ABF, Москва, 1998.
15. Peretti A., Guenther D.: The color enhancement of fancy sapphires with a new heat-treatment technique (Part A): Inducing color zoning by internal migration and formation of color centers. Contributions to Gemology, 11 (2002), 1-48.
16. Emmett J.L., Scarratt K., McClure S.F. et al.: Beryllium diffusion of ruby and sapphire. Gems&Gemology, 39 (2003), 84-135.
17. Bgasheva T.V., Akhmetshin E.A., Zharikov E.V.: Enhancement of colour characteristics of fancy sapphires by heat treatment in reducing condition. Proceedings of 30th International Gemmological Conference, Moscow, 2007, 23-24.
18. Марфунин А.С.: Введение в физику минералов. Недра, Москва, 1974.
19. Nassau K.: Irradiation-induced colors in gemstones. Gems&Gemology, 16 (1980), 343-355.
20. Ахметшин Э.А., Бгашева Т.В.: Влияние гамма- и электронного облучения на окраску цветных сапфиров. Материалы V Межвузовской научной конференции студентов, аспирантов и молодых ученых «Молодые – наукам о Земле», РГГРУ, Москва, 2010, 121.
21. Ахметшин Э.А., Бгашева Т.В.: Изучение влияния времени воздействия рабочих температур на облагораживание цветных сапфиров при термообработке. Горный информационно-аналитический бюллетень (научно-технический журнал), 1 (2009), 274-280.
22. Неуструев В.Б.: Исследование спектрально-люминесцентных свойств рубина как активной среды оптического квантового генератора. Центры люминесценции в кристаллах. Труды ФИАН, 796 (1974), 3-38.
23. McClure D.S.: Optical Spectra of Transition-Metal Ions in Corundum. Journal of Chemical Physics, 36 (1962), 2757-2779.
24. Achiwawanich S., James B.D., Liesegang J.: XPS and ToF-SIMS analysis of natural rubies and sapphires heat-treated in a reducing (5 mol% H2/Ar) atmosphere. Applied Surface Science, 255 (2008), 2388-2399.
DOI :
Cytuj : Beloglazov, G. ,Ławrynowicz, Z. ,Bgasheva, T. , Heat treatment enhancement of natural orange-red sapphires. Advances in Materials Science Vol.12, nr 2(32)/2012
[Top]

The influence of biological environment on the appearance of silver-coated implants

Czasopismo : Advances in Materials Science
Tytuł artykułu : The influence of biological environment on the appearance of silver-coated implants

Autorzy :
Beloglazov, G.
State University of Russia, Department of Chemistry, 236040 Kaliningrad, drgeorge59@mail.ru,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Bgasheva, T.
D. Mendeleyev University of Chemical Technology of Russia, Department of chemistry and technology of crystals, 125480, Geroev Panfilovtsev str. 20/1, Moscow, Russia, T.B@live.ru,
Świeczko-Żurek, W.
Gdansk University of Technology, Faculty of Mechanical Engineering, 80-233 Gdansk, Poland, beazurek@pg.gda.pl,
Abstrakty : Despite antibiotics preventive treatment before and after implantation, risk of infection is real. The infections at the implant surface developein a few months after applying them into the body. To prevent the development of bacteria and to reduce the risk of infection, implants coated with silver layer come into use. The paper presents the research results in biological environment on vein and orthopaedicimplants covered with silver.

Słowa kluczowe : vein implants, orthopaedic implant, silver, biological environment,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2012
Numer : Vol.12, nr 2(32)
Strony : 45 – 50
Bibliografia : 1. Bugla – Ploskońska G., Oleszkiewicz A.: The biological activity of silver and its applicationin medicine. http://ag123.pl/Biologiczna-aktywnosc-srebra-i-jego-zastosowanie-w-medycynie.html
2. Swieczko-Zurek B., Palubicka A., Bogdanski M., Krzeminski M.: Degradation of metal implants covered with silver. Eng. Biomaterials 99-101 (2010), 58-60.
3. Schierholz J., Lucas L.J., Rump A., Pulverer G.: Efficiency of silver-coated medical devices. J. Hosp.Infect. 40 (1998), 257-262.
4. Ennever F.K., 1994. Metals. Principles and methods of toxicology. Raven Press New York, 3rd Ed., 417-446.
5. Dibrov P., Dzioba J., Gosink K.K, Hose C.C.: Chemiosmotic mechanism of antimicrobial activity of Ag in Vibrio cholera. Antimicrob. Agents Chemiother. 8 (2002), 2668 – 2670.
6. Hamilton-Miller J.M.T., Shah S.: A microbiological assessment of silver fusidate, a novel topical antimicrobial agent. Int. J. Antimicrob. Agents 7 (1996), 97-99.
7. Davenport K., Keeley F.X.: Evidence for the use of silver-alloy-coated urethral catheters. J. Hosp. Infect. 60 (2005), 298-303.
8. Bosetti M., Masse A., Tobin E., Cannas M.: Silver coated materials for external fixation devices; in vitro biocompatibility and genotoxicity. Biomaterials 23 (2002), 887-892.
9. Brinker C.J., Scherrer G.W.: Sol-Gel Science. London, Academic Press, 1990.
10. Chmielowski J., Kłapcińska B.: The mechanisms of metal absorption by bacterias. Microbiol. Progr. 23 (194), 63-88.
DOI :
Cytuj : Beloglazov, G. ,Ławrynowicz, Z. ,Bgasheva, T. ,Świeczko-Żurek, W. , The influence of biological environment on the appearance of silver-coated implants. Advances in Materials Science Vol.12, nr 2(32)/2012
[Top]

Environmental degradation of titanium alloy in artificial saliva

Czasopismo : Advances in Materials Science
Tytuł artykułu : Environmental degradation of titanium alloy in artificial saliva

Autorzy :
Zieliński, A.
Gdansk University of Technology, Faculty of Mechanical Enginering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Abstrakty : The titanium and its alloys are potentially prone to hydrogen embrittlement, including those proposed for dental implants. The research has been aimed to assess a susceptibility to environment-enhanced degradation of the Ti-13Zr-13Nb alloy in artificial saliva with or without hydrofluoric acid, subject or not to cathodic polarisation. The results have shown that even if artificial saliva is safe environment, both cathodic polarization and cathodic current result in brittle cracking. Either hydride-related embrittlement or fluoride-related stress corrosion cracking are considered as potential sources.

Słowa kluczowe : titanium alloys, implants, hydrogen degradation, stress corrosion cracking,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2012
Numer : Vol.12, nr 3(33)
Strony : 5 – 15
Bibliografia : 1. Brunette D.M., Tengvall P., Textor M., Thomsen P.: Titanium in medicine. Springer, Germany 2001.
2. Liu X., Chu P.K., Ding Ch.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. 47 (2004), 49-121.
3. Kaszuwara W.: Shape memory alloys. Inżynieria Materiałowa 2 (2004), 61-64. In Polish; English abstract.
4. Zieliński A., Sobieszczyk S., Seramak T., Serbiński W., Świeczko-Żurek B., Ossowska A.: Biocompatibility and bioactivity of load-bearing metallic implants. Advances in Materials Science 10, No. 4 (2010), 21-31.
5. Zieliński A.: Niszczenie wodorowe metali nieżelaznych i ich stopów. Gdańskie Towarzystwo Naukowe, Gdańsk 1999. In Polish; English summary.
6. Kaneko K., Yokoyama K., Moriyama K., Asaoka K., Sakai J., Nagumo M.: Delayed fracture of beta titanium orthodontic wire in fluoride aqueous solutions. Biomaterials 24 (2003), 2113-2120.
7. Ogawa T., Yokoyama K., Asaoka K., Sakai J.: Hydrogen absorption behavior of beta titanium alloy in acid fluoride solutions. Biomaterials 25 (2004) 2419-2425.
8. Yokoyama K., Hamada K., Moriyama K., Asaoka K.: Degradation and fracture of Ni-Ti superelastic wire in an oral cavity. Biomaterials 22 (2001), 2257-2262.
9. Yokoyama K., Kaneko K., Ogawa T., Moriyama K., Asaoka K., Sakai J.: Hydrogen embrittlement of work-hardened Ni–Ti alloy in fluoride solutions. Biomaterials 2004 in press.
10. Koike M., Fuji H.: The corrosion resistance of pure titanium in organic acids. Biomater. 22 (2001), 2931-2936.
11. Reclaru L., Meyer J.-M.: Effect of fluorides on titanium and other dental alloys in dentistry. Biomaterials 19 (1998), 85-92.
12. Huang H.-H.: Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. Biomaterials 23 (2002), 59–63.
13. Françon V., Fregonese M., Abe H., Watanabe Y : Iodine-induced stress corrosion cracking of Zircaloy-4: identification of critical parameters involved in intergranular to transgranular crack propagation.
DOI :
Cytuj : Zieliński, A. , Environmental degradation of titanium alloy in artificial saliva. Advances in Materials Science Vol.12, nr 3(33)/2012
[Top]

Experimental investigation on effective detection of delamination in gfrp composites using taguchi method

Czasopismo : Advances in Materials Science
Tytuł artykułu : Experimental investigation on effective detection of delamination in gfrp composites using taguchi method

Autorzy :
Zieliński, A.
Gdansk University of Technology, Faculty of Mechanical Enginering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Ng, S.
Intelligent System and Robotic Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia,
Abstrakty : Detection of delamination defect in glass fiber reinforced plastics (GFRP) by using ultrasonic testing has been a challenging task in industry. The properties of the constituent materials, fiber orientation and the stacking sequence of laminated composite materials could cause high attenuation of ultrasound signals. Ultrasonic testing is based on the interpretation of the reflected ultrasound signals when a transducer imposes ultrasound waves (pulse) to a material. It is difficult to differentiate if the reflected signal is induced from the defects, fiber content or the intermediate layers of GFRP composites. Most of the time, the drastic attenuation of signals could enshroud the modest changes in the reflected signals from defects. The purpose of this paper is to investigate the influence of fiber orientation, thickness and delamination of GFRP composites on the rise time, pulse duration and attenuation ratio of the reflected ultrasound signal. The rise time, pulse duration and attenuation ratio of A-scan data was observed with respect to different positions of damage (delamination), thickness and stacking sequence of the lamina. It is essential to identify the significant factors that contribute to the abnormal characteristics of the reflected signals in which the defect is identified. Moreover, this paper presents the application of Taguchi method for maximizing the detection of defect in GFRP composites influenced by delamination. The optimum combination of the significant contributing factor for the signal's abnormal characteristics and its effect on damage detection was obtained by using the analysis of signal-to-noise ratio. The finding of this study revealed that delamination is the most influential factor on the attenuation ratio.

Słowa kluczowe : glass fiber reinforced plastics, ultrasonic testing, attenuation, delamination,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2012
Numer : Vol.12, nr 3(33)
Strony : 16 – 24
Bibliografia : 1. Ng S.C., Ismail N., Aidy Ali, Barkawi Sahari, Yusof J.M. and Chu B.W.: Non-destructive inspection of multi-layered composite using ultrasonic signal processing. IOP Conference Series: Material Science and Engineering (2011), 17 012045.
2. Reifsnider K.: Damage in composite materials. ASTM STP775, American Society for Testing and Materials, Philadelphia, 1982.
3. Ambu, R., Aymerich, F., Ginesu, F. and Priolo, P.: Assessment of NDT interferometric techniques for impact damage detection in composite laminates. Composites Science and Technology 66(2006), 199-205.
4. Adams, R.D. and Cawley, P.: Defect types and non-destructive testing techniques for composites and bonded joints. Constructions and Building Materials 3(1989), 170-183.
5. Brizuela, J., Fritsch, C., and Ibáñez, A.: Railway wheel-flat detection and measurement by ultrasound. Transportation Research Part C: Emerging Technologies 19(2011), 975-984.
6. Ohara Yoshikazu, Horinouchi Satoshi, Hashimoto Makoto, Shintaku Yohei, Yamanaka Kazushi.: Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads. Ultrasonics 51(2011), 661-666.
7. Krishnan Balasubramaniam, Jitendra S. Valluri and Raghu V. Prakash.: Creep damage characterization using a low amplitude nonlinear ultrasonic technique. Materials Characterization, 62(2011), 275-286.
8. Zumpano, G., and Meo, M.: Damage localization using transient non-linear elastic wave spectroscopy on composite structures. International Journal of Non-Linear mechanics, 43(2007), 217-30.
9. Meo, M., Polimeno, U. and Zumpano, G.: Detecting damage in composite material using nonlinear elastic wave spectroscopy methods. Applied Composite Materials 15(2008), 115-126.
10. Wooh, S.C. and Wei, C.A.: High-fidelity ultrasonic pulse-echo scheme for detecting delaminations in composite laminates. Composites Part B: Engineering 30(1999), 433-441.
11. Kilickap, E.: Optimization of cutting parameters on delamination based on Taguchi method during drilling of GFRP composite. Expert Systems with Applications 37(2010), 6116-6122.
12. Davidson, M. Joseph, Balasubramanian, K. and Tagore, G.R.N.: Experimental investigation on flow-forming of AA6061 alloy – a Taguchi approach. Journal of Materials Processing Technology 200(2008), 283-287.
13. Rosa, J.L., Robin, A. M.B. Silva, C.A. Baldan, M.P. Peres.: Electrodeposition of copper on titanium wires: Taguchi experimental design approach. Journal of Materials Processing Technology 209(2009), 1181-1188.
14. Diamanti, K., Soutis, C. and Hodgkinson, J.M.: Lamb waves for the non-destructive inspection of monolithic and sandwich composite beams. Composites Part A: Applied Science and Manufacturing 36(2005), 189–195.
15. Irusta, R., Antolín, G., Velasco, E. and García, J.C.: The selection of testing methods for biofuels using the Taguchi signal-to-noise ratio. Biomass and Bioenergy 6(1994), 405-413.
16. Bagci, E. and Ozcelik, B.: Analysis of temperature changes on the twist drill under different drilling conditions based on Taguchi method during dry drilling of Al 7075-T651. The International Journal of Advanced Manufacturing Technology 29(2006), 629-636.
DOI :
Cytuj : Zieliński, A. ,Ng, S. , Experimental investigation on effective detection of delamination in gfrp composites using taguchi method. Advances in Materials Science Vol.12, nr 3(33)/2012
[Top]

Bioactive core material for porous load-bearing implants

Czasopismo : Advances in Materials Science
Tytuł artykułu : Bioactive core material for porous load-bearing implants

Autorzy :
Zieliński, A.
Gdansk University of Technology, Faculty of Mechanical Enginering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Ng, S.
Intelligent System and Robotic Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia,
Sobieszczyk, S.
Gdańsk University of Technology, Faculty of Mechanical Engineering, 80-233 Gdańsk, Poland,
Abstrakty : So far state of knowledge on biodegradable materials is reviewed. Among a variety of investigated materials, those composed of polymers and ceramics may be considered as only candidates for a core material in porous titanium alloy. The collagen and chitosan among natural polymers, polyhydroxy acids among synthetic polymers, and hydroxyapatite and tricalcium phosphate among ceramics are proposed for further research. Three essential conditions for a core material are defined as: biodegradation rate “in vitro” and “in vivo” close to bone tissue in-growth rate, high compression strength and ability to form nanoporous open structure inside the material for vascularisation. Possible deposition techniques of a core material within the macropores of metallic scaffold include infiltration of titanium porous structure with polymer scaffold followed by precipitation of phosphate nanoparticles, and mixing of phosphate and polymers before deposition followed by controlled precipitation inside the pores.

Słowa kluczowe : biodegradation, polymers, ceramics,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2012
Numer : Vol.12, nr 3(33)
Strony : 25 – 36
Bibliografia : 1. http://www.zimmer.com/ctl?template=CP&op=global&action=1&id=33
2. Ryan G., Pandit A., Apatsidis D.P.: Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27 (2006), 2651–2670.
3. Zieliński A., Sobieszczyk S., Serbiński W., Seramak T., Ossowska A.: Materials design for the titanium scaffold based implant. Solid State Phenomena 183 (2012), 225-232.
4. Li Z., Gu X., Lou S., Zheng Y.: The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 29 (2008), 1329-1344.
5. Virtanen S.: Biodegradable Mg and Mg alloys: Corrosion and biocompatibility. Materials Science and Engineering B 176 (2011), 1600-1608.
6. Kaźnica A., Joachimiak R., Drewa T., Rawo T., Deszczyński J.: New trends in tissue engineering. Arthroscopy and Joint Surgery 3(3) (2007), 11-16.
7. Tian H., Tang Z., Zhuang X., Chen X., Jing X.: Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 37 (2012), 237-280.
8. Liu X., Ma X. P.: Polymeric Scaffolds for Bone Tissue Engineering. Ann. Biomed. Eng. 32 (2004), 477-486.
9. Nassif L., Sabban M.: Mesenchymal Stem Cells in Combination with Scaffolds for Bone Tissue Engineering. Materials 4 (2011), 1793-1804.
10. Liu C., Xia Z., Czrnuszka J. T.: Design and developement of three-dimensional scaffolds for tissue engineering. Chem. Eng. Res. Des. 85 (2007), 1051-1064.
11. Liu Q., Jiang L., Shi R., Zhang L.: Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers—A review. Prog. Polym. Sci. 37 (2012), 715-765.
12. Tran N., Webster T. J.: Nanotechnology for bone materials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1 (2009), 336-351.
13. Tudorachi N., Chiriac A. P., Lipsa R.: Biodegradable copolymers with succinimide and lactic acid units. Part I. Synthesis Possibilities. Polimery 56 (2011), 204-210.
14. Jones C., Rogers S.: Combined use of titanium mesh and biocompatible osteoconductive polymer in the treatment of full thickness calvarial defects. Br. J. Oral and Maxillofacial Surg. 36 (1998), 143-145.
15. Du C., Meijer G. J., van de Valk C., Haan R. E., Bezemer J. M., Hesseling S. C., Cui F. Z., Groot K., Layrolle P.: Bone growth in biomimetic apatite coated porous Polyactives 1000PEGT70PBT30 implants. Biomaterials 23 (2002), 4649-4656.
16. Chang P. C., Liu B. Y., Liu C. M., Chou H. H., Ho M. H., Liu H. C., Wang D. M., Hou L. T.: Bone tissue engineering with novel rhBMP2-PLLA composite scaffolds. J. Biomed. Mater. Res. Part A (2007), 771-780.
17. Sharma B., Elisseeff J. H.: Engineering Structurally Organized Cartilage and Bone Tissues. Ann. Biomed. Eng. 32 (2004), 148-159.
18. Du J. Z., Sun T. M., Weng S. Q., Chen X. S., Wang J.: Synthesis and Characterization of Photo-Cross-Linked Hydrogels Based on Biodegradable Polyphosphoesters and Poly(ethylene glycol) Copolymers. Biomacromolecules 8 (2007), 3375-3381.
19. Li Q., Wang J., Shahani S., Sun D. D. N., Sharma B., Elisseeff J. H., LeongK. W.: Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials 27 (2006), 1027-1034.
20. Rai R., Tallawi M., Grigore A., Boccaccini A. R.: Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Prog. Polym. Sci. 37 (2012), 1051-1078.
21. Bonzani I. C., Adhikari R., Houshyar S., Mayadunne R., Gunatillake P., Stevens M. M.: Synthesis of two-component injectable polyurethanes for bone tissue engineering. Biomaterials 28 (2007), 423-433.
22. Puchała P., Kucharski G., Jaremczuk B., Monkos-Jaremczuk E.: Przegląd biomateriałów na podstawie piśmiennictwa. Chirurgia stomatologiczna, Twój Przegląd Stomatologiczny 10 (2008), 28-36.
23. Rezwan K., Chen Q. Z., Blaker J. J., Boccaccini A. R.: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27 (2006), 3413-3431.
24. Kikuchi M., Itoh S., Ichinose S., Shinomiya K., Tanaka J.: Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22 (2001), 1705-1711.
25. Zhai Y., Cui F. Z.: Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals. J. Cryst. Growth 291 (2006), 202-206.
26. Sun F., Zhou H., Lee J.: Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 7 (2011), 3813-3828.
27. Yunoki S., Ikoma T., Tsuchiya a., Monkawa A., Ohta K., Sotome S., Shinomiya K., Tanaka J.: Fabrication and Mechanical and Tissue Ingrowth Properties of Unidirectionally Porous Hydroxyapatite/Collagen Composite. J. Biomed. Mater. Res. Part B (2006), 166-173.
28. Lin P. L., Fang H. W., Tseng T., Lee W. H.: Effects of hydroxyapatite dosage on mechanical and biological behaviors of polylactic acid composite materials. Mater. Lett. 61C (2007), 3009-3013.
29. Kikuchi M., Matsumoto H. N., Yamada T., Koyama Y., Takakuda K., Tanaka J.: Glutaraldehyde cross-linked hydroxyapatite/collagen self-organized nanocomposites. Biomaterials 25 (2004), 63-69.
30. Bakos D., Soldán M., Hernández-Fuentes I.: Hydroxyapatite – collagen – hyaluronic acid composite. Biomaterials 20 (1999), 191-195.
31. Jee S.S.: , Taili T. Thula, Laurie B. Gower: Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: Influence of polymer molecular weight. Acta Biomaterialia 6 (2010), 3676-3686.
32. Ge Z., Baguenard S., Lim L. Y., Wee A., Khor E.: Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials 25 (2004), 1049-1058.
33. Zhao F., Yin Y., Lu W. W., Leong C., Zhang W., Zhang J., Zhang M., Yao K.: Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials 23 (2002), 3227-3234.
34. Cai X., Tong H., Shen X., Chen W., Yan J., Hu J.: Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomaterialia 5 (2009), 2693-2703.
35. Li J., Sun H., Sun D., Yao Y., Yao F., Yao K.: Biomimetic multicomponent polysaccharide/nano-hydroxyapatite composites for bone tissue engineering. Carbohydr. Polym. 85 (2011), 885-894.
36. Li J., Chen Y. P., Yin Y., Yao F., Yao K.: Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials 28 (2007), 781-790.
37. Shikinami Y., Okuno M.: Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide (PLLA). Part II: practical properties of miniscrews and miniplates. Biomaterials 22 (2001), 3197-3211.
38. Ignjatović N., Savić V., Najman S., Plavsić M., Uskoković D.: A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy. Biomaterials 22 (2001), 571-575.
39. Shikinami Y., Okuno M.: Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide (PLLA). Part I. Basic characteristics. Biomaterials 20 (1999), 859-877.
40. Shikinami Y., Matsusue Y., Nakamura T.: The complete proces of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/ poly L-lactide (F-u-HA/PLLA). Biomaterials 26 (2005), 5542-5551.
41. Mathieu L. M., Mueller T. L., Bourban P. E., Pioletti D. P., Muller R., Manson J. A. E.: Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 27 (2006), 905-916.
42. Russias J., Saiz E., Nalla R. K., Tomsia A. P.: Microspheres as building blocks for hydroxyapatite/polylactide biodegradable composites. J. Mater. Sci. 41 (2006), 5127-5133.
43. Xu X., Chen X., Liu A., Hong Z., Jing X.: Electrospun poly(L-lactide)-grafted hydroxyapatite/poly(L-lactide) nanocomposites fibres. Eur. Polym. J. 43 (2007), 3187-3196.
44. Petricca S. E., Marra K. G., Kumta P. N.: Chemical synthesis of poly(lactic-co-glycolic acid) /hydroxyapatite composites for orthopaedic applications. Acta Biomater. 2 (2006), 277-286.
45. Kim S. S., Ahn K. M., Park M. S., Lee J. H., Choi C. Y., Kim B. S.: A poly(lactid-co-glycolide) /hydroxyapatite composite scaffolds with anhanced osteoconductivity. J. Biomed. Mater. Res. Part A (2006), 206-215.
46. Ignjatović N., Suljovrujić E., Stojanović Z., Uskoković D.: Structure and Characteristics of the Hot Pressed Hydroxyapatite/poly-L-lactide Composite. Sci. Sintering 34 (2002), 79-93.
47. Aleksendrić D., Balać I., Tang C. Y., Tsui C. P., Uskoković P. S., Uskoković D. P.: Surface characterisation of PLLA polymer in HAp/PLLA biocomposite material by means of nanoindentation and artificial neural networks. Adv. Appl. Ceramics 109 (2010), 65-70.
48. Cieslik M., Mertas A., Morawska-Chochół A., Sabat D., Orlicki R., Owczarek A., Król W., Cieslik T.: The evaluation of the possibilities of using PLGA co-polymer and its composites with carbon fibres or hydroxyapatite in the bone tissue regeneration proces – in vitro and in vivo examinations. Int. J. Mol. Sci. 10 (2009), 3224-3234.
49. Yang Y., Zhao Y., Tang G., Li H., Yuan X., Fan Y.: In vitro degradation of porous poly(L-lactide-co-glycolide) /β-tricalcium phosphate (PLGA/β-TCP) scaffolds under dynamic and static conditions. Polym. Degrad. Stab. 93 (2008), 1838-1845.
50. Kang S. W., Yang H. S., Seo S. W., Han D. K., Kim B. S.: Apatite-coated poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for bone tissue engineering. J. Biomed. Mater. Res. Part A (2007), 747-756.
51. Rosół P., Chłopek J., Schweder C.: Kompozyty z polimerów biostabilnych i bioresorbowalnych modyfikowane bioaktywną ceramiką. Kompozyty 5 (2005), 25-30
52. Ignjatović N., Tomić S., Dakić M., Miljković M., Plavsić M., Uskoković D.: Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials. Biomaterials 20 (1999), 809-816.
53. Tong H. W., Wang M., Lu W. W.: In vitro biological evaluation of fibrous PHBV polymer and CHA/PHBV nanocomposites scaffolds developed for tissue engineering applications. Bioceramics Developement and Applications 1 (2011), 1-3.
54. Sun F., Zhou H., Lee J.: Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 7 (2011), 3813-3828.
55. Zhou H., Lee J.: Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7 (2011), 2769-2781.
56. Juhasz J. A., Best S. M., Bonfield W.: Preparation of novel bioactive nano-calcium phosphate-hydrogel composites. Sci. Technol. Adv. Mater. 11 (2010), 1-7.
57. Asefnejad A., Behnamghader A., Khorasani M. T., Farsadzadeh B.: Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: morphological, physical and mechanical characterization. Int. J. Nanomedicine 6 (2011), 93-100.
58. Bigi A., Boanini E., Gazzano M., Rubini K., Torricelli P.: Nanocrystalline hydroxyapatite-polyaspartate composites. Biomedical Materials and Engineering 14 (2004), 573-579.
59. Ni J., Wang M.: In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite. Mater. Sci. Eng., C 20 (2002), 101-109.
60. Chen L. J., Wang M.: Production and evaluation of biodegradable composites based on PHB-PHV copolymer. Biomaterials 23 (2002), 2631-2639.
61. Causa F., Netti P. A., Ambrosio L., Ciapetti G., Baldini N., Pagani S., Martini D., Giunti A.: Poly-ε-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and human osteoblast response. J. Biomed. Mater. Res. Part A (2005), 151-162.
62. Lee H. J., Kim S. E., Choi H. W., Kim C. W., Kim K. J., Lee S. C.: The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly(ε-caprolactone)/hydroxyapatite nanocomposites. Eur. Polym. J. 43 (2007), 1602-1608.
63. Du J. Z., Sun T. M., Weng S. Q., Chen X. S., Wang J.: Synthesis amd characterization of phot-cross-linked hydrogels based on biodegradable polyphosphoesters and poly(ethylene glycol) copolymers. Biomacromolecules 8 (2007), 3375-3381.
64. Li Q., Wang J., Shahani S., Sun D. D. N., Sharma B., Elisseeff J. H., Leong K. W.: Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials 27 (2006), 1027-1034.
65. Tateishi T., Chen G., Ushida T.: Biodegradable porous scaffolds for tissue engineering. J. Artif. Organs 5 (2002), 77-83.
66. Mistry A. S., Pham Q. P., Schouten C., Yeh T., Christenson E. M., Mikos A. G., Jansen J. A.: In vivo bone biocompability and degradation of porous fumarate-based polymer/alumoxane nanocomposites for bone tissue engineering. J. Biomed. Mater. Res. Part A (2009), 451-462.
67. Hedberg E. L., Kroese-Deutman C., Shih C. K., Crowther R. S., Carney D. H., Mikos A. G., Jansen J. A.: Effect of varied release kinetics of the osteogenic thrombin peptide TP508 from biodegradable, polymeric scaffolds on bone formation in vivo. J. Biomed. Mater. Res. Part A (2005), 343-353.
68. Jack K. S., Velayudhan S., Luckman P., Trau M., Grondahl L., Cooper-White J.: The fabrication and characterization of biodegradable HA/PHBV nanoparticle–polymer composite scaffolds. Acta Biomater. 5 (2009), 2657-2667.
69. Duan B., Wang M., Zhou W. Y., Cheung W. L., Li Z. Y., Lu W. W.: Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 6 (2010), 4495-4505.
70. Kose G. T., Korkusuz F., Korkusuz P., Purali N., Ozkul A., Hasirci V.: Bone generation on PHBV matrices: an in vitro study. Biomaterials 24 (2003), 4999-5007.
71. Chen G. Q., Wu Q.: The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26 (2005), 6565-6578.
72. Greish Y. E., Bender J. D., Lakshmi S., Brown P. W., Allcock H. R., Laurencin C. T.: Low temperature formation of hydroxyapatite-poly(alkyloxybenzoate)phosphazene composites for biomedical applications. Biomaterials 26 (2005), 1-9.
73. Greish Y. E., Bender J. D., Lakshmi S., Brown P. W., Allcock H. R., Laurencin C. T.: Composite formation from hydroxyapatite with sodium and potassium salts of polyphosphazene. J. Mater. Sci. Materials in Medicine 16 (2005), 613-620.
74. Tan Q., Zhang K., Gu S., Ren J.: Mineralization of surfactant functionalized multi-walled carbon nanotubes (MWNTs) to prepare hydroxyapatite/MWNTs nanohybrid. Appl. Surf. Sci. 255 (2009), 7036-7039.
75. Armentano I., Dottori M., Fortunati E., Mattioli S., Kenny J. M.: Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stab. 95 (2010), 2126-2146.
76. Błędzki A. K., Jaszkiewicz A.: Biokompozyty na podstawie polilaktydu wzmacniane włóknami pochodzenia naturalnego. Polimery 53 (2008), 564-570.
77. Muzzarelli R. A. A., Ramos V., Stanic V., Dubini B., Mattioli-Belmonte M., Tosi G., Giardino R.: Osteogenesis promoted by calcium phosphate N,N-dicarboxymethyl chitosan. Carbohydr. Polym. 36 (1998), 267-276.
78. Ohtsuki C., Miyazaki T., Tanihara M.: Development of bioactive organic–inorganic hybrid for bone substitutes. Mater. Sci. Eng., C 22 (2002), 27-34.
79. Pramanik N., Mishra D., Banerjee I., Maiti T. K., Bhargava P., Pramanik P.: Chemical Synthesis, Characterization, and Biocompatibility Study of Hydroxyapatite/Chitosan Phosphate Nanocomposite for Bone Tissue Engineering Applications. International Journal of Biomaterials (2009), 1-8.
80. Mozafari M., Moztarzadeh F., Rabiee M., Azami M., Maleknia S., Tahriri M., Moztarzadeh Z., Nezafati N.: Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram. Int. 36 (2010), 2431-2439.
81. Nistor M. T., Chiriac A. P., Vasile C., Verestiuc L., Nita L. E.: Synthesis of hydrogels based on poly(NIPAM) inserted into collagen sponge. Colloids Surf., B 87 (2011), 382-390.
82. Kikuchi M., Itoh S., Ichinose S., Shinomiya K., Tanaka J.: Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22 (2001), 1705-1711.
83. Wahl D. A., Sachlos E., Liu C., Czernuszka J. T.: Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Sci.: Mater. Med. 18 (2007), 201-209.
84. Pielichowska K., Blazewicz S.: Bioactive Polymer/Hydroxyapatite (Nano)composites for Bone Tissue Regeneration. Adv. Polym. Sci. 232 (2010), 97-207.
85. Rhee S. H., Seutsugu Y., Tanaka J.: Biomimetic configurational arrays of hydroxyapatite nanocrystals on bio-organics. Biomaterials 22 (2001), 2843-2847.
86. Zhao H., Ma L., Gao Ch., Shen J.: Fabrication and properties of mineralized collagen-chitosan/hydroxyapatite scaffolds. Polym. Adv. Technol. 19 (2008), 1590-1596.
DOI :
Cytuj : Zieliński, A. ,Ng, S. ,Sobieszczyk, S. , Bioactive core material for porous load-bearing implants. Advances in Materials Science Vol.12, nr 3(33)/2012
[Top]

Preparation of SiO2 coating by sol-gel method, to improve high-temperature corrosion resistance of a ?-TiAl phase based alloy

Czasopismo : Advances in Materials Science
Tytuł artykułu : Preparation of SiO2 coating by sol-gel method, to improve high-temperature corrosion resistance of a ?-TiAl phase based alloy

Autorzy :
Małecka, J.
Opole University of Technology, Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Poland, j.malecka@po.opole.pl,
Abstrakty : This study presents the test results of Ti-46Al-7Nb-0.7Cr-0.1Si-0.2Ni alloy isothermal oxidation with regard to a coating of SiO2 deposited by the sol-gel method. The oxidation test was carried out in air at 900°C. The SiO2 coating is not an effective and stable diffusive barrier, which would considerably improve oxidation resistance of Ti-46Al-7Nb-0.7Cr-0.1Si-0.2Ni alloy.

Słowa kluczowe : intermetallics, high temperature corrosion, oxidation, coatings,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2012
Numer : Vol.12, nr 4(34)
Strony : 5 – 12
Bibliografia : 1. Kakare S.A., Toney J.B., Aswath P.B.: Oxidation of ductile particle reinforced Ti-48Al composite. Metallurgical and Materials Transactions 26A (1995), 1835-1845.
2. Chan K.S.: Developing Hydrogen Tolerant Microstructures for an Alpha-2 Titanium Aluminide Alloy. Metallurgical and Materials Transactions 23A (1992), 497-507.
3. Takasaki A., Furuya Y., Taneda Y.: Hydrogen uptake in titanium aluminides covered with oxide layers. Metallurgical and Materials Transactions 29 (1998), 307-314.
4. Qu L.H., Zhou L., Wei Y.G., Zhao Y.Q.: 10th World Conference on Tutanium, Hamburg 2003, in Ti-2003 Science and Technology, edited by G. Luetjerung and J.Albrecht, IV (2004), 2449-2454.
5. Yoshihara M., Kim Y.W.: Oxidation behaviour of gamma alloys designed for high temperature oxidation. Intermetallics 13 (2005), 952–958.
6. Xiang Z.D., Rose S., Datta P.K.: Pack deposition of coherent aluminide coatings on γ-TiAl for enhancing its high temperature oxidation resistance. Surface and Coating Technology, 161 (2002), 286-292.
7. Bettridge D.F., Wing R., Saunders S.R.J.: The exploration of protective coating and deposition processes for nickelbase alloys and gamma titanium aluminides. J.Lecomte-Beelceis, F. Schubert and P.J. Ennis eds., Materials for Advanced Power Engineering, Procedings Part II, (1998), 961-976.
8. Tang Z., Wang F., Wu W.: Effect of MCrAlY overlay coatings on oxidation resistance of TiAl intermetallics, Surface and Coating Technology 99 (1998), 248-252.
9. Tang Z., Niewolak L., Shemet V., Singheiser L., Quadakkers W.J., Wang F., Wu W., Gil A.: Development of oxidation resistant coatings for γ-TiAl based alloys. Materials Science and Engineering A 328 (2002), 297-301.
10. Liu Z., Narita T.: The effect of water vapor on the oxidation behavior of γ-TiAl–Ag coatings at 1073 K in air. Intermetallics 11 (2003), 795-805.
11. Taniguchi S., Shibata T., Yamada T., Liu X., Zou S.: High temperature oxidation resistance of TiAl improved be IBEDSi3N4 coating. ISIJ International, 33 (1993), 869-876.
12. Zhu Y.-C., Zhang Y., Li X. Y., Fujita K., Iwamoto N.: The Influence of Magnetron-sputtered SiO2 Coatings on the Cyclic Oxidation Behavior of γ-TiAl Alloys. Materials Transactions 41 (2000), 1118-1120.
13. Yoshimura M., Urushihara W., Yashima M., Kakihana M.: CaTiO3 coating on TiAl by hydrothermal-electrochemical technique. Intermetallics 3 (1995), 125-128.
14. Hsu I.C., Wu S.K.: Oxidation improvement of Ti-48Al-2Cr-2Nb intermetallics by air plasma sprayed ZrO2-Ni-4.5wt.%Al coatings. Surface and Coating Technology 90 (1997), 6-13.
15. Xiang Z.D., Rose S., Burnell-Gray J.S., Datta P.K.: Co-deposition of aluminide and silicide coatings on γ-TiAl by pack cementation process. Journal of Materials Science 38 (2003), 19-28.
16. Xiang Z.D., Rose S., Datta P.K.: Vapour phase codeposition of Al and Si to form diffusion coatings on γ-TiAl. Materials Science and Engineering A 356 (2003), 181-189.
17. Lugscheider E., Siry C.W., Saunders S.R.J.: The behaviour of PVD SiAlN type coatings deposited on TiAl. J.Lecomte-Beelceis, F. Schubert and P.J. Ennis eds., Materials for Advanced Power Engineering 1998, Proceedings Part II, 1319-1327.
18. Scheaffer J.C., McCarron R.L.: High Temperature Coatings for Titanium Aluminides, WL-TR-95-4108, General Electric Co Cincinnati OH aircraft Engine Technical Div Final Report for 22 Jan.1991 -13Dec.1994.
19. Małecka J.: Effect of an Al2O3 coating on the oxidation process of a γ-TiAl phase based alloy. Corrosion Science 63 (2012), 287-292.
20. Małecka J., Grzesik W., Hernas A.: An investigation on oxidation wear mechanisms of Ti–46Al–7Nb–0.7Cr–0.1Si–0.2Ni intermetallic-based alloys. Corrosion Science 52 (2010), 263–272.
DOI :
Cytuj : Małecka, J. , Preparation of SiO2 coating by sol-gel method, to improve high-temperature corrosion resistance of a ?-TiAl phase based alloy. Advances in Materials Science Vol.12, nr 4(34)/2012
[Top]

XPS measurements of passive film formed on AISI 316L SS after electropolishing in a magnetic field (MEP)

Czasopismo : Advances in Materials Science
Tytuł artykułu : XPS measurements of passive film formed on AISI 316L SS after electropolishing in a magnetic field (MEP)

Autorzy :
Małecka, J.
Opole University of Technology, Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Poland, j.malecka@po.opole.pl,
Rokosz, K.
Koszalin University of Technology, Division of Surface Electrochemistry and Engineering, Faculty of Mechanical Engineering, Racławicka 15-17, 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl,
Abstrakty : Electrochemical polishing of metals and alloys is one of the most currently used finishing treatments, covering metallic biomaterials with complicated shapes (coronary stents, prostheses, etc.). A standard electropolishing (EP) process has been recently modified by including a magnetic field, and called the magnetoelectropolishing (MEP). Many surface properties and even mechanical features may be modified and improved by MEP. The changes are concerned with the surface film composition which undergo a modification. For the present studies, X-ray Photoelectron Spectroscopy (XPS) analysis was applied to measure the surface film composition on AISI 316L stainless steel. In conclusion both Cr-X/Fe-X compounds ratio as well as Cr/Fe total ratio of the 316L steel after EP and MEP were calculated and compared to reveal the advantage of the magnetic field used.

Słowa kluczowe : 316L SS, XPS results, Magnetoelectropolishing,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2012
Numer : Vol.12, nr 4(34)
Strony : 13 – 22
Bibliografia : 1. Dettner P., Electrolytic and Chemical Polishing of Metals, Ordentlich Publishers 2nd Printing, Express-SDAR Ltd., Needar Press, Tel Aviv, May 1988 (340 pages).
2. T. Hryniewicz, Concept of microsmoothing in electropolishing process, Surface & Coatings Technology, 64(2) (1994) 75-80.
3. T. Hryniewicz T., R. Rokicki R., K. Rokosz, Magnetoelectropolishing Process Improves Characteristics of Finished Metal Surfaces, Metal Finishing, 104(12) (2006) 26-33.
4. T. Hryniewicz, Wstęp do obróbki powierzchniowej biomateriałów metalowych (On the surface treatment of metallic biomaterials), book ed. by Politechnika Koszalińska, Koszalin, 2007, (155 pages).
5. R. Rokicki R., T. Hryniewicz, Enhanced oxidation-dissolution theory of electropolishing, Trans. Inst. Met. Finish., 90(4) (2012) 188-196.
6. K. Fushimi, M. Startmann, A. Hassel, Electropolishing of NiTi shape memory alloys in methanolic H2SO4. Electrochim. Acta, 52 (2006) 1290–1295.
7. W. Wu, X. Liu, H. Han, D. Yang, S. Lu, Electropolishing of NiTi for improving biocompatibility. J. Mater. Sci. Technol., 24(6) (2008) 926-939.
8. C. Praisarnti, J.W.W. Chang, G.S.P. Cheung, Electropolishing enhances the resistance of nickel-titanium rotary files to corrosion fatigue failure in hypochlorite. J. Endod. 36 (2010) 264–2677.
9. T. Hryniewicz, R. Rokicki, K. Rokosz, Magnetoelectropolishing for metal surface modification, Trans. Inst. Met. Finish., 85(6) (2007) 325-332.
10. K. Rokosz, Polerowanie elektrochemiczne stali w polu magnetycznym, (Electrochemical polishing of steels in magnetic field, Copyright by Politechnika Koszalinska, Koszalin, 2012.
11. R. Rokicki, Apparatus and method for enhancing electropolishing utilizing magnetic fields, US Patent 7632390 issued on December 15, 2009
12. T. Hryniewicz T., R. Rokicki R., K. Rokosz K., Corrosion Characteristics of Medical Grade AISI 316L Stainless Steel Surface after Electropolishing in a Magnetic Field, The Journal of Corrosion Science and Engineering (Bob Cottis), 10 (2007) 1-10.
13. T. Hryniewicz T., R. Rokicki, K. Rokosz, Surface characterization of AISI 316L biomaterials obtained by electropolishing in a magnetic field, Surface & Coatings Technology, 202(9) (2008) 1668-1673.
14. T. Hryniewicz, K. Rokosz, R. Rokicki, Electrochemical and XPS Studies of AISI 316L stainless Steel after Electropolishing in a Magnetic Field, Corrosion Science, 50(9) (2008) 2676-2681.
15. T. Hryniewicz, R. Rokicki, K. Rokosz, Corrosion Characteristics of Medical-Grade AISI Type 316L Stainless Steel Surface After Electropolishing in Magnetic Field, Corrosion, (The Journal of Science and Engineering), Corrosion Science Section, 64(8) (2008) 660-665.
16. T. Hryniewicz, K. Rokosz and M. Filippi, Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing, Materials 2 (2009) 129-145;
17. T. Hryniewicz, K. Rokosz, Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions, Surface and Coatings Technology, 204(16-17) (2010) 2583-2592.
18. T. Hryniewicz, K. Rokosz, Polarization characteristics of magnetoelectropolishing stainless steels, Materials Chemistry and Physics, 122 (2010) 169-174.
19. T. Hryniewicz, K. Rokosz, Investigation of selective properties of AISI 316L SS after magnetoelectropolishing, Materials Chemistry and Physics, 123 (2010) 47-55.
20. T. Hryniewicz, P. Konarski, K. Rokosz, R. Rokicki, SIMS analysis of hydrogen content in near surface layers of AISI 316L SS after electrolytic polishing under different conditions, Surface and Coatings Technology, 205 (2011) 4228–4236;
21. K. Rokosz, T. Hryniewicz, S. Raaen, Characterization of Passive Film Formed on AISI 316L Stainless Steel after Magnetoelectropolishing in a Broad Range of Polarization Parameters, Steel Research International, 2012, http://onlinelibrary.wiley.com/doi/10.1002/srin.201200046/abstract
22. Information on http://www.casaxps.com
23. A.P., Grosvenor, B.A., Kobe, M.C., Biesinger, N.S McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surface and Interface Analysis, 36(12) (2004) 1564–1574.
24. M.C. Biesinger, C. Brown, J.R. Mycroft, R.D. Davidson, N.S. McIntyre, X-ray photoelectron spectroscopy studies of chromium compounds, Surface and Interface Analysis, 36(12) (2004) 1550-1563.
25. B.V. Crist, Handbook of monochromatic XPS spectras, The elements and native oxides, John Wiley & Sons, Ltd., 2000.
26. Information on http://www.xpsfitting.com
27. Information on http://srdata.nist.gov/xps
DOI :
Cytuj : Małecka, J. ,Rokosz, K. , XPS measurements of passive film formed on AISI 316L SS after electropolishing in a magnetic field (MEP). Advances in Materials Science Vol.12, nr 4(34)/2012
[Top]

Water sorption and blistering of GFRP laminates with varying structures

Czasopismo : Advances in Materials Science
Tytuł artykułu : Water sorption and blistering of GFRP laminates with varying structures

Autorzy :
Małecka, J.
Opole University of Technology, Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Poland, j.malecka@po.opole.pl,
Rokosz, K.
Koszalin University of Technology, Division of Surface Electrochemistry and Engineering, Faculty of Mechanical Engineering, Racławicka 15-17, 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl,
Landowski, M.
Gdansk University of Technology, Faculty of Mechanical Enginering, Narutowicza 11/12, 80-233 Gdansk, Poland, kimielin@pg.gda.pl,
Abstrakty : The microstructures, water absorption as well as blistering was studied for bi- and tri- axial glass fibre vinyl ester and polyester -matrix laminates coated with gel coat layer and uncoated. The effect of manufacturing technique on water sorption characteristics was considered. It was found that water sorption characteristics of GFRP depend on manufacturing methods. The least water intake was found for specimens having perfect microstructure due to manufacturing by infusion process. Water sorption saturation value was reached after ca. 50 days of accelerated test at 70°C and was found to correspond to 250 days conditioning at 20°C. Blistering evolution was illustrated and SEM images shown corresponding to degradation of the gel coat layer and the laminate during the exposure in water.

Słowa kluczowe : Polymer composites, durability, scanning electron microscopy (SEM),
Wydawnictwo : Politechnika Gdańska
Rocznik : 2012
Numer : Vol.12, nr 4(34)
Strony : 23 – 29
Bibliografia : 1. Imielińska K.: Degradation and damage of advanced laminate polymer composites due to environmental effects and low velocity impact, Wydawnictwo Politechniki Gdańskiej, Gdańsk 2005.
2. Huang G, Hongxia S., Effect of water absorption on the mechanical properties of glass polyster composites, Materials and Design 28(2007) 1647-1650.
3. Rajapakse Y.D.S., Hui D.: Marine Composites: Editorial: Composites: Part B, 35, 2004 447-450.
4. T. Rockett, V. Rose, Causes of Boat hull blistering. US. Coast Guard Grant Report 1501.83. 1987.
5. Norwood L.S., Holton E.C. : „The effect of poor interlaminar adhesion on blister formation in GRP in contact with water” Materials & Design vol. 12, April 1991.
6. Turnbull A., Broughton W.R.: Environmental degradation of polymers and polymer composites, Proc. Conf. EDEM, 2003, Bordeaux 1-3 07. 2003.
7. Marczyk K. Master degree thesis, Gdańsk University of Technology Mechanical Faculty 2007.
8. ASTM D570-98 (2005) Standard Test Method for Water Absorption of Plastics.
DOI :
Cytuj : Małecka, J. ,Rokosz, K. ,Landowski, M. , Water sorption and blistering of GFRP laminates with varying structures. Advances in Materials Science Vol.12, nr 4(34)/2012
[Top]

Nanotubular titanium oxide layers for enhancement of bone-implant bonding and bioactivity

Czasopismo : Advances in Materials Science
Tytuł artykułu : Nanotubular titanium oxide layers for enhancement of bone-implant bonding and bioactivity

Autorzy :
Sobieszczyk, S.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Mechanical Engineering and Mechatronics, 80-233 Gdansk, Poland,
Abstrakty : Titanium and titanium alloys are frequently used in orthopaedic implants in load bearing situations because they possess favourable properties, such as a good ductility, tensile and fatigue strength, modulus of elasticity matching that of bones, low weight, and good biocompatibility. The drawback of Ti implants is their poor osseointegration and osteoconductive properties. The present paper describes the techniques to improve the bioactivity of titanium and enhance the bone-implant bonding ability by the electrochemical anodization to fabricate titania nanotube arrays (TiO2). The naturally formed oxide layer has bio-inert character and does not readily form a strong interface with surrounding tissue. It has been proved that osseointegration of titanium implants can be improved by rough surfaces of Ti implants [1,2]. The nanotubular surface enhances adhesion, growth and differentiation of the cells. The nanotubular arrays increase the roughness of titanium implants on the nanoscale, providing the surface similar to that of a human bone. Bone-forming cells tend to adhere to the surfaces that are similar to natural bone both in chemistry and roughness. Nanotubular layers provide a high surface-to-volume ratio with controllable dimensions which are able to differentiation of mesenchymal stem cells into osteoblastic cells. Moreover, the anodized nanotubular arrays on titanium surface can be used as reservoirs for drugs (anti-inflammatory, and improving bone-growth) with prolonged drug release ability. Also, there is possibility to further enhance bioactivity of titanium implant with nanotubular surface by hydroxyapatite deposition into the titania nanotubes which further promotes bone ingrowth. The application of nanotubular structures of oxide layers can be optimized taking into consideration some important parameters as osseointegration rate and interface strength determined by nanotube mean size and length. The paper critically reviews so far investigations focused on nanooxidation of titanium and titanium alloys. The numerical model of nanotubular arrays with the use of Finite Element Method (FEM) is proposed for an assessment of the load transfer and stress distribution under applied loading which could be a critical factor when considering the described application of nanotubes.

Słowa kluczowe : nanotubes arrays, bioactivity, anodic oxidation, bone,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 1(27)
Strony : 17 – 26
Bibliografia : 1. Hazan R., Sreekantan S., Khalil A.A., Nordin I., Mat I.: Surface Engineering of Titania for Excellent Fibroblast 3T3 Cell-Metal Interaction, Journal of Physical Science. 20(1) (2009) 35-47.
2. Oh H-J., Lee J-H., Kim Y-J, Suh S-J., Chi Ch-S.: Surface characteristics of porous anodic TiO2 layer for biomedical applications, Materials Chemistry and Physics, 109 (2008) 10-14.
3. Geetha M., Singh A.K., Asokamani R., Gogia A.K.: Ti Based Biomaterials, the Ultimate Choice For Orthopaedic Implants – A Review, Progress in Materials Science 54 (2009) 397-425.
4. Kim S.E., Lim J.H., Lee S.Ch., Nam S-Ch., Kang H-G., Choi J.: Anodically nanostructured titanium oxides for implant applications. Electrochimica Acta 53, (2008) 4846-4851.
5. Sobieszczyk S.: Self-organized Nanotubular Oxide Layer on Ti and Ti alloys. Advances in Materials Science, 9(2), 25-41 (2009).
6. Mor G.K., Oomman K., Varghese K., Paulose M., Shankar K., Grimes C.A.:A review of highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Solar Energy Materials & Sollar Cells 90, (2006) 2011-2075.
7. Kodama A., Bauer S., Komatsu A., Asoh H., Ono S., Schmuki P.: Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomaterialia 5(6), (2009) 2322-2330.
8. Petukhov D.I., Eliseev A.E., Kolesnik I.V., Napolskii K.S., Lukashin A.V., Tretyakov Y.D., Grigoriev S.V., Grigorieva N.A., Eckerlebe H.: Formation mechanism and packing options in tubular anodic titania films Microporous and Mesoporous Materials 114, (2008) 440-447.
9. Crawford G.A., Chawla N.: Porous hierarchical TiO2 nanostructures: Processing and microstructure relationships. Acta Materialia 57, (2009) 854-867.
10. Macak J.M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P.: Current Opinion in Solid State and Materials Science 11, (2007) 3-18.
11. Tian T., Xiao X., Liu R., She H., Hu X.: Study on titania nanotube arrays prepared by titanium anodization in HN4F/H2SO4 solution. J Materials Sc, 42, (2007) 5539-5542.
12. Regonini D., Bowen C.R., Stevens R.: Nucleation and early growth of anodized TiO2 film. J Mater. Res. 23(8), (2008) 2116-2124.
13. Yu X., Li Y., Wlodarski W., Kandasamy S., Kalantar-Zadeh K.: Fabrication of nanostructured TiO2 by anodization: A comparison between electrolytes and substrates. Sensors and Actuators, B 130, (2008) 25-31.
14. Macak J.M., Hildebrand H., Marten-Jahns U., Schmuki P.: Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J Electroanalytical Chemistry 621, (2008) 254-266.
15. Zhao J., Wang X., Sun T., Li L.: Crystal phase transition and properties of titanium oxide nanotube arrays prepared by anodization. J Alloys and Compounds, 434-435, (2007) 792-795.
16. Kuromoto N.K., Simao R.A., Soares G.A.: Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages. Materials Characterization 58, (2007) 114-121.
17. Bestetti M., Franz S., Cuzzolin M., Arosio P., Cavallotti P.L.: Structure of nanotubular titanium oxide templates prepared by electrochemical anodization in H2SO4/HF solutions. Thin Solid Films, 515, (2007) 5253-5258.
18. Tsuchiya H., Berger S., Macak J.M., Munoz A.G., Schmuki P.: A new route for the formation of self-ordered anodic porous alumina in neutral electrolytes. Electrochemistry Communications 9, (2007) 545-550.
19. Kaneco S., Chen Y., Westerhoff P., Crittenden J.C.: Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. Scripta Materialia 56, (2007) 373-376.
20. Park J-H., Lee Y-K., Kim K-M., Kim K-N.: Bioactive calcium phosphate coating prepared on H2O2-treated titanium substrate by electrodeposition. Surface & Coatings Technology 195, (2005) 252-257.
21. Lee J-Y, Choo J-E., et al.: Assembly of collagen-binding peptide with collagen as a bioactive scaffold for osteogenesis in vitro and in vivo. Biomaterials 28, (2007) 4257-4267.
22. Raja K.S., Misra M., Paramguru K.: Deposition of calcium phosphate coating on nanotubular anodized titanium. Materials Letters, 59, (2005) 2137-2141.
23. Kar A., Raja K.S., Misra M.: Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surface & Coatings Technology, 201, (2006) 3723-3731.
24. Xiao X., Tian T., Liu R., She H.: Influence of titania nanotube arrays on biomimetic deposition apatite on titanium by alkali treatment. Mat Chem & Physics 106 (2007) 27-32.
25. Feng B., Chu X.., Chen J., Wang J., Lu X., Weng J.: Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate. J Porous Materials (2009) 1380-2224.
26. Wang Y., Tao J., Wang L., He P., Wang T.: HA coating on titanium with nanotubular anodized TiO2 intermediate layer via electrochemical deposition. Trans Met. Soc. China 18 (2008) 631-635.
27. Aninwene II G.E.., Yao Ch., Webster T.J.: Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces. Int. J. Nanomedicine. 3(2), (2008) 257-264.
28. Vasilev K., Poh Z., Kant K., Chan J., Michelmore A., Losic D.: Tailoring the surface functionalities of titania nanotube arrays. Biomaterials, 31, (2010) 532-540.
29. Popat K.C., Eltgroth M., LaTempa T.J., Grimes C.A., Desai T.A.: Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials. 28, (2007) 4880-4888.
30. Gultepe E., Nagesha D., Sridhar S., Amiji M.: Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices, Advanced Drug Delivery Reviews, Article in progress, doi: 10.1016/j.addr.2009.11.003 (2009).
31. Zhang W., Li G., Li Y., Yu Z., Xi Z.: Fabrication of TiO2 nanotube arrays on biologic titanium alloy and properties,.Trans. Nonferrous Met. Soc. China, 17, (2007) 692-695.
32. Narayanan R., Kwon R-Y., Kim K-H.: TiO2 nanotubes from stirred glycerol/NH4F electrolyte: Roughness, wetting behaviour and adhesion for implant applications, Materials Chemistry and Physics 117., (2009) 460-464.
33. Lee J-H., Kim H-E., Koh Y-H.: Highly porous titanium (Ti) scaffolds with bioactive microporous hydroxyapatite/TiO2 hybrid coating layer. Materials Letters 63 (2009) 1995-1998.
34. Crawford G.A., Chawla N., Das K., Bose S., Bandyopadhyay A.: Microstructure and deformation behaviour of biocompatible TiO2 nanotubes on titanium substrate, Acta Biomaterialia, 3 (2007) 359-367.
DOI :
Cytuj : Sobieszczyk, S. , Nanotubular titanium oxide layers for enhancement of bone-implant bonding and bioactivity. Advances in Materials Science Vol.11, nr 1(27)/2011
[Top]

Porous biomaterial for orthopaedic implants based on titanium alloy

Czasopismo : Advances in Materials Science
Tytuł artykułu : Porous biomaterial for orthopaedic implants based on titanium alloy

Autorzy :
Sobieszczyk, S.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Mechanical Engineering and Mechatronics, 80-233 Gdansk, Poland,
Seremak, T.
Gdansk University of Technology Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Gdansk, Poland, tseramak@pg.gda.pl,
Abstrakty : Titanium and its alloys are widely used as biomaterials for orthopaedic applications. Research connected with their best corrosion and wear resistance, biocompatibility and bioactivity are still being conducted. The current research is also focused on the design and manufacturing of the porous materials based on e.g. Ti-13Nb-13Zr alloy, which can be applied for implants. One of the most effective manufacturing methods of the porous materials are powder metallurgy techniques. The aim of the presented work was the design of powder preparation procedure and design a parameters of pressing and sintering processes in order to obtain the porous structure from Ti-13Nb-13Zr alloy. Investigation results of the microstructure morphology, pore size and porosity of the obtained porous material on the base Ti-13Nb-13Zr alloy in dependence of the pressing and sintering parameters are also shown and discussed.

Słowa kluczowe : porous material, implants, biomaterial, titanium alloy,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 1(27)
Strony : 27 – 34
Bibliografia : 1. Robertson D.M., Pierre L., Chahal R.: Preliminary observations of bone ingrowth into porous materials. J. Biomed. Mater. Res. (1976), 10, 335–344.
2. Cameron H.U., Macnab I., Pilliar R.M.: A porous metal system for joint replacement surgery. Int. J. Artif. Organs (1978), 1, 104–109.
3. Head W.C., Bauk D.J., Emerson Jr R.H.: Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin. Orthop. (1995), 85–90.
4. Ryan G., Pandit A., Apatsidis D.P.: Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials (2006), 27, 2651-2670.
5. Bobyn J.D., Glassman A.H., Goto H, Krygier J.J., Miller J.E., Brooks C.E.: The effect of stem stiffness on femoral bone resorption after canine porous-coated total hip arthroplasty. Clin. Orthop. Relat. Res. (1990), 196–213.
6. Bobyn J.D., Mortimer E.S., Glassman A.H., Engh C.A., Miller J.E., Brooks C.E.: Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Clin. Orthop. (1992), 79–96.
7. Pilliar R.M., Cameron H.U., Binnington A.G., Szivek J., Macnab I.: Bone ingrowth and stress shielding with a porous surface coated fracture fixation plate. J. Biomed. Mater. Res. (1979), 13, 799–810.
8. Engh C.A., Bobyn J.D.: Principles, techniques, results, and complications with a porous-coated sintered metal system. Instr. Course Lect. (1986), 35, 169–183.
9. Sychterz C.J., Topoleski L.D., Sacco M, Engh Sr C.A.: Effect of femoral stiffness on bone remodeling after uncemented arthroplasty. Clin. Orthop. Relat. Res. (2001), 218–227.
10. Otani T., Whiteside L.A.: Failure of cementless fixation of the femoral component in total hip arthroplasty. Orthop. Clin. North Am. (1992), 23, 335–346.
11. Weber J.N., White E.W.: Carbon-metal graded composites for permanent osseous attachment of non-porous metals. Mater. Res. Bull. (1972), 7(9), 1005–1016.
12. Branemark P.I.: Osseointegration and its experimental background. J. Prosthet. Dent. (1983), 50, 399–410.
13. Klawitter J.J., Weinstein A.M.: The status of porous materials to obtain direct skeletal attachment by tissue ingrowth. Acta Orthop. Belg. (1974), 40, 755–765.
14. White E.W., Weber J.N., Roy D.M., Owen E.L., Chiroff R.T., White R.A.: Replamineform porous biomaterials for hard tissue implant applications. J. Biomed. Mater. Res. (1975), 9, 23–27.
15. Spector M., Michno M.J., Smarook W.H., Kwiatkowski G.T.: A highmodulus polymer for porous orthopedic implants: biomechanical compatibility of porous implants. J. Biomed. Mater. Res. (1978), 12, 665–677.
16. Klawitter J.J., Bagwell J.G., Weinstein A.M., Sauer B.W.: An evaluation of bone growth into porous high density polyethylene. J. Biomed. Mater. Res. (1976), 10, 311–323.
17. Cestero Jr H.J., Salyer K.E., Toranto I.R.: Bone growth into porous carbon, polyethylene, and polypropylene prostheses. J. Biomed. Mater. Res. (1975), 9, 1–7.
18. Homsy C.A., Cain T.E., Kessler F.B., Anderson M.S., King J.W.: Porous implant systems for prosthesis stabilization. Clin. Orthop. (1972), 89, 220–235.
19. Sauer B.W., Weinstein A.M., Klawitter J.J., Hulbert S.F., Leonard R.B., Bagwell J.G.: The role of porous polymeric materials in prosthesis attachment. J. Biomed. Mater. Res. (1974), 8, 145–153.
20. Hirschhorn J., McBeath A., Dustoor M.: Porous titanium surgical implant materials. J. Biomed. Mater. Res. Symp. (1971), 2, 49–67.
21. Galante J., Rostoker W., Lueck R., Ray R.D.: Sintered fiber metal composites as a basis for attachment of implants to bone. J. Bone Joint Surg. Am. (1971), 53, 101–114.
22. Hahn H., Palich W.: Preliminary evaluation of porous metal surfaced titanium for orthopedic implants. J. Biomed. Mater. Res. (1970), 4, 571–577.
23. Karagienes M.: Porous metals as a hard tissue substitute. I. Biomedical aspects. Biomater. Med. Dev. Artif. Organs (1973), 171–181.
DOI :
Cytuj : Sobieszczyk, S. ,Seremak, T. , Porous biomaterial for orthopaedic implants based on titanium alloy. Advances in Materials Science Vol.11, nr 1(27)/2011
[Top]

On degradation of glass/polyester laminate immersed in water

Czasopismo : Advances in Materials Science
Tytuł artykułu : On degradation of glass/polyester laminate immersed in water

Autorzy :
Sobieszczyk, S.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Mechanical Engineering and Mechatronics, 80-233 Gdansk, Poland,
Seremak, T.
Gdansk University of Technology Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Gdansk, Poland, tseramak@pg.gda.pl,
Landowski, M.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials and Welding Engineering Gdansk, Poland, kimielin@pg.gda.pl,
Abstrakty : Mechanical behaviour was compared for glass/ polyester laminates manufactured in the boatbuilding plant using three methods: hand lay-up, vacuum bagging, infusion. Specimens were tested in dry condition and following accelerated water immersion test (700C- corresponding to the exposure of 30 years at 190C). In three point bending test 40-50% reduction in laminate strength was observed due to water immersion. The highest degradation was in samples manufactured using hand lay-up method, the differences in strength between both vacuum methods were insignificant. Interlaminar shear strength was reduced by 25% for infusion method which is recommended as the most efficient. Matrix plasticization and debondings as well as surface microcracks were responsible for reduction in strength for water conditioned specimens. However, no microstructural difference in type or intensity of internal damage was observed for the three sample types.

Słowa kluczowe : polymer composites, durability, scanning electron microscopy (SEM),
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 1(27)
Strony : 35 – 39
Bibliografia : 1. Mouritz A.P. Gellert E. Burchill P., Challis K.: Review of advanced composite structures for naval ships and submarines, Composite structures 53 (2001) 21-41.
2. Imielińska K.: Degradation and damage of advanced laminate polymer composites due to environmental effects and low velocity impact, Wydawnictwo Politechniki Gdańskiej, Gdańsk 2005.
3. Bader M.G.: Selection of composite materials and manufacturing routes for cost effective performance, Composites Part A. 33 (2002) 913-934.
4. Marsh G.: Boat builder on a mission with composites, Reinforced Plastics, 10 2008. p.18.
5. Huang G, Hongxia S., Effect of water absorption on the mechanical properties of glass polyster composites, Materials and Design 28(2007) 1647-1650.
6. Rajapakse Y.D.S., Hui D.: Marine Composites: Editorial: Composites: Part B, 35, 2004 447-450.
7. Landowski M., Budzik M. Imielińska K.: Wpływ metody wytwarzania na własności laminatów poliestrowo/ szklanych do budowy małych jednostek pływających, Inżynieria materiałowa 2011 (in print).
8. MS Thesis Michał Stempa, Politechnika Gdańska 2007.
9. ASTM D570-98 (2005) Standard Test Method for Water Absorption of Plastics.
DOI :
Cytuj : Sobieszczyk, S. ,Seremak, T. ,Landowski, M. , On degradation of glass/polyester laminate immersed in water. Advances in Materials Science Vol.11, nr 1(27)/2011
[Top]

Nanotechnologies in development of structural materials and biomaterials

Czasopismo : Advances in Materials Science
Tytuł artykułu : Nanotechnologies in development of structural materials and biomaterials

Autorzy :
Sobieszczyk, S.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Mechanical Engineering and Mechatronics, 80-233 Gdansk, Poland,
Seremak, T.
Gdansk University of Technology Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Gdansk, Poland, tseramak@pg.gda.pl,
Landowski, M.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials and Welding Engineering Gdansk, Poland, kimielin@pg.gda.pl,
Zieliński, A.
Gdansk University of Technology, Faculty of Mechanical Engineering, 1Department of Materials and Welding Engineering,
Abstrakty : The nanometric materials and technologies resulted in nanostructures are reviewed. The examples of nanomaterials are shown. The typical nanotechnologies, including plastic deformation, mechanical attrition, controlled detonation, hot plasma jet synthesis, laser vaporisation, CVD and PVD, mechanical milling, annealing, ultrasonic irradiation, nanolithography, electrocrystallisation, electrospinning, sol-gel method, cryogenic laser-enhanced melting, and hydrogen-enhanced amorphisation, are presented. Typical applications in technics and medicine are given.

Słowa kluczowe : nanomaterials, nanotechnologies, physical methods, chemical methods, mechanical methods,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 1(27)
Strony : 40 – 54
Bibliografia : 1. The Encyclopedia of Nanoscience and Nanotechnology. H.S. Nalwa ed., USA, 2004.
2. http://www.uach.sav.sk/web/dokumenty/APVV/APVV_050505_ENG.pdf
3. http://www.mknano.com/?gclid=CLuJ4_qevo8CFQ6ZQwodTynEYA
4. http://spore.cta.int/spore124/spore124_feature.asp
5. Yang H., Yang R., Wan X., Wan W.: Strunanoparticles with different sizes embedded in method. J. Crystal Growth 261 (2004) 549-556.
6. http://www.nims.go.jp/onc/index_e.html
7. http://www.sandia.gov/news/resources/releases/2004/
8. Pande C.S., Masumura R.A.: Deformation and Coble creep of nanocrystalline materiMat. Res. Soc. Symp. Proc., Vol. 740, 2003, chpt. 11.1.
9. Varyukhin V.M., Tkatch V.I., Maslow V.V., Beygelzimer Y.Y., Synkov S.G., Nosenko V.K., Rassolov S.G., Synkov A.S., Krysov V.I., Mamorphous Al86Ni6Co2Gd6 melt-spun ribbons by twist extrusion. Mater. Sci. Forum 503-504 (2006) 699-704.
10. Stolyarov V.V., Zhu Y.T., Lowe T.C., Valiev R.Z.: Microstructures and properties of ultrafine-grained pure deformation. J. Nanosci. Nanotechn.
11. (2001) 237-242. De Castro C.L., Mitchell B.S.: Synthesis, Functionalization and Surface Treatment of Nanoparticles. M.I. Baraton (ed.). Amer. Sci. Publ., 2002
12. http://www.plasmachem.com/contentenglish/nanopowders_technology.html
13. Chen H., Huang R.B., Tao Z.C., Zheng L.-S., Zhou G.-W., Zhang Z.: Singlcrystals encapsulated in carbon nanocages obtained by laser vaporizatio titanium in benzene vapor. Appl. Phys. Lett. 77 (2000) 91-93.
14. Zhu S., Su C.-H., Cochrane J.C., Lehoczky S., Muntele I., Ila D.: Growth of carbon nanostructure materials using laser vaporization. Diamond Rel 1194.
15. Roca i Cabarrocas Nguyen-Tran Th., Djeridane Y., Abramov A., Johnson E., Patriarche G.: Sy electronic devices. J. Phys. D: Appl. Phys. 490 (2007) 2258-2266.
16. Kurisu H., Nagoya K., Yamada N., Yamamoto S., Matsuura M.: Characterization of CuCl nanocrystals in SiO2 matrix fabricated by inductively coupled plas deposition. J. Vac. Sci. Techn. B 21 (2003) 2169-2173.
17. Vilcarromero J., Bustamante R., da Silva J.H.D.: Hydrogen influence on gallium arsenide thin films prepared by RF magnetron sputtering techn 1035-1037.
18. Madhukar S., Smith K. et al.: CVD growth of Si nanocrystals on dielectric surfaces for nanocrystal http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=2390&DID=136676&action=detail
19. Huang J., Xie Y., Li B., Liu Y., Lu J., Qian I.: Ultrasound-induced formation of CdS nanostructures in oil-in-water microemulsions. J. Colloid Interface Sci. 236 (2001)
20. Yu J., Chen Y., Wuhrer R., Liu Z., Ringer S.P.: In situ formation of BN nanotubes during nitriding reactions. Chem. Mater. 17 (2005) 5172-5176.
21. Gao B 21. ., Bower C., Lorentzen J.D., Fleming L., Kleinhammes A., Tang X.P., McNeil L.E., Wu Y., Zhou O.: Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem. Phys. Lett. 327 (2000) 69-75.
22. Chou S.Y., Keimel C., Gu J. : Ultrafast and direct imprint of nanostructures in silicon. Nature 417 (2002) 835-837.
23. Staikov G., Milchev A.: The Impact of Electrocrystallization on Nanotechnology. Pages 1-29. Wiley 2007.
24. M.: Micromagnetic behaviour of electrodeposited cylinder arrays. Phys. Rev. B 65 (2002) 14-17.
25. Macak J.M., Albu S., Kim D.H., Paramasivam I., Aldabergerova S., Schmuki P.: Miltulayer TiO2-nanotube formation by two-step anodization. Electrochem. Solid-State Lett. 10 (2007) K28-K31.
26. Gardelis S., Tsiaoussis I., Frangis N., Nassiopolou A.G. : Ultra-thin films with embedded Si nanocrystals fabricated by electrochemical dissolution of bulk crystalline Si in the transition regime between orosification and electropolishing. Nanotechnology 18 (2007) 115705. http://www.iop.org/EJ/abstract/0957-4484/18/11/115705.
27. Kartopu G., Ekinci Y.: Further evidence on the observation of compositional fluctuation in silicon–germanium alloy nanocrystals prepared in anodized porous silicon–germanium films. Thin Solid Films 473 (2005) 213-217.
28. Kokonou M., Nassiopolou A.G., Giannakopolous K.P.: Arrays of SiO2 nanoislands grown electrochemically on silicon through nanoporous anodic alumina template. www.isnm2005.org/…/pdf&filename=paper%2053%20(Maria%20Kokonou).pdf –
29. Petit C., Wang Z.L., Pileni M.P.: Ferromagnetic cobalt nanocrystals achieved by soft annealing approach – From individual behaviour mesoscopic organised properties. J. Magnet. Magnet. Mater. 312 (2007) 390-399.
30. Kachurin G.A., Yanovskaya S.G., Ryuault M.O., Gutakovskii A.K., Zhuravlev K.S. Kaitasov O., Bernas H.: The influence of irradiation and subsequent annealing on Si nanocrystals formed in SiO2 layers. Semiconduct. 34 (2000) 965-970.
31. http://www.panalytical.com/index.cfm?pid=866 Vida-Simiti I., Jumate N., Chicinas I., Batin G.: Applications of scanning electron microscopy (SEM) in nanotechnology and nanoscience. Rom. J. Phys., 49, 9-10 (2004)
32. Vida-Simiti I., Jumate N., Chicinas I., Batin G.: Applications of scanning electron microscopy (SEM) in nanotechnology and nanoscience. Rom. J. Phys. 955-965.
33. http://www.imec.be/wwwinter/mediacenter/en/SR2006/681619.html
34. http://www.ndhu.edu.tw/~nano/file/chem31300/NT06-L2-Mar07-Nanomaterials.pdf
35. http://www.ntrc.itri.org.tw/research/pdf-2004/08-3.pdf
36. Serbiński W., Zieliński A., Wierzchoń T.: Laser assisted forming of the surface layAl-Si alloy at cryogenic conditions. Inż. Mater. 25 (2004) 656-658.38.
37. Eliaz N., Eliezer D., Olson D.L.: Hydrogen-assisted processing of materials. Mater. Sci. Eng. A289 (2000) 41-53.
38. T.M. Yue, T.M. Cheung, H.C. Man, The effects of laser surface treatment on the corrosion properties of Ti-6Al-4V alloy in Hank`s solution. J. Mater. Sci. Lett. 19 (2000) 205-208.
39. Mei, H.C. Man, Excimer laser surface treatment of Ti-6Al-4V alloy for corrosion resistance enhancement. Mater. Lett. 52 (2002) 206-212.
40. F. Guillemot, E. Prima et al., Ultraviolet laser surface treatment fore biomedical applications of β titanium alloys: morphological and structural characterization, Appl.
41. Kyryliv V., Bassarab A., Yaskiv O., Koval J., Voloshyn V., Influence of mechanical pulse treatment on the mechanical and corrosion characteristics of VT-5 alloy. Mater. Sci. 38, 2002, 750.
42. Spanhel L.: Colloidal ZnO nanostructures and functional coatings: A survey. J. Sol-Gel Sci. Techn. 39 (2006) 7-24.
43. http://www.physorg.com/news10609.html
44. http://www.medicaldevice-network.com/features/feature1061/
45. Wood S., Jones R. Geldart A. : ESRC The Social and Economic Challenges of Nanotechnology report, July 2003. http://www.azonano.com/details.asp?ArticleID=1056
46. Sirivisoot S., Yao C., Xiao X., Sheldon B.W., Webster T.J.: Greater osteoblast functions on multiwalled carbon nanotubular titanium for orthopedic applications. Nanotechnol. 18 (2007) 365102 (6pp). http://www.iop.org/EJ/abstract/0957-4484/18/36/365102
47. http://www.physorg.com/news12131.html
48. Kumar S.: Nanomaterials for cancer therapy (Nanotechnologies for the life sciences, Vol. 7). Wiley, 2006.
49. http://www.ifw-dresden.de/institutes/iff/research/Carbo/CNT/biomed
50. Medical and Pharmaceutical Applications for Nanomaterials and Nanoparticles – Supplier Data by Strem Chemicals.
51. New drug-delivery system using nanomaterials. Medic. Sci. News. http://www.news-medical.net/?id=26189
52. John G., Vemula P.K.: Design and development of soft nanomaterials from biobased amphiphiles. Soft Matter 2006 (2) 909-914.
DOI :
Cytuj : Sobieszczyk, S. ,Seremak, T. ,Landowski, M. ,Zieliński, A. , Nanotechnologies in development of structural materials and biomaterials. Advances in Materials Science Vol.11, nr 1(27)/2011
[Top]

Influence of pore formers on electrical properties of Perovskite-type ceramics

Czasopismo : Advances in Materials Science
Tytuł artykułu : Influence of pore formers on electrical properties of Perovskite-type ceramics

Autorzy :
Sobieszczyk, S.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Mechanical Engineering and Mechatronics, 80-233 Gdansk, Poland,
Seremak, T.
Gdansk University of Technology Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Gdansk, Poland, tseramak@pg.gda.pl,
Landowski, M.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials and Welding Engineering Gdansk, Poland, kimielin@pg.gda.pl,
Zieliński, A.
Gdansk University of Technology, Faculty of Mechanical Engineering, 1Department of Materials and Welding Engineering,
Lendze, T.
Gdansk University of Technology, Faculty of Applied Physics and Mathematics, Department of Solid State Physics, Gdansk, Poland, tlendze@mif.pg.gda.pl,
Abstrakty : Porous CaTi0.9Fe0.1O3-delta (CTF) perovskites were synthesized by the standard solid state method at different sintering temperatures with carbon black (CB), corn starch (CS) and potato starch (PS) as pore-forming agents. The ceramic samples of porosity between 9% and 42% with 5 – 40 mikrom pore sizes, were obtained by a 6 h sintering at either 1130o C or 1200o C of precursor powder prepared at 1470o C. X-ray diffraction analysis proved the existence of orthorhombic single-phase perovskites crystalline structure. Electrical conductivity at 800�‹ C was between 1.42 �~10.2 S cm.1 and 1.86�~10.3 Scm.1 . The conductivity markedly depended on the sample porosity. It should be noted that 30% of porosity, resulted in reduction of conductivity by less than one order of magnitude. Activation energy of conductivity varied between 0.41 and 0.56 eV. Cornstarch has been chosen as the most suitable pore-forming agent for obtaining the cathode of good properties. The best amount of the cornstarch has been proposed as between 5 and 10%.

Słowa kluczowe : proton conductor, perovskite, PCFC, cathode,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 1(27)
Strony : 55 – 63
Bibliografia : 1. Pasierb P., Drożdż-Cieśla E., Rekas M.: Properties of BaCe1−xTixO3 materials for hydrogen electrochemical separators, Journal of Power Sources 181 (2008), pp. 17–23.
2. Zhu J., Zäch M.: Nanostructured materials for photocatalytic hydrogen production, Current Opinion in Colloid & Interface Science 14 (2009), pp. 260–269.
3. Sahraoui M., Kharrat C., Halouani K.: Two-dimensional modeling of electrochemical and transport phenomena in the porous structures of a PEMFC, International Journal of Hydrogen Energy 34 (2009), pp. 3091 – 3103.
4. Cindrella L., Kannan A.M., Lin J.F., Saminathan K., Ho Y., Lin C.W., Wertz J.: Gas diffusion layer for proton exchange membrane fuel cells-A review, Journal of Power Sources 194 (2009), pp. 146–160.
5. Quarez E., Noirault S., Le Gal La Salle A., Stevens P., Joubert O., Evaluation of Ba2(In0.8Ti0.2)2O5.2−n(OH)2n as a potential electrolyte material for proton-conducting solid oxide fuel cell, Journal of Power Sources 195 (2010), pp. 4923–4927.
6. Bi L., Zhang S., Fang S., Tao Z., Peng R., Liu W.: A novel anode supported BaCe0.7Ta0.1Y0.2O3-δ electrolyte membrane for proton-conducting solid oxide fuel cell, Electrochemistry Communications 10 (2008), pp. 1598–601.
7. Zhao L., He B., Ling Y., Xun Z., Peng R., Meng G., Liu X.: Cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3Ld for proton-conducting solid oxide fuel cell cathode, International journal of hydrogen energy 35 (2010), pp. 3769 – 3774.
8. Fu X.-Z, Luo J.-L., Sanger A.R., Xu Z.-R., Chuang K.T.: Fabrication of bi-layered proton conducting membrane for hydrocarbon solid oxide fuel cell reactors, Electrochimica Acta 55 (2010), pp. 1145–1149.
9. Matsumoto H., Nomura I., Okada S., Ishihara T.: Intermediate-temperature solid oxide fuel cells using perovskite-type oxide based on barium cerate, Solid State Ionics 179 (2008), pp. 1486–1489.
10. D’Epifanio A., Fabbri E., Di Bartolomeo E., Licoccia S., Traversa E.: Design of BaZr0.8Y0.2O3–δ Protonic Conductor to Improve the Electrochemical Performance in Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs), Fuel Cells 08 (2008), pp. 69–76.
11. Wu T., Peng R., Xia C.: Sm0.5Sr0.5CoO3−δ –BaCe0.8Sm0.2O3-δ composite cathodes for proton-conducting solid oxide fuel cells, Solid State Ionics 179 (2008), pp. 1505–1508.
12. Fontaine M.-L., Larring Y., Haugsrud R., Norby T., Wiik K., Bredesen R.: Novel high temperature proton conducting fuel cells: Production of La0.995Sr0.005NbO4−δ electrolyte thin films and compatible cathode architectures, Journal of Power Sources 188 (2009), pp. 106–113.
13. Yang L., Liu Z., Wang S., Choi Y., Zuo C., Liu M.: A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors, Journal of Power Sources 195 (2010), pp. 471-474.
14. Fontaine M.L., Larring Y., Smith J.B., Raeder H., Andersen Ø.S., Einarsrud M.-A., Wiik K., Bredesen R.: Shaping of advanced asymmetric structures of proton conducting ceramic materials for SOFC and membrane-based process applications, Journal of the European Ceramic Society 29 (2009), pp. 931-935.
15. Figueiredo F.M., Kharton V.V., Waerenborgh J.C., Viskup A.P., Naumovich E.N., Frade J.R.: Influence of Microstructure on the Electrical Properties of Iron-Substituted Calcium Titanate Ceramics, Journal of American Ceramic Society 87 (2004), pp. 2252-2261.
16. Ahmed M.A., Bishay S.T.: Effect of annealing time, weight pressure and Fe doping on the electrical and magnetic behavior of calcium titanate, Materials Chemistry and Physics 114 (2009), pp. 446-450.
17. Shaula A.L., Fuentes R.O., Figueiredo F.M., Kharton V.V., Marques F.M.B., Frade J.R: Grain size effects on oxygen permeation in submicrometric CaTi0.8Fe0.2O3−δ ceramics obtained by mechanical activation, Journal of the European Ceramic Society 25 (2005), pp. 2613-2616.
18. Figueiredo F.M., Waerenborgh J.C., Kharton V.V., Nafe H., Frade J. R.: On the relationships between structure, oxygen stoichiometry and ionic conductivity of CaTi1−xFexO3−δ (x = 0.05, 0.20,0.40, 0.60), Solid State Ionics 156 (2003), pp. 371-381.
19. Kharton V.V., Figueiredo F.M., Kovalevsky A.V., Viskup A.P., Naumovich E.N., Jurado J.R., Frade J. R.: The Oxygen Diffusion in, and Thermal Expansion of, SrTiO33−δ – and CaTiO3−δ -Based Materials, Defect Diffusion Forum 186/187 (2000), pp. 119-136.
20. The X'PERT PLUS Rietveld algorithm is based on the source codes of the program LHPM1 (April 11, 1988) of R.J. Hill and C.J. Howard, X'Pert Plus, © 1999 Philips Electronics N.V.
21. Liu, X Liebermann, R C, PCMIDU 20 (1993), 171.
DOI :
Cytuj : Sobieszczyk, S. ,Seremak, T. ,Landowski, M. ,Zieliński, A. ,Lendze, T. , Influence of pore formers on electrical properties of Perovskite-type ceramics. Advances in Materials Science Vol.11, nr 1(27)/2011
[Top]

Engineering properties of normal concrete grade 40 containing rice husk ash at different grinding time

Czasopismo : Advances in Materials Science
Tytuł artykułu : Engineering properties of normal concrete grade 40 containing rice husk ash at different grinding time

Autorzy :
Sobieszczyk, S.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Mechanical Engineering and Mechatronics, 80-233 Gdansk, Poland,
Seremak, T.
Gdansk University of Technology Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Gdansk, Poland, tseramak@pg.gda.pl,
Landowski, M.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials and Welding Engineering Gdansk, Poland, kimielin@pg.gda.pl,
Zieliński, A.
Gdansk University of Technology, Faculty of Mechanical Engineering, 1Department of Materials and Welding Engineering,
Lendze, T.
Gdansk University of Technology, Faculty of Applied Physics and Mathematics, Department of Solid State Physics, Gdansk, Poland, tlendze@mif.pg.gda.pl,
Bakar, B.
School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia, cebad@eng.usm.my,
Abstrakty : The effect of rice husk ash with different grinding time on the engineering properties of concrete was studied. Eight rice husk ashes with different grinding were used in this investigation. Rice husk ash was used to partially replace Portland cement Type I at 15% by weight of cementitious material. The 100-mm concrete cube specimens were cast and cured in water for 7 and 28 days. The compressive strength of concrete was designed to achieve of grade 40 N/mm2 at 28 days. A superplasticizer was added to all mixes to provide workability in the range of 110 – 120 mm. However, the water to cement ratio (w/c) of the concrete was maintained at 0.49. Based on the results, the morphology of the rice husk ashes were changed by grinding. These appear to be an optimum grinding time of approximate 90 minutes which the compressive strength increased significantly. Generally, incorporation of RHA at varies grinding time can be decrease or increased the engineering properties of concrete extremely.

Słowa kluczowe : grinding, compressive strength, superplasticizer, concrete, rice husk ash,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 1(27)
Strony : 81 – 92
Bibliografia : 1. Mehta PK (1987) Natural Pozzolans. In: V. M. Malhorta Ed. Supplementary Cementing Materials for Concrete, Canada Centre for Mineral and Energy Technology (CANMET), Energy, Mines and Resources, Canada, 3-33.
2. Mehta PK, Folliard KJ (1994) Rice hush ask-a unique supplementary cementing material. CANMET/ACI symposium in Advance Concrete Technology, Michigan, USA, ACI SP-154, 419-444.
3. Rukzon S, Chindaprasirt P (2008) Development of classified fly ash as a pozzolanic material. J. Applied Sci, No.6, 1097.
4. Hewlett PC (1998) Lea’s chemistry of cement and concrete. Fourth Edition, Oxford: Elsevier.
5. Coutinho JS (2003) The combined benefits of CPF and RHA in improving the durability of concrete structures. Cement and Concrete Composites, 25, 51-59.
6. Jaturapitakkul C, Kiattikomol K, Sata V, Leekeeratikul T (2004) Use of ground coarse fly ash as a replacement of condensed silica fume in producing high-strength concrete. Cement and Concrete Research 34 (2004) 549–555.
7. Li HJ, Sun HH, Xiao XJ (2006). Mechanical properties of gangue-containing aluminosilicate based cementitious materials. J. Univ. Sci. Technol. Beijing, 13(2006), 183.
8. Temiz H, Kose MM, Koksal S (2007) Effects of Portland composite and composite cement on durability of mortar and permeability of concrete. Construction and Building Materials, 21, 1170-1176.
9. BS 3892-3:1997. Pulverized-fuel ash. Specification for pulverized-fuel ash for use in cementitious grouts. British Standards Specifications.
10. ASTM C204-07. Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus. American Society for Testing and Materials.
11. BS 882:1992. Specification for aggregates from natural sources for concrete. British Standards Institution.
12. BS EN 12390-3:2002. Testing hardened concrete. Compressive strength of test specimens. British European Standards Specifications.
13. RILEM. RILEM TC116-PCD (1999). Permeability of concrete as a criterion of its durability. Materials and Structures, Vol. 32, 174-9.
14. Abbas A, Carcasses M, Ollivier JP (1999) Gas permeability of concrete in relation to its degree of saturation. Materials and Structures, Vol. 32, 3-8.
15. BS EN 12504-2:2001. Determination of rebound number. British European Standards Specifications.
16. Kim JK, Kim CY, Yi ST, Lee Y (2009) Effect of carbonation on the rebound number and compressive strength of concrete. Cement & Concrete Composites 31 (2009) 139–144.
17. BS EN 12504-4:2004. Determination of ultrasonic pulse velocity. British European Standards Specifications.
18. Gaydecki P, Burdekin F, Damaj W, John D, Payne P (1992) The propagation and attenuation of medium-frequency ultrasonic waves in concrete: a signal analytical approach. Meas Sci Technol 1992;3:126–33.
19. Qudais SAA (2005) Effect of concrete mixing parameters on propagation of ultrasonic waves. Construction and Building Materials 19 (2005) 257–263.
20. Paya J, Monzo J, Borrachero MV, Peris-Mora E (1995) Mechanical treatment of fly ashes: Part I. Physico-chemical characterization of ground fly ashes. Cem. Concr. Res. 25 (7) (1995) 1469–1479.
21. Bouzoubaâ N, Fournier B (2001) Concrete incorporating rice-husk ash: Compressive strength and chloride-ion penetrability. Materials technology laboratory. Mtl 2001-5 (tr).
22. Jaturapitakkul C, Kiattikomol K, Sata V, Leekeeratikul T (2004) Use of ground coarse fly ash as a replacement of condensed silica fume in producing high-strength concrete. Cem. Concr. Res., 34(2004), p.549.
23. Angsuwattana E, Jaturapitakkul C, Kiattikomol K, Siripanichgorn A, Ketratanabovorn T (1998) Use of classified Mae Moh fly ash in high strength concrete. Supplementary Paper of the Sixth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Bangkok, Thailand, 1998, 49–60.
24. Isaia GC, Gastaldini ALG, Moraes R (2003) Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete. Cem. Concr. Compos., 25(2003), 69.
25. Fowell RJ, Johnson ST (1982) Rock classification and assessment for rapid excavation. Proceedings of the symposium on strata mechanics, Newcastle Upon Tyne; 1982, 241–4.
26. Goktan RM, Gunes N (2005) A comparative study of Schmidt hammer testing procedures with reference to rock cutting machine performance prediction. International Journal of Rock Mechanics & Mining Sciences 42 (2005) 466–472.
DOI :
Cytuj : Sobieszczyk, S. ,Seremak, T. ,Landowski, M. ,Zieliński, A. ,Lendze, T. ,Bakar, B. , Engineering properties of normal concrete grade 40 containing rice husk ash at different grinding time. Advances in Materials Science Vol.11, nr 1(27)/2011
[Top]

Functional cardio-biomaterials

Czasopismo : Advances in Materials Science
Tytuł artykułu : Functional cardio-biomaterials

Autorzy :
Major, R.
Institute of Metallurgy and Materials Science; Polish Academy of Sciences, 25 Reymonta, 30-059 Krakow, Poland, nmmajor@imim-pan.krakow.pl,
Abstrakty : Titanium as well as carbon based biomaterials, seem to be good candidates for future blood-contact applications. Bio-materials such as: Ti, Ti+DLC, TiN; Ti(C,N) with higher carbon concentration and DLC (diamond like carbon) were under examinations. Trials on surface modification of PU (polyurethane) substrate using ion mill were performed. Materials were deposited as thin films by the hybrid pulsed laser deposition (PLD) technique to examine the influence of the fabricated surfaces on cell behavior. The metallic titanium as a target was used for titanium based-film and graphite one for DLC. Phase content of deposited films was controlled by the flowing gas mixture of Ar+N2 and Ar+N2+C2H2 type in the reactive chamber. Sputtering of graphite was carried out in Ar atmosphere. The kinetic energy of the evaporated particles was controlled by application of variation of different reactive and non reactive atmospheres during deposition. Transmission electron microscopy (TEM) was used to reveal structure dependence on specific atmosphere in the reactive chamber. The measurement of the strength of bonds between biomaterials and cells is a major challenge in cellular biology since it allows for the identification of different species in adhesion phenomena. The biomaterial examinations were performed in static conditions with Dictyostelium discoideum cells and then subjected to a dynamical test to observe the cell detachment kinetics. For a given cell, detachment occurs for critical stress values caused by the applied hydrodynamic pressure above a threshold which depends on cell size and physicochemical properties of the substrate, but it is not affected by depolymerization of the actin and tubulin cytoskeleton. Tests revealed differences in behavior in respect to the applied coating material. The strongest cell-biomaterial interaction was observed for the carbon-based materials compared to the titanium and titanium nitride. A surface fuctionalization was realized by: (i) fabrication of migration channels by laser ablation, (ii) electrospinning and (iii) deposition of multilayer film from polyelectrolites. A goal of the performed research was formation of scaffolds for bio-mimetic coatings. Surface morphology examinations and biomedical studies on porous and semi-porous materials with application of human endothelial cells HUVEC line were performed by application of confocal laser scanning microscopy (CLSM).

Słowa kluczowe : pulsed laser deposition, microstructure, cell adhesion, surface functionalization,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 2(28)
Strony : 5 – 25
Bibliografia : 1. Ratner B. D, Hoffman A. S, Schoen F. J, Lemons J. E. Biomaterials Science, Copyright Elsevier Inc. 2004.
2. Bozzaro S and Ponte E. Cell adhesion in the life cycle of Dictyostelium, Experientia; 51 (1995) 1175-81.
3. Ashworth J.M and Watts D.J. Metabolism of the cellular slime mould Dictyostelium discoideum grown in axenic culture. Biochem. J. 119(1970)175.
4. Morio T, Urushihara H, Saito T, Ugawa Y, Mizuno H, Yoshida M, Yoshino R, Mitra B.N, Pi M, .Sato T, Takemoto K, Yasukawa H, Williams J, Maeda M. Takeuchi I, Ochiai H and Tanaka Y. The Dictyostelium discoideum developmental cDNA project: generation and analysis of expressed sequence tags from the first-finger stage of development. DNA Res. 5 (1998) 335.
5. E.Decave, Y.Brechet, F.Bruckert, and B.Fourcade, “Peeling model for cell detachment D. Garrivier”, Eur. Phys. J., E 8, (2002)79–97.
6. Décavé E, Garrivier D, Bréchet Y, Fourcade B and Bruckert F. Shear Flow-Induced Detachment Kinetics of Dictyostelium discoideum Cells from Solid Substrate Biophysical Journal. 82 (2002) 2383–2395.
7. Bruckert F, De Cave E, Garrivier D, Cossion P, Brechet Y, Fourcade B and Satre M. Dictyostelium discoideum adhesion and motility under shear flow: experimental and theoretical approaches. Journal of Muscle Research and Cell Motility, Kluwer Academic Publishers, Netherlands. 23(2002) 651–658.
8. Bruckert F, Demily M, Brecht Y, Boulangé L. Kinetics of yeast detachment from controlled stainless steel surfaces; Colloids and Surfaces B, Biointerfaces, Elsevier Inc. 51(2006) 71-79.
9. Bäuerle D. Laser Processing and Chemistry, Springer–Verlag, Berlin, Heidelberg 2000.
10. Lackner J.M, Waldhauser W, Schwarz M, Mahoney L, Major L, Major B. Polymer pre-treatment by linear anode layer source plasma for adhesion improvement of sputtered TiN coatings. Vacuum 83(2009) 302-307.
11. Lackner J.M. Industrially- scaled hybrid Pulsed Laser Deposition at Room Temperature. Published by Orekop sc., Krakow, 2005.
12. Major B, Bruckert F, Lackner J.M, Ebner R, Kustosz R, Lacki P. Coating on TiN and Ti(C,N) basis for biomedical application to blood contact and TiN/CrN multilayered tribological systems produced by pulsed laser deposition. Arch.Metal.and Mater. 53 (2008) 39-48.
13. Lackner J.M, Waldhauser W, Alamanou A, Teicher C, Schmied F, Major L, Major B. Mechanisms for self-assembling topography formation in low-temperature vacuum deposition of inorganic coatings on polymer surfaces. Bull.Pol.Ac.:Tech. 58(2) (2010) 281-294.
14. Sarna J, Kustosz R, Major R, Lackner J.M, Major B. Polish Artificial Heart – new coatings, technology, diagnostics. Bull.Pol.Ac.Tech. 58(2) (2010) 329-336.
15. Major R, F.Bruckert F, J.M.Lackner J.M, Waldhauser W, Pietrzyk M, Major B. Kinetics of eucariote cells adhesion under shear flow detachment on the PLD deposited surfaces. Bull.Pol.Ac.Ser.Techn. 56(2008) 223-228.
16. Sanak M, Jakiela B, Wegrzyn W. Assesment of hemocompatibility of materiale with arteria blond flow by platelet functional tests. Bull.Pol.Ac.Tech. 58(2) (2010) 317-322.
17. Thornton J.A, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J.Vac.Sci.Technol., 11(4) (1974) 666-670.
18. WinSAM Vario I to III, and SAM 2000, KSI, Kraemer Scientific Instruments, Lerchenweg 16-18, 35745 Herborn, Germany.
19. Ultrasonic testing , J.Krautkraemer, H.Krautkraemer, Springer Verlag, 1986.
20. Acoustic microscopy, Andrew Briggs (Monographs on the physics and chemistry of materials, Vol. 46), Oxford University Press, 1992.
21. EVOLUTION I-III, SAM TEC GmbH, P.O. 3111, 73641 Aalen, Email: info@samtec-germany.com.
22. Seyfert U.T, Biehl V and Schenk J. In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4. Biomol. Eng. 19(2-6) (2002) 91-96.
23. M. Otto M, Klein C.L, Koehler H, Wagner M, Roehrig O and Kirkpatrick C.J. Dymanic blood cell contact with biomaterials: validation of a flow chamber system according to international standards. J Mater Sci Mater Med., 8(3)(1997)119-129.
24. Streller U, Sperling C, Huebner J, Ranke R and Werner C. Design and evaluation of novel blood incubation systems for in vitro hemocompatibility assessment of planar solid surfaces. J. Biomed. Mater. Res. B Appl. Biomater. 66B (1) (2003) 379-390.
25. Schaub R.D, Kameneva M.V, Borovetz H.S and W.R. Wagner W.R. Assessing acute platelet adhesion on opaque metallic and polymeric biomaterials with fiber optic microscopy. J. Biomed. Mater. Res. 49 (4) (2000) 460-468.
26. Sbrana S, Della Pina F, Rizza A, Buffa M, De Filippis R, Gianetti J and Clerico A. Relationships between optical aggregometry (type born) and flow cytometry in evaluating ADP-induced platelet activation. Cytometry B Clin Cytom. 74 (1)(2008)30-39.
27. Nomura S, Shouzu A, Tamoto K, Togane Y, Goto S, Uchiyama S and Ikeda Y. Assessment of an ELISA kit for platelet-derived microparticles by joint research at many institutes in Japan. J. Atheroscler. Thromb. JOI JST.JSTAGE/jat/26432. 2009, published online.
28. Harrison P. Progress in the assessment of platelet function. Br J Hematol. 111(3) (2000) 733-744.
29. Shenkman B., Savion N, Dardik R, Tamarin I and Varon D. Testing of platelet deposition on polystyrene surface under plow conditions by the cone and plate(let) analyser: role of platelet activation, fibrinogen and von Willebrand factor. Thromb. Res. 99 (4) (2000) 353-362.
30. Gemmel C.H. Activation of platelets by in vitro whole blood contact with materials: increases in microparticle procoagulant activity, and soluble P-selectin blood levels. J. Biomater. Sci. Polym. Ed. 12 (8) (2001) 933-934.
31. Varon D, Lashevski I, Brenner B, Beyar R, Lanir N, Tamarin I and Savion N. Cone and plate(let) analyzer: monitoring glycoprotein IIb/IIIa antagonists and von Willebrand disease replacement therapy by testing platelet deposition under flow conditions. Am Heart J. 135 (5 Pt 2 Su)S(1998) 187-193.
32. Nomura S, Ozaki Y and Ikeda Y. Function and role of microparticles in various clinical settings” Thromb. Res. 123 (1) (2008) 8-23.
33. Blann A, Shantsila E and Shantsila A. Microparticles and arterial disease. Semin. Thromb. Hemost. 35 (5) (2009) 488-496.
34. Gemmel C.H, Ramirez S.M, Yeo E.L and Sefton M.V. Platelet activation in whole blood by artificial surfaces: identification of platelet-derived microparticles and activated platelet binding to leukocytes as material-induced activation events. J. Lab. Clin. Med. 125 (2) (1995) 276-287.
DOI :
Cytuj : Major, R. , Functional cardio-biomaterials. Advances in Materials Science Vol.11, nr 2(28)/2011
[Top]

Splat formation and degradation of hydroxyapatite during plasma spraying process

Czasopismo : Advances in Materials Science
Tytuł artykułu : Splat formation and degradation of hydroxyapatite during plasma spraying process

Autorzy :
Major, R.
Institute of Metallurgy and Materials Science; Polish Academy of Sciences, 25 Reymonta, 30-059 Krakow, Poland, nmmajor@imim-pan.krakow.pl,
Mittal, M.
Indian Institute of Technology Roorkee, Department of Metallurgical and Materials Engineering, Civil Lines, Roorkee, Uttarakhand, India, manojmittal74@yahoo.com,
Abstrakty : Plasma spraying is most used thermal spray process for coating of bioceramic and bioinert materials. It is line of sight technique, easy to use and inexpensive as compared to other processes used for coatings. The main disadvantage of this technique for coating hydroxyapatite (HA) is that due to high temperature of plasma (of the order of 16000°C) HA tends to degrade into amorphous calcium phosphates. These amorphous phases are not desirable and have a tendency to dissolve in body environment. In this article an attempt has been made to understand the plasma spraying process for coating of hydroxyapatite.

Słowa kluczowe : plasma spraying, thermal behavior, coating, hydroxyapatite,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 2(28)
Strony : 26 – 36
Bibliografia : 1. Rossnagel S. M. Cuomo J. J. Westwood W. D.: Handbook of plasma processing technology: fundamentals, etching, deposition and surface interaction, Noyes Publication, Park Ridge, N.J 1990.
2. Golant V. E. Zhilinsky A. P. Sakharov I. E. Brown S. C.: Fundamental of plasma physics, Wiley, New York 1980.
3. Leung K. Heberlein J. Pfender E.: Particle trajectory control with the use of different carrier gases, Proc. of 8th National Thermal Spray Conference on Thermal Spray Science and Technology, (ed.) Berndt C. C. Sampath S., Houston, Texas, 1995.
4. Wolke J. G. C. Klein C. P. A. T. de Groot K.: Bioceramics for maxillofacial applocattions, bioceramic and the human body, (ed.) Ravaglioli A. Krajewski A. Elsevier, Amsterdam, 1991
5. Fauchais P.: Understanding plasma spraying, J. Physics: Applied Physics, 37 (2004), R86
6. Pawlowski L.: the science and engineering of thermal spray coatings, Wiley, New York 1995.
7. Dyshlovenko S. Pateyron B, Pawlowski L. Murano D.: Numerical simulation of hydroxyapatite powder behavior in plasma jet, Surf. Coat. Technol., 179 (2004), 110-117.
8. Tong W. Yang Z. Zhang X. Yang A. Feng J. Cao Y. Chen J.: Studies of diffusion maximum in x-ray diffraction pattern of plasma-sprayed hydroxyapatite coatings, J. Biomed. Mater. Res., 40 (1998), 407-413.
9. Oosterbos C. J. M. Rahmy A. I. A. Tonino A. J. Witpered W.: High survival rate of hydroxyapatite-coated hip prostheses 100 consecutive hips followed for 10 years, Acta Orthop. Scand., 75 (2004), 127-133.
10. Fantassi S. Vardelle M. Fauchais P. Moreau.: Investigation of the splat formation versus different particulate temperature and velocities prior to impact, Proc. Thermal Spray: International Advances in Coatings Technology, (ed.) Berndt. C. C., 13th International Thermal Spray, Orlando, Florida 1992
11. Yankee S. J. Pletka B. J.: Microstructural analysis of impacted hydroxyapatite droplets, Proc. Thermal Spray: International Advances in Coatings Technology, (ed.) Berndt C. C. 13th International Thermal Spray, Orlando, Florida,1992
12. Tong W. Yang Z. Zhang X. Yang A. Feng J. Cao Y Chen J.: Studies on diffusion in x-ray diffraction patterns of plasma sprayed hydroxyapatite coatings, J. Biomed. Mater. Res. Vol. 40 (1998), 407-413.
13. Le Geros R. Z. Le Geros, J. P.: Dense Hydroxyapatite, An introduction to bioceramics, (ed.), Hench L. L. Wilson J. World Scientific, London, 1993, 139-180
14. Ji H. Pinton C. B. Marquis P. M.: Microstructural characterization of hydroxyapatite coatings on titanium, J. Mater. Sci.-Mater. Med., 3, (1992), 283
15. Sun L. Christopher Bernd, C.C. Grey C.P.: Phase, structural and microstructural investigations of plasma spray hydroxyapatite coatings, Mater. Sci. Eng. A, 36 (2003), 40-84.
16. Liao C. Lin F. Chen K. Sun J.: Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere, Biomaterials, 20 (1999), 1807-1813.
17. Sridhar T. M. Kamachi Mudali U. Subbaiyan M.: Sintering atmosphere and temperature effect on hydroxyapatite coated type 316l stainless steel, Corros. Sci., 45 (2003) 2337-2359.
18. Heimann R. B.: Thermal spraying of biomaterials”, Surf. Coat. Technol., 201 (2006), 2012-2019.
19. Fang Y. Agrawal D. K. Roy D. M.: Thermal stability of hydroxyapatite, hydroxyapatite and related material, (ed.) Brown P. W. and Constantz B. CRC Press, London, 1994
20. Park E. Condrate Sr. R. A. Lee D. Kociba K. Gallagher P. K.: Characterization of hydroxyapatite: before and after plasma spraying, j. Mater. Sci. Mater. Med., 13 (2002), 211-218.
21. Tampieri A. Celotti G. Sprio S. Mingazzini C.: Characterization of synthatic hydroxyapatite and attempt to improve their thermal stability, Mater. Chem. Phys., 64 (2000), 54-61.
22. Lazic S. Zee S. Miljevic N. Milonjic S.: The effect of temperature on the properties of hydroxyapatite precipitated from calcium hydroxide and phosphoric acid, Thermochim. Acta, 374 (2001), 13-22.
23. Deram V. Minichiello R. Le Maguer A. Pawlowski L. Murano D.: Microstructural characterization of plasma sprayed hydroxyapatite coatings, Surf. Coat. Technol., 166 (2003), 153-159.
24. Klein C. P. A. T. Wolke J. G. C. de Groot K.: Stability of calcium phosphate ceramics and plasma spary coating, ‘In’ An Introduction to Bioceramic, (ed.) Hench L. L. Wilson J. World Scientific, London, 192-221, 1993
DOI :
Cytuj : Major, R. ,Mittal, M. , Splat formation and degradation of hydroxyapatite during plasma spraying process. Advances in Materials Science Vol.11, nr 2(28)/2011
[Top]

Damage detection in composite laminates aeronautics structures through accelerometers network

Czasopismo : Advances in Materials Science
Tytuł artykułu : Damage detection in composite laminates aeronautics structures through accelerometers network

Autorzy :
Major, R.
Institute of Metallurgy and Materials Science; Polish Academy of Sciences, 25 Reymonta, 30-059 Krakow, Poland, nmmajor@imim-pan.krakow.pl,
Mittal, M.
Indian Institute of Technology Roorkee, Department of Metallurgical and Materials Engineering, Civil Lines, Roorkee, Uttarakhand, India, manojmittal74@yahoo.com,
Ksouri, S.
CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France,
Abstrakty : Over the past twenty years, the increase of use of structural materials in Aerospace is due to many reasons. While the properties of metallic materials are mastered, the risk behavior of composite materials requires monitoring of the structure. That’s why many methods of non-destructive testing (NDT) have been implemented and applied for the evaluation of defects in composites. The purpose of our research is the development of a new NDT tool for detecting delamination damages in aircraft’s structures. The principle diagnostic is based on the application of a reproducible impact wave on a composite panel and its propagation trough an accelerometer sensor network. The presence of defects will be identified by the temporal and frequency response change compared to calibrated reference recorded before the damage. Therefore, in this paper an experimental study of impact behavior of a composite laminate structure will be presented. The panel is made from a guarded composite long carbon fiber laminate. In the study, the shock propagation wave induced in the materials will take into account the fiber orientation (0°, 45°, 90°,-45°) and plies arrangement (plies stacking sequence of tilt-up). First results of this new NDT for detecting damages of an aircraft structure composite demonstrate the wide possibilities of this technique.

Słowa kluczowe : Structural Health Monitoring, Impact detection, Non Destructive Testing, Composite laminate,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 2(28)
Strony : 37 – 43
Bibliografia : 1. J. Higgins, B. VanWest, NDE and repair of damaged Minotaur fairing shell, Composite Structures, Vol 67, 189–195, 2005.
2. R. Ruzek, R. Lohonka, J. Jironc, Ultrasonic C-Scan and shearography NDI technigues evaluation of impact defects identification, NDT&E International, Vol 39, 132–142, 2006.
3. M. V. Hosur, C. R. L. Murthy, T. S. Ramamurthy, Anita Sheb, Estimation of impact-induced damage in CFRP laminates through ultrasonic imaging. NDT&E International, Vol.31, No.5, 359-374, 1998.
4. Y.Y. Hung, Y.S. Chung, Review and comparison of shearography and active thermography for nondestructive evaluation, Materials Science and Engineering, Vol. 64, No. 5-6, 73-1121, 2009.
5. R. Kažys, R.Raišutis, E. Žukauskas, L. Mažeika, A.Vladišauskas, Air- coupled of CFRP rods by means of guided waves, Physics Procedia, Vol. 3, 185-192, 2010.
6. S. Yashiro, J. Takatsubo, N. Toyama, An NDT technique for composite structures using visualized Lamb-wave propagation, Composites Science and Technology 67, 3202–3208, 2007.
7. H. Boukabache, S. Ksouri, C. Escriba, J.Y. Fourniols, Piezoelectric sensor/actuator network for SHM and damage detection on Airplane Door, Asia-Pacific Workshop on Structural Health Monitoring, Tokyo, Japan, 2010.
8. C. Escriba, H. Boukabache, S. Ksouri., Fourniols, Sensor Network for non destructive control of aeronautics structures: piezo or accelerometer diagnosis?, European Workshop on Structural Health Monitoring, Sorrento, Italy, 2010, pp. 388-393.
DOI :
Cytuj : Major, R. ,Mittal, M. ,Ksouri, S. , Damage detection in composite laminates aeronautics structures through accelerometers network. Advances in Materials Science Vol.11, nr 2(28)/2011
[Top]

Two tests for adhesive bonding long term characterization: principles and applications

Czasopismo : Advances in Materials Science
Tytuł artykułu : Two tests for adhesive bonding long term characterization: principles and applications

Autorzy :
Major, R.
Institute of Metallurgy and Materials Science; Polish Academy of Sciences, 25 Reymonta, 30-059 Krakow, Poland, nmmajor@imim-pan.krakow.pl,
Mittal, M.
Indian Institute of Technology Roorkee, Department of Metallurgical and Materials Engineering, Civil Lines, Roorkee, Uttarakhand, India, manojmittal74@yahoo.com,
Ksouri, S.
CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France,
Jumel, J.
Institute de Mécanique et d’Ingénierie Bordeaux UMR CNRS 5295, Université de Bordeaux, Talence 33405, France, michal.k.budzik@gmail.com,
Abstrakty : This article describes recent refinement of the traditional wedge test technique used to characterize durability of the adhesive joints. We propose two types of measuring protocols to monitor precisely and continuously the propagation of an “effective” crack during long term mode I fracture mechanic test. First method is directly derived from the traditional wedge test technique and consist in monitoring the surface strain of adherent with resistive gauges. The second method consist in replacing constant applied displacement by constant force loading and monitoring the beam deflection. Applications of these techniques are presented concerning crack propagation and nucleation monitoring leading to better understanding of the phenomena occurring in the joint subjected to an external load.

Słowa kluczowe : adhesion, fracture, wedge test, constant force test, durability,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 2(28)
Strony : 44 – 55
Bibliografia : 1. Wegman R., Tullos T. R.: Handbook of Adhesive Bonded Structural Repair, Noyes Publications, 1992.
2. Rider A. N., Olsson-Jacques C. L., Arnott D. R.: Influence of Adherend Surface Preparation on Bond Durability, Surf. Interface Anal. 27 (1999), pp. 1055-1063.
3. Dillarad D. A.: Adhesion Science and Engineering, A. V. Pocius ed. , Eslevier Science, pp.1-45, 2002.
4. Bujanda A., Copeland C., Dibelka J., Forster A., Holmes L., Jensen R., Kosik W., McKnight S., Koellhoffer S., Gillespie Jr. J.: Analysis of Adhesively Bonded Ceramics Using an Asymmetric Wedge Test, ARL-TR-4665, 2008.
5. Cognard, J.: Use of the Wedge Test to Estim esive Joint in an Aggressive Environment, Int. J. Adhes. Adhes. 6-4 (1986), pp. 215-220.
6. Aglan H, Abdo Z.: An innovative approach to fatigue disbond propagationin adhesive joints, J. Adhes.
7. Sener J.-Y., Ferracin T.; Caussin L., Delannay F.: On the precision of the wedge-opened double cantilever beam method for measuring the debonding toughness of adhesively bonded plates, Int. J. Adhes. Adhes. 22(2002), pp. 129-137.
8. Picard, B., Degrange, M.: Water Resistance of Resin-Bonded Joints with Time Related to Alloy Surface Treatment, J. Dent. 27 (1999), pp. 79-87.
9. Budzik M., Jumel J., Imielinska K., Shanahan M. E. R.: Accurate and continuous adhesive fracture energy determination using an instrumented wedge test, Int. J. Adhes. Adhes. 29 (2009), pp. 694-701.
10. Budzik M. K., Jumel J., Imielinska K., Shanahan M.E.R.: Fracture in Composite/Aluminium Joints of Variable Adhesive Properties, J. Adhesion, 85 (2009), pp. 736-754.
11. Budzik M. K., Jumel J., Imielinska K., Shanahan m.: Effect of Adhesive compliance in the Assessment of soft adhesives with teh Wedge Test, J. Adh. Sci. Tech. 25 (2011), pp.131-149.
12. Budzik M. K.: Fracture in Asymmetric Bonded Joints, PhD Thesis, Gdansk University of Technology & University Bordeaux 1, 2010.
13. Budzik M. K., Jumel J., Shanahan M.E.R.: Adhesive compliance effect in mode I separation: Profilometry approach, Int. J. Adhes. Adhes. 31 (2011), pp. 135-145.
14. Chauffaille S., Jumel J., Shanahan, M. E. R.: Pre-Cracking Behaviour in the Single Cantilever Beam Adhesion Test, Int. J. Fract. In Press (2011).
DOI :
Cytuj : Major, R. ,Mittal, M. ,Ksouri, S. ,Jumel, J. , Two tests for adhesive bonding long term characterization: principles and applications. Advances in Materials Science Vol.11, nr 2(28)/2011
[Top]

Decarburisation of bainitic ferrite laths and its influence on the microstructure in Fe-Cr-Si-C steel

Czasopismo : Advances in Materials Science
Tytuł artykułu : Decarburisation of bainitic ferrite laths and its influence on the microstructure in Fe-Cr-Si-C steel

Autorzy :
Major, R.
Institute of Metallurgy and Materials Science; Polish Academy of Sciences, 25 Reymonta, 30-059 Krakow, Poland, nmmajor@imim-pan.krakow.pl,
Mittal, M.
Indian Institute of Technology Roorkee, Department of Metallurgical and Materials Engineering, Civil Lines, Roorkee, Uttarakhand, India, manojmittal74@yahoo.com,
Ksouri, S.
CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France,
Jumel, J.
Institute de Mécanique et d’Ingénierie Bordeaux UMR CNRS 5295, Université de Bordeaux, Talence 33405, France, michal.k.budzik@gmail.com,
Ławrynowicz, Z.
University of Technology and Life Sciences, Mechanical Engineering Faculty, Department of Materials Science and Engineering, av. Kaliskiego 7, 85-789 Bydgoszcz, Poland, lawry@utp.edu.pl,
Abstrakty : The paper presents an investigation of the time required for the diffusion of carbon out of supersaturated laths of ferrite into the retained austenite. The purpose of the present paper is to demonstrate how a thermodynamic method can be used for solving a problem of the decarburisation of bainite laths. This should in principle enable to examine the partitioning of carbon from supersaturated ferrite laths into adjacent austenite and the carbon content in retained austenite using analytical method. The obtained results illustrates that the estimated times with the reference to the executed thermal processing are not capable of decarburising the sheaf of ferrite included thick laths of bainitic ferrite during the period of austempering. A consequence of the precipitation of cementite from austenite during austempering is that the growth of bainitic ferrite can continue to larger extent and that the resulting microstructure is not an ausferrite but it is a mixture of bainitic ferrite, retained austenite and carbides.

Słowa kluczowe : carbon diffusion, decarburisation, bainite reaction,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 2(28)
Strony : 56 – 64
Bibliografia : 1. Chang L.C.: Carbon content of austenite in austempered ductile iron. Scripta Materialia 39 (1998), 35-38.
2. Pietrowski S.: Nodular cast iron of bainitic ferrite structure with austenite or bainitic structure. Archives of Materials Science 18 (1997), 253-273. (in Polish)
3. Guzik S.E.: Austempered cast iron as a modern constructional material. Inżynieria Materiałowa 6 (2003), 677-680. (in Polish).
4. Bhadeshia H.K.D.H.: Bainite in Steels, Institute of Materials, 1-458, London, 1992.
5. Bhadeshia H.K.D.H., Christian J.W.: Bainite in Steels. Metallurgical Transactions A 21A (1990), 767-797.
6. Ławrynowicz Z.:, Mechanism of bainite transformation in Fe-Cr-Mo-V-Ti-C steel. International Journal of Engineering 12 (1999), 81-86.
7. Takahashi M., Bhadeshia H.K.D.H.:, A Model for the Microstructure of Some Advanced Bainitic Steels. Materials Transaction, JIM 32 (1991), 689-696.
8. Bhadeshia H.K.D.H.: Diffusion of carbon in austenite. Metal Science 15 (1981), 477-479.
9. Siller R.H., McLelan R.B.: The Application of First Order Mixing Statistics to the Variation of the Diffusivity of Carbon in Austenite. Metallurgical Transactions 1 (1970), 985-988.
10. Kinsman K.R., Aaronson H.I.: The transformation and hardenability in steels, Climax Molybdenum Company, Ann Arbor, MI, p.39, 1967
11. Ławrynowicz Z.: Transition from upper to lower bainite in Fe-Cr-C steel. Materials Science and Technology 20 (2004), 1447-1454.
12. Christian J.W.: Theory of transformations in metals and alloys, 778, Oxford, Pergamon Press, 1965.
13. Kutsov A. at al.: Formation of bainite in ductile iron. Materials Science and Engineering A273-275 (1999), 480-484
14. Ławrynowicz Z.: A discussion on the mechanism of bainite transformation in steels. Technology and Materials. Gdańsk, Politechnika Gdańska 4 (2006), 149-155 (in Polish).
15. Shiflet G.J., Hackenberg R.E.: Partitioning and the growth of bainite. Scripta Materialia 47 (2002), 163-167.
16. Ławrynowicz Z.: Criticism of selected methods for diffusivity estimation of carbon in austenite. Zeszyty Naukowe ATR nr 216, Mechanika 43 (1998), 283-287. (in Polish).
DOI :
Cytuj : Major, R. ,Mittal, M. ,Ksouri, S. ,Jumel, J. ,Ławrynowicz, Z. , Decarburisation of bainitic ferrite laths and its influence on the microstructure in Fe-Cr-Si-C steel. Advances in Materials Science Vol.11, nr 2(28)/2011
[Top]

Ceramic oxide electrolytes based on Ca0.95 Mg0.05 Zr0.98O3 for solid galvanic cells application

Czasopismo : Advances in Materials Science
Tytuł artykułu : Ceramic oxide electrolytes based on Ca0.95 Mg0.05 Zr0.98O3 for solid galvanic cells application

Autorzy :
Dudek, M.
AGH –University of Science and Technology, Faculty of Fuels and Energy, Kawiory 40, 30-059 Cracow, Poland, potoczek@agh.edu.pl,
Abstrakty : The Ca0.95Mg0.05ZrO3 nanopowder was successfully synthesized by the citrate method. The XRD diffraction method evaluated that the orthorombic CaZrO3 phase was detected in powders or sintered samples. The sintered sample at 1450oC for 2 hours exhibits about 98 % of theoretical density. The electrical conductivity was measured by a.c impedance spectroscopy method in the temperature range of 200-800oC. The transference oxygen ion number of CaZrO3 sample was estimated from electromotive force measurements (Em) of galvanic cell in the temperature range of 550-1100oC. The Ca0.95Mg0.05ZrO3 exhibits purely oxygen ion conductivity. It was successfully applied as a solid electrolyte in the electrochemical oxygen sensor operating at 660oC. The measured electromotive force of investigated cell was found to be linear with the logarithm of oxygen partial pressure in the range of 10-6 atm 1 atm and in the temperature range of 660-1000oC.

Słowa kluczowe : ceramic oxide electrolyte, electrochemical oxygen gas sensor, impedance spectroscopy,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 3(29)
Strony : 5 – 12
Bibliografia : 1. D. Fray, The use of solid electrolytes as sensors in molten metals application, Solid State Ionics 86-88 (1996) 1045.
2. R.V. Kumar, D.Fray, Application of novel sensor in the measurement in very low oxygen potential, Solid State Ionics 70-71 (1994) 588-594.
3. D. Janke, W.A. Fischer: „Parameters pe of partial electronic conductivity in ZrO2 (CaO) and ThO2 (Y2O3) solid electrolytes between 1200 and 1650°C.” Archiv fur das Eisenhuttenwesen 45 (1975) 477-482.
4. D. Janke, Oxygen probes based on calcia-doped hafnia, or calcium zirconate for use in metallic melts, Metallurgical Transaction B (1982) 1992 (8) 227-235.
5. K.T. Jacob, K.T. Waseda, Gibbs free energy of formation of orthorombic CaZrO3 Termochimica Acta 239, (1994) 233-241.
6. Weyl, S. Wei, D. Janke: „Sensor based on new oxide electrolyte and oxygen reference materials for on –line measurements in steel melts”. Steel research 65 (1994) 167-172.
7. W. Fischer, D. Janke: „Calcium zirconate as solid electrolytes at temperatures around 1600°C ”. Archiv fur Eisenhuttenwesen 47 (1976) 525-530.
8. M. Dudek M. Bućko Electrical properties of stoichiometric and nonstoichiometric CaZrO3 Solid State Ionics 157 (1-4) 2003 183-187.
DOI :
Cytuj : Dudek, M. , Ceramic oxide electrolytes based on Ca0.95 Mg0.05 Zr0.98O3 for solid galvanic cells application. Advances in Materials Science Vol.11, nr 3(29)/2011
[Top]

Effect of cementite precipitation on the extend of bainite transformation in fe-cr-c steel

Czasopismo : Advances in Materials Science
Tytuł artykułu : Effect of cementite precipitation on the extend of bainite transformation in fe-cr-c steel

Autorzy :
Dudek, M.
AGH –University of Science and Technology, Faculty of Fuels and Energy, Kawiory 40, 30-059 Cracow, Poland, potoczek@agh.edu.pl,
Ławrynowicz, Z.
University of Technology and Life Sciences in Bydgoszcz, Mechanical Engineering Faculty, Department of Materials Science and Engineering, Kaliskiego 7, 85-796 Bydgoszcz, Poland, lawry@utp.edu.pl,
Abstrakty : Analytical calculations and experimental measurements of volume fraction of bainitic ferrite and volume of the untransformed austenite indicate that there is a necessity of carbides precipitation. A consequence of the precipi-tation of cementite during austempering is that the growth of bainitic ferrite can continue to larger extent and that the resulting microstructure is not an ausferrite but it is a mixture of bainitic ferrite, retained austenite and carbides.

Słowa kluczowe : carbon diffusion, decarburization, bainite transformation,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 3(29)
Strony : 13 – 19
Bibliografia : 1. Ławrynowicz, Z., Dymski, S.: Application of the mechanism of bainite transformation to modelling of processing window in ductile iron ADI, Archives of Foundry Engineering, 6 (2006), 177-182.
2. Guzik, S. E.: Austempered cast iron as a modern constructional material, Inżynieria Materiałowa, 6 (in Polish) (2003), 677-680.
3. Ławrynowicz Z.: Carbon partitioning during bainite transformations in low alloy steels. Materials Science and Technollogy 18 (2002), 1322-1324.
4. Ławrynowicz Z.: Transition from upper to lower bainite in Fe-Cr-C steel. Materials Science and Technology. 20 (2004), 1447-1454.
5. Ławrynowicz Z.: Mechanism of bainite transformation in Fe-Cr-Mo-V-Ti-C steel. International Journal of Engineering, 12 (1999), 81-86.
6. Bhadeshia H.K.D.H.: Diffusion of carbon in austenite. Metal Science 15 (1981), 477-479.
7. Bhadeshia H.K.D.H., Bainite in Steels, Institute of Materials, 1-458, London, 1992.
8. Bhadeshia H.K.D.H., Christian J.W.: Bainite in Steels, Metallurgical Transactions A 21A (1990), 767-797.
9. Siller R.H., McLelan R.B.: The Application of First Order Mixing Statistics to the Variation of the Diffusivity of Carbon in Austenite. Metallurgical Transactions 1 (1970), 985-988.
10. McLellan R.B., Dunn W.W.: J. Phys. Chem. Solids. Vol.30 (1969) 2631.
11. Christian J.W.: Theory of transformations in metals and alloys, 778, Oxford, Pergamon Press, 1965.
12. Takahashi, M., Bhadeshia, H.K.D.H.: A Model for the Microstructure of Some Advanced Bainitic Steels, Materials Transaction, JIM, 32, (1991) 689-696.
DOI :
Cytuj : Dudek, M. ,Ławrynowicz, Z. , Effect of cementite precipitation on the extend of bainite transformation in fe-cr-c steel. Advances in Materials Science Vol.11, nr 3(29)/2011
[Top]

Resistance to cold cracking of welded joints made of P460NL1 steel

Czasopismo : Advances in Materials Science
Tytuł artykułu : Resistance to cold cracking of welded joints made of P460NL1 steel

Autorzy :
Dudek, M.
AGH –University of Science and Technology, Faculty of Fuels and Energy, Kawiory 40, 30-059 Cracow, Poland, potoczek@agh.edu.pl,
Ławrynowicz, Z.
University of Technology and Life Sciences in Bydgoszcz, Mechanical Engineering Faculty, Department of Materials Science and Engineering, Kaliskiego 7, 85-796 Bydgoszcz, Poland, lawry@utp.edu.pl,
Kozak, T.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials and Welding Technology, Narutowicza 11/12, 80-233 Gdansk, Poland, tkozak@pg.gda.pl,
Abstrakty : The results of investigations of resistance to cold cracking of high strength steel welded joints have been presented. The steel used was P460NL1 which is designed to work under pressure. Welding was carried out with coated electrodes (MMA) and flux cored wire by FCAW method. Parameters changed in the implant test were diffusible hydrogen content and weld heat input. Partial resistance to cold cracking of joints for the studied ranges of welding parameters have been shown. Cold cracking resistance decreases with increasing diffusible hydrogen content in the joint and increasing the cooling rate in the HAZ metal measured by cooling time in the temperature range 800-5000C.

Słowa kluczowe : arc welding, cold cracking resistivity, implant test, high strength low alloy steel,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 3(29)
Strony : 20 – 27
Bibliografia : 1. Butnicki S.: The weldability and fragility of steel, in Polish. WNT, Warszawa, 1991.
2. Tasak E.: The weldability of steel, in Polish. FOTOBIT, Kraków, 2002.
3. Tasak E.: Mettalurgy of Welding, in Polish. JAK, Kraków, 2008.
4. Ranatowski E.: The elements of metal joining, In Polish. Wyd. Akademii Techniczno-Rolniczej, Bydgoszcz, 1999.
5. Łomozik M., Dębski E.: The determining the causes and nature of cracks in ship hull welded joints, in Polish. Biuletyn Instytutu Spawalnictwa 3 (2000).
6. Kozak T.: Delayed cracking in terms of fracture mechanics, In Polish. Biuletyn Instytutu Spawalnictwa 6 (200).
7. Welding. Testing methods of welded joints. Susceptibility to cold cracking, in Polish. PN-90/M-69760.
8. Sitko J.: Effect of moisture and drying parameters on diffusible hydrogen content in weld metal from basic electrodes. Przegląd Spawalnictwa 3 (1987).
9. Opatrny-Myśliwiec D.: The measurement of diffusible hydrogen content in joints depending on type and condition of the electrode in manual arc, In Polish. Politechnika Gdańska. Gdańsk. 1980, materiały niepublikowane.
10. Determination of the total amount of hydrogen in steel weld metal for acid, rutile or basic, in Polish. BN-64/4130.
11. The rules for classification and construction of seagoing vessels. Part IX Mmaterials and, in Polish. PRS, Gdańsk, 2002.
12. Mazur M., Grela P.: Comparative studies of the weld metal diffusible hydrogen for glycerin and mercury methods, in Polish. Biuletyn Instytutu Spawalnictwa 1 (2002).
13. Changying T. i inni: The investigation of Implant Cold Cracking Test. IIW-Doc. IX-1729-94.
14. Mikuła J.: Application of computational methods in assessing the weldability of steel – indices of weldability, in Polish. Przegląd Spawalnictwa 8 (1993).
15. Welding. Recommendations for Welding of metallic materials – Part 2: Arc Welding of ferritic steel. EN 1011-2:2001.
DOI :
Cytuj : Dudek, M. ,Ławrynowicz, Z. ,Kozak, T. , Resistance to cold cracking of welded joints made of P460NL1 steel. Advances in Materials Science Vol.11, nr 3(29)/2011
[Top]

Plasma aided flame retardation of wood, wooden products and cellulosic materials

Czasopismo : Advances in Materials Science
Tytuł artykułu : Plasma aided flame retardation of wood, wooden products and cellulosic materials

Autorzy :
Dudek, M.
AGH –University of Science and Technology, Faculty of Fuels and Energy, Kawiory 40, 30-059 Cracow, Poland, potoczek@agh.edu.pl,
Ławrynowicz, Z.
University of Technology and Life Sciences in Bydgoszcz, Mechanical Engineering Faculty, Department of Materials Science and Engineering, Kaliskiego 7, 85-796 Bydgoszcz, Poland, lawry@utp.edu.pl,
Kozak, T.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials and Welding Technology, Narutowicza 11/12, 80-233 Gdansk, Poland, tkozak@pg.gda.pl,
Dineff, P.
Technical University of Sofia, Faculty of Electrical Engineering, Dept. of Electrical Apparatus, 1756 Sofia, Bulgaria, dineff_pd@abv.bg,
Abstrakty : The plasma aided flame retardation of wood, wooden products and cellulosic fibrous materials has been conceived and developed as a result of a plasma aided process of capillary impregnation. The dielectric barrier discharge surface pre-treatment modifies the chemical and capillary activity and improves such characteristics of the impregnation process as the penetration depth, speed of solution spreading and adsorption, and capacity of adsorbed solution. X-ray photoelectron spectroscopy (XPS) was applied to study the changed surface composition after plasma pre-treatment. The surface compositions of solid wood products, paper and board are critical to their end use performance. XPS is a powerful non-destructive surface analytical technique which provides valuable data on chemical surface composition and surface reorganization after plasma-chemical pre-treatment. The binding energy as a main characteristic of the atoms was used for elemental identification. Thermal analysis (TGA, DTA and DSC) was used to characterize the impact of the plasma surface activation on flame retardancy of Douglas fir wood. This study was developed as a part of large investigation on chemically activated wood surface and flame retarded wood.

Słowa kluczowe : plasma aided flame retardation, dielectric barrier discharge, surface modification,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 3(29)
Strony : 28 – 42
Bibliografia : 1. Dineff, P., Gospodinova, D., Kostova, L., Vladkova, T., and Chen, E. “Plasma aided surface technology for modification of materials referred to fire protection”. Problems of Atomic Science and Technology, 2008, 6; Series Plasma Physics (14), pp. 198÷200.
2. Dineff, P., L. Kostova. Method of plasma-chemical modification.WO2006/133524 A3.
3. Dineff, P., Gospodinova, D. “Electrode Configuration and Non-Uniform Dielectric Barrier Discharge Properties”. XVI-th International Symposium on Electrical Apparatus and Technologies “SIELA 2009”, 04÷06 June 2009, Bourgas, Bulgaria; Proceedings, 2009, vol. 1, pp. 79÷88.
4. Dineff, P., D. Gospodinova. Atmospheric pressure plasma polymer modification – new visions, challenges and solutions. II. International Conference on Challenges in Higher Education & Research in the 21-st Century, Sozopol, Bulgaria. Proceedings of Papers, Heron Press, Sofia, 2004: pp. 193÷196.
5. Sernek, M. Comparative analysis of inactivated wood surfaces, PhD Thesis, Virginia Polytechnic Institute, Blacksburg, 2002.
6. Vladkova, T., P. Dineff, and D. Gospodinova. Wood flour – New filler for rubber processing industry II. Cure characteristics and mechanical properties of NBR compouns filled by corona-treated wood flour, “J. Appl. Polym. Sci.”, 91(2), 883 (2003)
7. P. Dineff, , D. Gospodinova, L. Kostova, T. Vladkova, and C. Erfan. New attempt at plasma aided flame retardation in wood and cellulosic fibrous materials. XX-th Congress of The Society of Chemist and Technologist of Macedonia “BICONGRESS 2008”, Ohrid, Macedonia, 17÷20 September, 2008. Proceedings of papers, 2008, PPM-11-E.
8. Flame Retardants – Frequently asked questions. Website of European flame retardants association (EFRA): www.cefic-efra.org.
9. Beecher, J., Frihart, C.: X-ray Photoelectron Spectroscopy for Characterization of Wood Surfaces in Adhesion Studies. Wood Adhesives 2005: Session 1A – Analytical Techniques, pp. 83÷89.
10. M. Kazayawoko, J. Balatinecz, R. Woodhams and R. Sodhi, XPS of lignocellulostic materials treated with maleated polypropylens, J. Wood Chem. and Technol., 18 (1), 1-26 (1998).
11. Östman, B., Tsantaridis, L. Heat release and classification of fire retardant wood products. Fire and Materials, 1995. Vol. 19, No. 6, pp. 253÷258.
12. Hakkarainen, T., E. Mikkola, B. Östman, L. Tsantaridis, H. Brumer, P. Piispanen. Innovative eco-efficient high fire performance wood products for demanding applications. State of the art., Inno Fire Wood, March, 2005, pp. 2÷47.
13. Helwig, M. Methods of testing the flammability of treated wood. Meeting of working group COST Action E37: Sustainability through new technologies for enhanced wood durability, Hamburg, Germany, 08.÷09.11.2004.
14. G. Troughton, and S. Chow. Migration of fatty acids to white spruce veneer surface during drying: Relevance to theories of inactivation. Wood Science, 1971, 3 (3): 129÷133;
15. W. Hillis High temperature and chemical effects on wood stability. Wood Science and Technology, 1984, 18: 281÷293
16. Marra. Technology of wood bonding: Principles and practice. Van Nostrand Reinhold, New York, 1992, 454 p.
17. E. Obataya, T. Higashihara, and B. Tomita. Hygroscopicity of heat treated wood III. Effect of steaming on the hygroscopicity of wood. Mokuzai Gakkaishi, 2002, 48: 348÷355.
18. Chi-Ming Chan, Polymer surface modification and characterization, SPE Book, Hanser Publishers, 1993
19. Fridman, A. Chirokov, and A. Gutsol. Non-thermal atmospheric pressure discharges.Topical review. Institute of physics publishing, Journal of Physics D: Applied Physics, 2005, 38, R1-R24.
20. U. Kogelschatz. Dielectric-barrier discharges: Their History, discharge physics, and
21. industrial applications. Plasma chemistry and plasma processing, 2003, 23 (1), 1÷46.
22. K. Becker, U. Kogelschatz, K. Schoenbach, and R. Barker. Non-equilibrium air plasmas at atmospheric pressure. IOP Publishing, Ltd., Bristol and Philadelphia, 2005.
23. Mouritz, A. Gibson. Fire properties of polymer composite materials, Springer Series: Solid mechanics and its applications, Vol. 143, 2006.
24. F. Browne. Theories on the combustion of wood and its control. U.S. Forest Prod. Lab., 1958, Rep. 2136, pp. 59
DOI :
Cytuj : Dudek, M. ,Ławrynowicz, Z. ,Kozak, T. ,Dineff, P. , Plasma aided flame retardation of wood, wooden products and cellulosic materials. Advances in Materials Science Vol.11, nr 3(29)/2011
[Top]

Intergranular stress corrosion cracking of friction stir welded nugget on a 2050-T8 aluminum alloy

Czasopismo : Advances in Materials Science
Tytuł artykułu : Intergranular stress corrosion cracking of friction stir welded nugget on a 2050-T8 aluminum alloy

Autorzy :
Dudek, M.
AGH –University of Science and Technology, Faculty of Fuels and Energy, Kawiory 40, 30-059 Cracow, Poland, potoczek@agh.edu.pl,
Ławrynowicz, Z.
University of Technology and Life Sciences in Bydgoszcz, Mechanical Engineering Faculty, Department of Materials Science and Engineering, Kaliskiego 7, 85-796 Bydgoszcz, Poland, lawry@utp.edu.pl,
Kozak, T.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials and Welding Technology, Narutowicza 11/12, 80-233 Gdansk, Poland, tkozak@pg.gda.pl,
Dineff, P.
Technical University of Sofia, Faculty of Electrical Engineering, Dept. of Electrical Apparatus, 1756 Sofia, Bulgaria, dineff_pd@abv.bg,
Dhondt, M.
1Université de Bordeaux, I2M-Dumas, UMR 5295, 351 cours de la Libération 33405 TALENCE CEDEX FRANCE, m.dhondt@i2m.u-bordeaux1.fr,
Abstrakty : Intergranular corrosion sensitivity is studied for the friction stir weld nugget of aluminum alloy 2050-T8. The weld nugget consists of fine equiaxed grains having average sizes from 4 to 20 ěm, the grain size increases with decreasing of the distance from the weld surface. The weld nugget contains a particular microstructure called “onion rings” due to crystallographic orientations. The effect of the “onion rings” on stress corrosion cracks initiation is studied for stress corrosion cracking tests at a strain rate of 2.10-6 s-1. EBSD cartographies allow showing that the initiation site of the biggest cracks is located at boundaries between the texture bands. Corrosion and stress corrosion tests in 1.0 M NaCl are performed in order to show stress effect on intergranular corrosion. Pitting corrosion is observed during corrosion tests, whereas intergranular cracks appear during stress corrosion tests. The medium crack length is 20 ěm and 168 cracks per mm2 can be located. In these severe laboratory conditions, the order of magnitude of long crack growth rate is 5.10-8 m.s-1.

Słowa kluczowe : Aluminum alloy, intergranular stress corrosion cracking, Friction Stir Welding,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 3(29)
Strony : 43 – 50
Bibliografia : 1. Proton V., Alexis J., Andrieu E., Blanc C., Delfosse J., Lacroix L., Odemer G. : Influence of Post-Welding Heat Treatment on the Corrosion Behavior of a 2050-T3 Aluminum-Copper-Lithium Alloy Friction Stir Welding Joint. Journal of The Electrochemical Society 158 (5) (2011) C139-C147.
2. Fonda R.W., Pao P.S., Jones H.N., Feng C.R., Connolly B.J., Davenport A.J.: Microstructure, mechanical properties, and corrosion of friction stir welded Al 5456. Materials Science and Engineering A 519 Issues 1-2 (2009) 1-8.
3. Genevois C.: Genèse des microstructures lors du soudage par friction malaxage d’alliages d’aluminium de la série 2000 et 5000 et comportement mécanique resultant. PhD thesis, Institut National Polytechnique de Grenoble (2004).
4. Zhou C., Yang X., Luan G.: Effect of root flaws on the fatigue property of friction stir welds in 2024-T3 aluminum alloys. Materials Science and Engineering A 418 (2006) 155-160.
5. Jariyaboon M., Davenport A.J., Ambat R., Connolly B.J., Williams S.W., Price D.A.: The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024–T351. Corrosion Science 49 (2007) 877-909.
6. Cavaliere P., Cabibbo M., Panella F., Squillace A.: 2198 Al–Li plates joined by Friction Stir Welding: Mechanical and microstructural behavior. Materials and Design 30 (2009) 3622–3631
7. Bousquet E., Puiggali M., Poulon-Quintin A., Devos O., Touzet M.: Correlation between microstructure, microhardness and corrosion sensitivity of AA 2024-T3 FSW weld-joints. In Eurocorr 2010 The European Corrosion Congress.
8. Jata K.V., Semiatin S.L.: Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scripta materialia 43 (2000) 743-749.
9. Sutton M.A., Yang B., Reynolds A.P., Taylor R.: Microstructural studies of friction stir welds in 2024-T3 aluminum. Materials Science and Engineering A 323 (2002) 160-166.
10. Fonda R.W., Bingert J.F.: Texture variations in an aluminum friction stir weld. Scripta Materialia 57 (2007) 1052-1055.
11. Li J.F., Li C.X., Peng Z.W., Chen W.J., Zheng Z.Q.: Corrosion mechanism associated with T1 and T2 precipitates of Al–Cu–Li alloys in NaCl solution. Journal of Alloys and Compounds 460 (2008) 688–693.
12. Miyamoto H., Ikeuchi K., Mimaki T.: The role of grain boundary plane orientation on intergranular corrosion of symmetric and asymmetric 1 1 0 tilt grain boundaries in directionally solidified pure copper. Scripta Materialia 50 (2004) 1417–1421.
13. Kim S.H., Erb U., Aust K.T., Palumbo G.: Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum. Scripta mater. 44 (2001) 835–839.
14. Liu X., Frankel G.S., Zoofan B., Rokhlin S.I.: Effect of applied tensile stress on intergranular corrosion of AA2024-T3. Corrosion Science 46 (2004) 405–425.
DOI :
Cytuj : Dudek, M. ,Ławrynowicz, Z. ,Kozak, T. ,Dineff, P. ,Dhondt, M. , Intergranular stress corrosion cracking of friction stir welded nugget on a 2050-T8 aluminum alloy. Advances in Materials Science Vol.11, nr 3(29)/2011
[Top]

Numerical modeling of elastomeric bearings in structural engineering

Czasopismo : Advances in Materials Science
Tytuł artykułu : Numerical modeling of elastomeric bearings in structural engineering

Autorzy :
Dudek, M.
AGH –University of Science and Technology, Faculty of Fuels and Energy, Kawiory 40, 30-059 Cracow, Poland, potoczek@agh.edu.pl,
Ławrynowicz, Z.
University of Technology and Life Sciences in Bydgoszcz, Mechanical Engineering Faculty, Department of Materials Science and Engineering, Kaliskiego 7, 85-796 Bydgoszcz, Poland, lawry@utp.edu.pl,
Kozak, T.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials and Welding Technology, Narutowicza 11/12, 80-233 Gdansk, Poland, tkozak@pg.gda.pl,
Dineff, P.
Technical University of Sofia, Faculty of Electrical Engineering, Dept. of Electrical Apparatus, 1756 Sofia, Bulgaria, dineff_pd@abv.bg,
Dhondt, M.
1Université de Bordeaux, I2M-Dumas, UMR 5295, 351 cours de la Libération 33405 TALENCE CEDEX FRANCE, m.dhondt@i2m.u-bordeaux1.fr,
Gerhaher, U.
Institute for Structural Engineering, BOKU University, Peter-Jordan-Strasse 82,1190 Vienna, Austria, ulrich.gerhaher@boku.ac.at,
Abstrakty : The intention of this paper is the discussion of different possibilities for the numerical modeling of elastomeric bearings. It is focused on issues of the complex material behavior and the specific mechanical conditions of the bearings. The relevant considerations are based on the experiences from extensive material tests on elastomer and reinforcement as well as from loading and deformation tests on full scale bearings. It shows the possibilities and the limitations of the numerical bearing models as a tool for research and bearing design.

Słowa kluczowe : numerical modeling, elastomeric bearings,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 3(29)
Strony : 51 – 63
Bibliografia : 1. Braun, C. and Bergmeister, K., Brückenausstattung. Betonkalender, ed. K. Bergmeister and J.-D. Wörner, 2004, Berlin: Ernst und Sohn.
2. ÖNORM EN 1337-3: Structural Bearings – Part 3: Elastomeric Bearings. 2005, CEN
3. ÖNORM EN 15129: Anti-seismic devices. 2007, CEN
4. Eggert, H., Bewehrte Elastomerlager – Erkenntnisstand und Defizite. Bautechnik, 2006. 83(1): p. 6-15.
5. Braun, C., et al., Lager im Bauwesen nach DIN EN 1337. Stahlbau, 2009. 78(11): p. 849-868.
6. Gerhaher, U., Faserbewehrte Elastomerlager – Konzeption und Bemessung, in Institut für Kon-struktiven Ingenieurbau, Department für Bautechnik und Naturgefahren. 2010, Universität für Bodenkultur: Wien.
7. ABAQUS 6.7 Documentation. 2007, Dassault Systems.
8. Bergstrom, J., PolyUMod – A Library of User Materials for Abaqus, 2008, Needham, MA: Ver-yst Engineering, LLC.
9. Contri, F.I. and Strauss, A., Reduced Scale Demonstrator of Fiber Reinforced Rubber Bearings, in INDEPTH Document IDP-TR-IK-3-03. 2005, Universität für Bodenkultur: Wien.
10. Gerhaher, U., Strauss, A., and Bergmeister, K. Design and development of fiber reinforced elas-tomeric bearings. in 17th Congress of IABSE, 2008. Chicago.
11. Toopchi-Nezhad, H., Tait, M.J., and Drysdale, R.G., Testing and modeling of square carbon fi-ber-reinforced elastomeric seismic isolators. Structural Control and Health Monitoring, 2007. online in Wiley InterScience.
DOI :
Cytuj : Dudek, M. ,Ławrynowicz, Z. ,Kozak, T. ,Dineff, P. ,Dhondt, M. ,Gerhaher, U. , Numerical modeling of elastomeric bearings in structural engineering. Advances in Materials Science Vol.11, nr 3(29)/2011
[Top]

Modeling by finite element methods of impact of erosion on frequency of normal modes of l-0 blade

Czasopismo : Advances in Materials Science
Tytuł artykułu : Modeling by finite element methods of impact of erosion on frequency of normal modes of l-0 blade

Autorzy :
Gołuński, Ł.
Gdansk University of Technology, Faculty of Applied Physics and Mathematics, Narutowicza 11/12, 80-233 Gdansk, Poland, lgolunski@gmail.com,
Abstrakty : After some time of exploitation steam turbine rotors blades in energetic industry they are being eroded and also their frequency of normal modes is changed. Those changes can cause to unwanted shift of blades normal mode frequencies. It is necessary to find quick method of rating changes of frequency in connection of mass loss due erosion. The evaluation of this dependence was made by finite element modeling method using HyperWorks 8.0 software. Geometrical model of blade L-0 with mass of 22 kg and length of 74 cm was used. There were calculated frequencies of the first five modes in function of mass loss along the leading blade edge (up to mass loss of 1,2%). Small losses of weight (around 0,2%) cause similar changes in values (around 0,2%) for all modes but with different types of frequency change (decrease or increase). The frequency decreases for all modes except mode the 3rd. For bigger mass loss an monotonic decrease of frequency was observed in 1st, 2nd, 5th mode and maximum (around +1,5 %) for 3rd mode and minimum (- 0,5%) for 4th mode. For maximum mass loss (1,2%) maximal decrease of frequency was observed in 2nd mode around -2%. Results of this modeling can be used to estimate changes of frequencies caused by erosion in exploited blades when their mass loss is known.

Słowa kluczowe : turbine blade, FEM, erosion, normal modes,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 4(30)
Strony : 5 – 10
Bibliografia : 1. Łączkowski R.: Drgania elementów turbin cieplnych, Wydawnictwo Naukowo – Techniczne, Warsaw 1974.
2. Azevedo C.R.F., Sinatora A.: Erosion – fatigue of steam turbine blades, Engineering Failure Analysis, 16 (2009), 2290-2303.
3. Unossona M., Lovssona L., Simonsson K. : Failure modelling in finite element analyses: Element erosion with crack-tip enhancement, Finite Elements in Analysis and Design, 42 (2006), 283–297
4. Kubiak J., Urquiza G., Garcia J., Sierra F.: Failure analysis of steam turbine last stage blade tenon and shroud, Engineering Failure Analysis, 14 (2007), 1476-1487.
5. Mazur Z., Hernandez-Rossette A., Garcia-Illescas R.: Investigation of the failure of the L-0 blades, Engineering Failure Analysis, 13 (2006), 1338-1350.
6. Mazur Z., Garcia Illescas R., Porcayo-Calderon J.: Last stage blades failure analysis of 28 MW geothermal turbine, Engineering Failure Analysis, 16 (2009), 1020 – 1032.
DOI :
Cytuj : Gołuński, Ł. , Modeling by finite element methods of impact of erosion on frequency of normal modes of l-0 blade. Advances in Materials Science Vol.11, nr 4(30)/2011
[Top]

The effect of compositional changes on the crystallisation behaviour and mechnical properties of Li2O-CaO-SiO2-Al2O3

Czasopismo : Advances in Materials Science
Tytuł artykułu : The effect of compositional changes on the crystallisation behaviour and mechnical properties of Li2O-CaO-SiO2-Al2O3

Autorzy :
Gołuński, Ł.
Gdansk University of Technology, Faculty of Applied Physics and Mathematics, Narutowicza 11/12, 80-233 Gdansk, Poland, lgolunski@gmail.com,
Mirhadi, B.
Imam Khomeini International University, Engineering, 34149 – 16818 , Qazvin, Iran, beh_mehdikhani@yahoo.com,
Abstrakty : The crystallisation characteristics of glasses based on the Li2O–CaO–SiO2-Al2O3(LCSA) system containing TiO2, ZrO2 has been investigated by differential thermal analysis (DTA), X-ray diffraction analysis (XRD), and scanning electron microscopy (SEM). The partial replacement of Li2O, CaO and SiO2 by TiO2, ZrO2 in the studied glass-ceramics led to the development of different crystalline phase assemblages, including lithium calcium silicates, wollastonite, a-eucryptite and a-spodumene using various heat-treatment processes. The rod-like growth morphology was observed by SEM for glass free of TiO2. In this glass, ZrO2 reduced mobility of boundary at sintering temperature, 1000°C and relatively density was 77%. The most sinterability observed in sample containing TiO2 and free of ZrO2 at sintering temperature, 1000°C and relatively density was 84%.

Słowa kluczowe : Li2O–CaO–SiO2-Al2O3, krystalizacja, TiO2, ZrO2, szkło ceramiczne, Li2O–CaO–SiO2-Al2O3, crystallisation, TiO2, ZrO2, glass-ceramic,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 4(30)
Strony : 11 – 21
Bibliografia : 1. Strand Z.: Glass Ceramic Materials, Glass Science and Technology, vol. 8, Elsevier, Amsterdam, 1986.
2. Beall G.H., Duke D.A.: Transparent glass- ceramics. Mater. Sci 4 (1969) 340.
3. Alizadeh P., Marghussian V.K.: The effect of compositional changes on the crystallisation behavior and mechanical properties of diopside-wollastonite glass-ceramics in the SiO2-CaO-MgO (Na2O) system. European Ceramic Society 20 (2000) 765-773.
4. Chaim R., Talanker V.: Microstructure and mechanical properties of SiC platelet/cordierite glass ceramic composites. American Ceramic Society 78 (1995) 166-172.
5. Acchar W., Martinelli A.E., Cairo C.A.A.: Reinforcing Al2O3 with W-Ti mixed carbides. Materials Letter 46(2000) 209-211.
6. Acchar W., Martinelli A.E., Cairo C.A.A.: Sintering behavior of alumina-tungsten carbide. Materials Science and Engineering 284 (2000) 84-87.
7. Acchar W., Martinelli A.E., Cairo C.A.A., Bressiani A.H.A.: Sintering behavior of alumina-niobium carbide composites. European Ceramic Society 20 (2000) 1765-1769.
8. Pasotti R.M.R., Bressiani A.H.A., Bressiani J.C.: Sintering of alumina-niobium carbide composites. International Journal of Refractory Metals & Hard Materials 16 (1998) 423-427.
9. Tai W.P., Watanabe T.: Fabrication and mechanical properties of Al2O3-WC composites by vacuum hot-pressing. American Ceramic Society 81 (1998)1673-76.
10. Acchar W., Cairo C.A.A., Segadaes A.M.: Effect of tungsten carbide additions on the microstructure and properties of hot-pressed alumina. Materials Science & Engineering 406 (2005) 74-77.
11. Acchar W., Fonseca J.L.: Sintering behavior of alumina reinforced with (Ti,W) carbides, Materials Science & Engineering 371 (2004) 382-387.
12. Accahar W., Schwarze D., Greil P.: Sintering of Al2O3-NbC composites using TiO2 and MnO additives”, Materials Science & Engineering 351 (2003) 299-303.
13. James P.F.: Glass-ceramic:newcompositionsanduses. Non-Cryst.Solids181(1995)1–15.
14. Riello P., Canton P., Comelato N., Polizi S., Verita M.,G., Fagherazzi H.: Nucleation and crystallisation behavior of glass-ceramic material in the Li2O–Al2O3–SiO2 system of interest for their transparency properties. Non-Cryst.Solids 288(2001)127–139.
15. Cheng K.: Determining crystallisation kinetic parameters of Li2O–Al2O3–SiO2 glass from derivative differential thermal analysis curves. Mater.Sci.Eng 60 (1999)194–199.
16. Tick P.A., Borrelli N.F., Reaney I.M.: Relationship between structure and transparency in glass-ceramic materials. Opt.Mater 15 (2000) 81–91.
17. Beall G.H., Kreadl D.A., in: D.R. Uhlmann, N.M. Kreadl (Eds.), Glass Science and Technology, Vol. 1, Academic Press, New York, 1983, pp. 403–445.
18. Duan R.G., Liang K.M., Gu S.R.: Effect of changing TiO2 content on structure and crystallisation of CaO–Al2O3–SiO2 system glasses. Eur. Ceram. Soc 18 (1998) 1729–1735.
19. Morimoto S., Kuriyama N.: Effect of TiO2, ZrO2 and P2O5 on the crystallisation of SiO2–Al2O3–MgO–CaO–Na2O glass system. Ceramic Society of Japan 104 (1996) 442–443.
20. Barry T.I., Clinton D., Lay L.L., Mercer R.A., Miller R.P.: J. Mater. Sci. 5 (1970) 117–126.
21. Stookey S.D., US Patent 2,920,971 (January 12, 1960).
22. Doherty P.E., Lee D.W., Davis R.S.: Direct Observation of the Crystallisation of Li2O-Al2O3-SiO2 Glasses Containing TiO2 .American Ceramic Society 50 (1967) 77–81.
23. Acchar W.I., Torquato W.L., Sousa C.R.C.: Using ZrO2 or Al2O3particles to enhance the mechanical properties of a LZSA glass-ceramic matrix. Revista Matéria 14(2009) 674 – 679.
24. Sack V.W., Scheidler H.: Glasstech 39 (1966) 126–130.
25. Wang M.C., Yang S., Wen S.B., Wu N.C.: Sintering Li2O-Al2O3-4SiO2 precursor powders with ultrafine TiO2 additives. Materials Chemistry and Physics 76 (2002) 162–170.
26. Stewart D.R., in: Hench L.L., Freeman S.W. (Eds.).: Advances in Nucleation and Crystallisation in Glass. American Ceramic Society, Columbus, OH, 1971, pp. 83–90.
27. McMillan P.W.: Glass-ceramics, Academic Press, London, NY, 1979.
28. Strnad Z.: Glass-ceramic materials Glass Science and Technology, vol. 8, Elsevier, Amsterdam, 1986.
29. Shelby J.E., Shelby S.R.: Phase separation and the properties of lithium calcium silicate glasses. Phys. Chem. Glasses 41 (2) (2000) 59–64.
DOI :
Cytuj : Gołuński, Ł. ,Mirhadi, B. , The effect of compositional changes on the crystallisation behaviour and mechnical properties of Li2O-CaO-SiO2-Al2O3. Advances in Materials Science Vol.11, nr 4(30)/2011
[Top]

Surface roughness and diametral consistency of holes drilled into DDGS/phenolic resin blends

Czasopismo : Advances in Materials Science
Tytuł artykułu : Surface roughness and diametral consistency of holes drilled into DDGS/phenolic resin blends

Autorzy :
Gołuński, Ł.
Gdansk University of Technology, Faculty of Applied Physics and Mathematics, Narutowicza 11/12, 80-233 Gdansk, Poland, lgolunski@gmail.com,
Mirhadi, B.
Imam Khomeini International University, Engineering, 34149 – 16818 , Qazvin, Iran, beh_mehdikhani@yahoo.com,
Shanafield, J.
Northern Illinois University, Department of Technology, DeKalb, IL, USA, atara@ceet.niu.edu,
Abstrakty : In this study, corn-based distillers dried grains with solubles (DDGS) has been utilized as a filler and blended with phenolic resin. The blends were compression molded into rectangular test specimens, into which holes have been machined using a standard 9.52 mm (3/8 in) diameter, two-fluted twist drill. A series of tests was then conducted to examine the effects of DDGS content, cutting speed, and feed rate upon the surface finish (roughness) of the interior hole slot, as well as the consistency of the drilled hole diameter. DDGS content was 0, 25, 50, and 75%, by weight. Cutting speed was 17, 30, and 46 m/min (55, 100, and 150 ft/min). Feed rate was 0.025, 0.152, and 0.279 mm/rev (0.001, 0.006, and 0.011 in/rev). Results indicate that as the DDGS content increased, roughness exhibited a weak but statistically significant decrease. When the cutting speed increased, roughness increased slightly. However, when feed rate increased, roughness increased at a greater rate than that due to cutting speed. In terms of diametral consistency, the effect of adding DDGS resulted in holes with diameters less than the nominal drill size. As cutting speed increased, the holes tended to be oversized. Based on the cutting speed and feed rate levels used, optimal machining conditions which would reduce roughness occurred for 75% DDGS, cutting speed of 17 m/min (55 ft/min), and feed rate of 0.025 mm/rev (0.001 in/rev). However, to maintain consistent hole diameter, optimal conditions were found to be 40% DDGS, 30 m/min (100 ft/min), and 0.152 mm/rev (0.006 in/rev) and would produce a drilled hole with a diameter of 9.52 mm (0.375 in). As the use of biofillers in plastic composites evolves, it will become increasingly important to examine the machinability of these novel materials.

Słowa kluczowe : biofiller, bioplastics, composites, machinability, drilling,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 4(30)
Strony : 22 – 34
Bibliografia : 1. Mohanty A.K., Seydibeyoglu M.O., Misra M.: Wastes and undervalued coproducts from biofuel industries as raw materials for new industrial products: Greener pathway for a sustainable bioeconomy. SAMPE ’09 Spring Symposium Conference Proceedings, Baltimore, Maryland, 2009.
2. Rosentrater K.A., Otieno A.W.: Considerations for manufacturing bio-based plastic products. J. Polym. Environ. 14 (2006), 335-346.
3. Tatara R.A., Rosentrater K.A., Suraparaju S.: Design properties for molded, corn-based DDGS-filled phenolic resin. Ind. Crop. Prod. 29 (2009), 9-15.
4. Rosentrater K.A., Otieno A.W., Melampati P.: Determining machining parameters of corn byproduct filled plastics. Intl. J. Mod. Engr. 9(1) (2008), 13-18.
5. Bhadra R., Muthukumarappan K., Rosentrater K.A.: Characterization of chemical and physical properties of distillers dried grain with solubles (DDGS) for value added uses. ASABE Annual International Meeting, Minneapolis, Minnesota, 2007.
6. Shanafield J.W.: Drilling Studies on Compression-molded, DDGS-filled Phenolic Tiles, Master’s Thesis, Northern Illinois University, DeKalb, 2011.
7. Lokensgard E.: Industrial Plastics: Theory and Applications. Delmar, New York, 2010, 138-141.
DOI :
Cytuj : Gołuński, Ł. ,Mirhadi, B. ,Shanafield, J. , Surface roughness and diametral consistency of holes drilled into DDGS/phenolic resin blends. Advances in Materials Science Vol.11, nr 4(30)/2011
[Top]

Corrosion resistance examinations of Ti6Al4V alloy with the use of potentiodynamic method in ringer's and artificial saliva solutions

Czasopismo : Advances in Materials Science
Tytuł artykułu : Corrosion resistance examinations of Ti6Al4V alloy with the use of potentiodynamic method in ringer's and artificial saliva solutions

Autorzy :
Gołuński, Ł.
Gdansk University of Technology, Faculty of Applied Physics and Mathematics, Narutowicza 11/12, 80-233 Gdansk, Poland, lgolunski@gmail.com,
Mirhadi, B.
Imam Khomeini International University, Engineering, 34149 – 16818 , Qazvin, Iran, beh_mehdikhani@yahoo.com,
Shanafield, J.
Northern Illinois University, Department of Technology, DeKalb, IL, USA, atara@ceet.niu.edu,
Demczuk, A.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials and Welding Technology, Narutowicza 11/12, 80-233 Gdansk, Poland, beazurek@pg.gda.pl,
Abstrakty : The research results of corrosion resistance of the Ti6Al4V alloy in the simulated body fluids (SBF) are presented. The polished specimens have shown better corrosion resistance than grinded surfaces in both liquids. The artificial saliva has revealed more aggressive test solution than Ringer`s solution. The pitting tendency has been observed in Ringer`s solution for grinded specimens.

Słowa kluczowe : Ti6Al4V alloy, corrosion resistance, potentiodynamic methods, Ringer`s liquid, artificial saliva,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2011
Numer : Vol.11, nr 4(30)
Strony : 35 – 42
Bibliografia : 1. Błażewicz S., Stoch L.: Biomaterials. Academic Publishing House EXIT, Warsaw 2003.
2. Ciupik L., Kierzkowska A., Jędrych Ł.: Biomaterials applied on DERO implants: history, contemporary, future. The Biomedical Engineering Institute – LfC (IBME-LfC), Zielona Góra.
3. Ciupik L., Krasicka-Cydzik E., Mstowski J., Zarzycki D.: Spine metal implants and its biotolerance. The Biomedical Engineering Institute– LfC (IBME-LfC), Zielona Góra.
4. Marciniak J., Kaczmarek M., Zębowicz A.: Biomaterials in stomatology. Publishing Office of Silesian Technical University, Gliwice 2008.
5. The raport ASTM F 75-82.
6. Hucińska J.: Metallurgy. Materials for laboratory. The Publishing Office of Gdańsk University of Technology, Gdańsk 2005.
7. Mears D. C.: Metals In Medicine and Surgery. Review 218, International Metals, June 1977, 119 – 130.
8. Meneaux C., Odiette D.: L’osteosynthese au point de vue biologique. Influence de la nature du metal. Masson, Paris 1934.
9. Morley J. S., Kirkby H. N.: J. Iron and Steel Inst., 1952, t. 170, p.129.
10. Świeczko-Żurek B.: Biomaterials. Gdańsk 2009.
11. Homsy C.A. Biocompatibility of clinical implant material. Boca Raton, Floryda 1981.
12. Grant D., Lo W. Biocompatible and mechanical properties of low temperature deposited quaternary coatings on Ti6Al4V titanium alloy substrates. J. Mater. Sci. 1996; 7, 579-584.
13. Bulcata et all: THP – 1 Cells as a Trans-fectable Mode for Titanium – Inducet Cytokine Ralease. ASBMR 1997.
DOI :
Cytuj : Gołuński, Ł. ,Mirhadi, B. ,Shanafield, J. ,Demczuk, A. , Corrosion resistance examinations of Ti6Al4V alloy with the use of potentiodynamic method in ringer's and artificial saliva solutions. Advances in Materials Science Vol.11, nr 4(30)/2011
[Top]

Relation Structure – Fracture Resistance in Process of Estimate the Weldability of Low Alloy Steels: Part I

Czasopismo : Advances in Materials Science
Tytuł artykułu : Relation Structure – Fracture Resistance in Process of Estimate the Weldability of Low Alloy Steels: Part I

Autorzy :
Supernak, M.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland,, milena@shl.pl,
Reszczyńska, J.
1Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland,
Zieliński, A.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland, azielins@pg.gda.pl,
Ratanowski, E.
University of Technology and Life Science, Department of Mechanical Engineering, Sylwestra Kaliskiego 7, 85-796 Bydgoszcz, Poland,
Abstrakty : The relationship between microstructure and mechanical properties of structural materials is still relevant problem in the theory of materials science and mechanical engineering. The question is how the macro-mechanical parameters can be derived from the microscale mechanisms taking into account local structural heterogeneities. Another question is how to make quantitative descriptions of the strength and toughness properties of welded joints made of non-matching weld metal. These problems are the objects of welding and mechanical investigation and they are related to estimation of weldability. The results of this study concern the evaluation stress state at interface of the under- and overmatched weld joints. After formulating a simplified model of under- and overmatched weld joints an analysis was made of stress at interface for the cases of perpendicular and non – perpendicular orientation of the zones (soft – layer and hard – layer) relative to the load action direction under tension.

Słowa kluczowe : weldability of steels, fracture, stress state, fracture mechanics,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 4(26)
Strony : 32 – 40
Bibliografia :
DOI :
Cytuj : Supernak, M. ,Reszczyńska, J. ,Zieliński, A. ,Ratanowski, E. , Relation Structure – Fracture Resistance in Process of Estimate the Weldability of Low Alloy Steels: Part I. Advances in Materials Science Vol.10, nr 4(26)/2010
[Top]

Relation Structure – Fracture Resistance in Process of Estimate the Weldability of Low Alloy Steels: Part II

Czasopismo : Advances in Materials Science
Tytuł artykułu : Relation Structure – Fracture Resistance in Process of Estimate the Weldability of Low Alloy Steels: Part II

Autorzy :
Supernak, M.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland,, milena@shl.pl,
Reszczyńska, J.
1Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland,
Zieliński, A.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland, azielins@pg.gda.pl,
Ratanowski, E.
University of Technology and Life Science, Department of Mechanical Engineering, Sylwestra Kaliskiego 7, 85-796 Bydgoszcz, Poland,
Ratanowski, E.
University of Technology and Life Science, Department of Mechanical Engineering, Sylwestra Kaliskiego 7, 85-796 Bydgoszcz, Poland,
Abstrakty : Numerical weldability analysis is a new powerful research and development tool which is useful for metallurgistics technologist and design engineers. Saying strictly the numerical analysis of weldability comprises thermodynamic, thermomechanical and microstructural modelling of the welding process. The fracture resistance of welded joints is mainly characterised by normalised parameters: for cold cracking or in the exploitation condition. Conclusions from the theoretical analysis form a basis to an assessment measure of the stress state parameter Sp as a physical measure of the deformation and effort of the mismatched weld joints. There also was made characteristic of the effect on the inclination of the layer (W) on the form of fracture. Finally, some aspects of estimation of the KC and KIC values for the layer (W) with the SINTAP programme overview are presented.

Słowa kluczowe : stress state parameter Sp, undermatched and overmatched welds, SINTAP programme,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 4(26)
Strony : 41 – 47
Bibliografia : 1. Ranatowski E.: Analysis of the mechanical properties of undermatched weld joints, Mechanical Engineering Limited, ESIS 17, United Kingdom, London,1994.
2. Ranatowski E.: Analytical assessment of the constraint effect of undermatched weld joints, ECF 10. Structural Integry: Experiments, Models and Applications, Pub. EMAS. 1994.
3. Gilles Ph., Franco Ch: A New J-estimation scheme for cracks in mis-matching welds – the ARAMIS method Mis-Matching of Welds. ESIS 17. Edited by H.-K. Schwalbe, M. Koçak. Mechanical Engineering Publications. London. pp. 661 ÷ 683. 1994.
4. Webster S., Bannister A.: Structural integrity assessment procedure for Europe – of the SINTAP programme overview. Engineering Fracture Mechanics, Vol. 67, Issue 6, pp. 481 ÷ 514, 2000.
5. Ainsworth R.A., Lei Y.: ‘Strength mis-match in estimation schemes. Mis-Matching of Interfaces and Welds. Edited by H.-K. Schwalbe, M. Koçak, GKSS Research Center Publications, Geesthacht, pp. 35 ÷ 53.1997.
6. Schwalbe H-K.,et al.: Common views on the effects of yield strength mis-match on testing and structural assessment. Mis-Matching of Interfaces and Welds. Edited by H.-K. Schwalbe, M. Koçak. GKSS Research Center Publications. Geesthacht, pp. 99 ÷ 132, 1997.
7. Ainsworth R.A. et al.: Analysis levels within the SINTAP defect assessment procedures. Engineering Fracture Mechanics. Vol. 67. Issue 6. December. pp. 515 ÷ 527, 2000.
8. Kim Y.-J. et al.: SINTAP defect assessment procedure for strength mis-matched structures, Engineering Fracture Mechanics. Vol. 67. Issue 6, pp. 529 ÷ 546, 2000.
9. Bannister A.C. et al.: Implications of the yield stress / tensile stress ratio to the SINTAP failure assessment diagrams for homogeneous materials. Engineering Fracture Mechanics. Vol. 67. Issue 6, pp. 547 ÷ 562 , 2000.
10. Ainsworth R.A. et. al.: ‘Methods for including constraint effects within the SINTAP procedures. Engineering Fracture Mechanics. Vol. 67, Issue 6, pp. 563 ÷ 571, 2000.
DOI :
Cytuj : Supernak, M. ,Reszczyńska, J. ,Zieliński, A. ,Ratanowski, E. ,Ratanowski, E. , Relation Structure – Fracture Resistance in Process of Estimate the Weldability of Low Alloy Steels: Part II. Advances in Materials Science Vol.10, nr 4(26)/2010
[Top]

Allergic Reactions as a Defense of the Organism to the Influence of Implants Components Made of Stainless Steel

Czasopismo : Advances in Materials Science
Tytuł artykułu : Allergic Reactions as a Defense of the Organism to the Influence of Implants Components Made of Stainless Steel

Autorzy :
Supernak, M.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland,, milena@shl.pl,
Reszczyńska, J.
1Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland,
Zieliński, A.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland, azielins@pg.gda.pl,
Ratanowski, E.
University of Technology and Life Science, Department of Mechanical Engineering, Sylwestra Kaliskiego 7, 85-796 Bydgoszcz, Poland,
Ratanowski, E.
University of Technology and Life Science, Department of Mechanical Engineering, Sylwestra Kaliskiego 7, 85-796 Bydgoszcz, Poland,
Zorn, J.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland, asia.zorn@gmail.com,
Abstrakty : Due to the increasing number of cases of hypersensitivity caused by direct contact with metals, as well as the increasing demand for implants in humans all ages numerous studies on the effects of the impact of implant components are being carried out. The paper presents the phenomenon of etiology of allergy in general terms and in relation to the biomaterials used in medicine. There have been characterized in terms of impact on the body, metallic biomaterials, such as: stainless steels, cobalt based alloys, titanium and its alloys, shape memory alloys and other materials for medical applications (ceramics, plastics, carbon and composite materials), with respect to their reaction in contact with human tissue. The article presents the research included in the MPh of the author, performed on stainless steel.

Słowa kluczowe :
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 4(26)
Strony : 48 – 54
Bibliografia : 1. Śpiewak R.: Contact allergy – diagnostics and it proceed . Allergy of asthma of immunology, 2007, 12 (3), 109-127.
2. Śpiewak R.: Patch testing for contact allergy and allergic contact dermatitis. The Open Allergy Journal, 2008, 1, 42-51.
3. www.tg.net.pl/blog/lisowska.php
4. Sybilski A. Development of disease in atopick period prenatalnym and in early childhood. Borgis – New pediatrics 2/2006, 46-50, www.heel.pl
5. Szumlański A.: Allergies on nickel, chromium and cobalt at patients. Debate on dsc. degree (doctorate) medical. Military Medical Academy, Łódź 2002
6. Błażejewicz S., Stoch L.: Biocybernetics and biomedical engineering 2000. Volume 4. Biomaterials. Edited by Maciej Nałęcz, Academic Published House EXIT, Warsaw 2003, 5-560.
7. Rudzki E. : ECZEMA II. Metals causing eczema., Alergia 4/15 2002.
8. Szumlański A.: Implantation of a person sensitized implant doped nickel raises implications for as complications., Puls Medicine 6 (55).
9. Hallab NJ, Merritt K, Jacobs JJ: Metal sensitivity in patients with orthopedics implants. J Bone Joint Surg. Am., 83 A, 2001, p. 428-436.
10. Świerczyńska-Machura D. Kieć-Świerczyńska M. Kręcisz B. Pałczyński C. Allergy to components of the implants. Allergy Asthma Immunology 2004, 9 (3), 128-132.
11. Dąbrowska D. Roszkiewicz J. Sosnowski, G., Wójcik T.: Allergy to metal implants used in orthopedics., Advances in Dermatology and Allergology XXIV, 2007 / 2, 99-103.
12. Szumlański A. Buczyłko K., Weiss, W.: Hypersensitivity to nickel, chromium and cobalt as a cause of complications in orthopedic trauma patients. Orthopedics and traumatology at the beginning of the new millennium. Congress of the Polish Society of Orthopedics and Traumatology, Bydgoszcz 2002, 356-359.
13. Czarnobilska E. Obtułowicz K. Wsołek K. Piętowska J. singer, R.: Mechanisms of allergy nickiel., 2007/64/7-8 Medical Review, 502-506
14. Okazaki Y., Gotoh E.: Comparison of metal release from various metallic biomaterials in vitro., Biomaterials 26 (2005), 11.
15. Kanerva L., Forstrom L.: Allergic nickel and chromate hand dermatitis induced by orthopaedic metal implant. Contact Dermatitis 44, 2001, 103-104.
16. Rusinek B., Stobiecka A., Obtułowicz K.: Allergy to titanium and implants, Allergy Asthma Immunology 2008, 5(1), 5-7.
17. High W. A., Ayers R. A., Adams J. R., Chang A., Fitzpatrick J. E.: Granulomatous reaction to titanium alloy: an unusual reaction to ear piercing. J. Am. Acad. Dermatol., 2006, 55(4), 716-720.
18. Budinger L., Hertl M.: Immunologic mechanisms in hypersensitivity reactions to metal irons: an overview. Allergy 2000; 55, 108-115.
19. Piatteli A., Scarano A., Coraggio F., Matarasso S.: Elary tissue reactions to polylacticresorbable membranes: a histological and histochemical study In rabbit. Biomaterials,1998, 19(10), 889-896.
20. Ciuplik L. A. Kierzkowska Jędrych L.: Biomaterials used to implant Dero: history, present, future., www.lfc.com.pl/pdf/dero3/a4.pdf.
21. Zorn J.: Allergic reactions as a defense of the organism into components of the implants. Thesis, Gdansk University of Technology 2009.
DOI :
Cytuj : Supernak, M. ,Reszczyńska, J. ,Zieliński, A. ,Ratanowski, E. ,Ratanowski, E. ,Zorn, J. , Allergic Reactions as a Defense of the Organism to the Influence of Implants Components Made of Stainless Steel. Advances in Materials Science Vol.10, nr 4(26)/2010
[Top]

Structural Materials Used for Steam Pipelines in Power Industry

Czasopismo : Advances in Materials Science
Tytuł artykułu : Structural Materials Used for Steam Pipelines in Power Industry

Autorzy :
Supernak, M.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland,, milena@shl.pl,
Reszczyńska, J.
1Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland,
Zieliński, A.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland, azielins@pg.gda.pl,
Ratanowski, E.
University of Technology and Life Science, Department of Mechanical Engineering, Sylwestra Kaliskiego 7, 85-796 Bydgoszcz, Poland,
Ratanowski, E.
University of Technology and Life Science, Department of Mechanical Engineering, Sylwestra Kaliskiego 7, 85-796 Bydgoszcz, Poland,
Zorn, J.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland, asia.zorn@gmail.com,
Mężyk, D.
Institute of Power Engineering, Warsaw, Poland, dariusz.mezyk@ien.com.pl,
Abstrakty : The study presents some strength parameters of structural materials, including steel grades 13HMF, P91 and P92, currently used in professional power engineering to produce pipelines, boiler super-heaters, steam tanks, steam pressure tanks and pipelines designed to operate at the temperature range up to 650o C. The author presented results of material stress tests performed by him for pipelines in as-delivered state as well as after 40 000 hours of operation. The tests were made using Mathar strain gauge method. Hardness test results for areas subjected to strain gauge tests and structural changes of tested samples are also presented. Stress test results indicate stress increase for operated material as well as for grain size growth compared to as-delivered material. It is caused by operating load (both thermal and mechanical) of the pipeline material.

Słowa kluczowe : degradation, microstructure, stress, pipeline,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 4(26)
Strony : 55 – 62
Bibliografia : 1. Mężyk D. The effect of pressure installation operation course in professional power sector on safety and reliability of their performance. Conference Materials: Training seminar on development of material damage and laser-induced material modification, IPPT PAN Polish Academy of Sciences 2003, 193 – 204.
2. Hald J. Microstructure stability of steels P92 and P122, Proceedings of the 3rd Conference on Advances in Materials Technology for Fossil Power Plant, University of Wales, Swensea, 2001, 115 – 125.
3. Ennis P. Creep Strengthening Mechanisms in High Chromium Steels. Proceedings of the 3rd Conference on Advances in Materials Technology for Fossil Power Plant, University of Wales, Swensea, 2001, 187 – 197.
4. Middleton C. J., Brear J.M., Munson R., Viswanathan R. An assessment of the risk of Type IV cracking in welds to header, pipework and turbine components constructed from the advanced ferritic 9% and 12% chromium steel. Proceedings of the 3rd Conference on Advances in Materials Technology for Fossil Power Plant, University of Wales, Swensea, 2001, 69 – 79.
5. PN-79/M-34033 – Water and steam pipelines. Pipe wall thickness calculations.
6. PN-92/M-34031 – Hot water and steam pipelines. General requirements and testing procedures.
DOI :
Cytuj : Supernak, M. ,Reszczyńska, J. ,Zieliński, A. ,Ratanowski, E. ,Ratanowski, E. ,Zorn, J. ,Mężyk, D. , Structural Materials Used for Steam Pipelines in Power Industry. Advances in Materials Science Vol.10, nr 4(26)/2010
[Top]

Properties of Surface Layers of Titanium Alloy TI6AL4V After Laser Melting Processes

Czasopismo : Advances in Materials Science
Tytuł artykułu : Properties of Surface Layers of Titanium Alloy TI6AL4V After Laser Melting Processes

Autorzy :
Supernak, M.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland,, milena@shl.pl,
Reszczyńska, J.
1Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland,
Zieliński, A.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland, azielins@pg.gda.pl,
Ratanowski, E.
University of Technology and Life Science, Department of Mechanical Engineering, Sylwestra Kaliskiego 7, 85-796 Bydgoszcz, Poland,
Ratanowski, E.
University of Technology and Life Science, Department of Mechanical Engineering, Sylwestra Kaliskiego 7, 85-796 Bydgoszcz, Poland,
Zorn, J.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland, asia.zorn@gmail.com,
Mężyk, D.
Institute of Power Engineering, Warsaw, Poland, dariusz.mezyk@ien.com.pl,
Ossowska, A.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland,
Abstrakty : The article presents the investigation results of titanium alloy Ti6Al4V surface layer after laser melting process. The process of laser melting was performed using Nd-YAG laser. The evaluation of structure of the alloy as well as hardness and chemical composition was performed. It was shown that laser melting changes the structure and properties of titanium alloy Ti6Al4V and process parameters as scanning speed affects the thickness of zones in top layer of the material. Due to the laser melting process more wear resistive surface can be obtained that increases the wear and corrosion resistance of orthopeadic prosthesis.

Słowa kluczowe : biomaterials, implants, titanium alloy, laser melting,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 4(26)
Strony : 63 – 68
Bibliografia : 1. W. Mróz, B. Major, R. Major, A. Prokopiuk, T. Wierzchoń, Deposition of hydroxyapatite thin films using laser ablation method, Engineering of Biomaterials, 47-53 (2005),117- 119.
2. R. Major, Mróz, T., Wierzchoń J.M., Lackner, W. Waldhauser, J. Bonarski, K. Haberko, A. Pawłowski, Texture and microstructure of HAp thin layer on Ti6Al4V, Proceedings of Symposium on Texture and Microstructure Analysis of Functionally Graded Materials,Kraków, Poland, 2004.
3. T.M. Yue, T.M. Cheung, H.C. Man, The effects of laser surface treatment on the corrosion properties of Ti-6Al-4V alloy in Hank`s solution, Journal Materials Science Letters 19 (2000) 205-208.
4. T.M. Yue, J.K. Yu, Z. Mei, H.C. Man, Excimer laser surface treatment of Ti-6Al-4V alloy for corrosion resistance enhancement, Materials Letters 52 (2002) 206-212.
5. F. Guillemot, E. Prima et al., Ultraviolet laser surface treatment fore biomedical applications of titanium alloys: morphological and structural characterization, Applied Physics A 77 (2003) 899-904.
6. M. Long, H.J. Rack: Titanium alloys in total joint replacement. Biomaterials 19 (1998) 1621-1639.
DOI :
Cytuj : Supernak, M. ,Reszczyńska, J. ,Zieliński, A. ,Ratanowski, E. ,Ratanowski, E. ,Zorn, J. ,Mężyk, D. ,Ossowska, A. , Properties of Surface Layers of Titanium Alloy TI6AL4V After Laser Melting Processes. Advances in Materials Science Vol.10, nr 4(26)/2010
[Top]

A Multi RIG Screening Test for Thin Ceramic Coatings in Bio – Tribological Applications

Czasopismo : Advances in Materials Science
Tytuł artykułu : A Multi RIG Screening Test for Thin Ceramic Coatings in Bio – Tribological Applications

Autorzy :
Supernak, M.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland,, milena@shl.pl,
Reszczyńska, J.
1Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland,
Zieliński, A.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland, azielins@pg.gda.pl,
Ratanowski, E.
University of Technology and Life Science, Department of Mechanical Engineering, Sylwestra Kaliskiego 7, 85-796 Bydgoszcz, Poland,
Ratanowski, E.
University of Technology and Life Science, Department of Mechanical Engineering, Sylwestra Kaliskiego 7, 85-796 Bydgoszcz, Poland,
Zorn, J.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland, asia.zorn@gmail.com,
Mężyk, D.
Institute of Power Engineering, Warsaw, Poland, dariusz.mezyk@ien.com.pl,
Ossowska, A.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland,
Lubliński, J.
Department of Machine and Automotive Design, Faculty of Mechanical Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdansk, 80-233, Poland,
Abstrakty : A method is presented for the comparative testing of wear resistance of ceramic coatings made from materials potentially feasible in tribo – medical applications, mainly orthopaedic implants made from ceramics coated metals for low cost, long life and low wear particle emission into the body. The method was devised as the main tool for use in research and is comprised of flat on flat and ball on flat surface (sliding) tests. Seven ceramic coatings were chosen as potentially feasible for the application area known to perform well in low viscosity fluid lubrication condition. The materials used in coatings were diamond like carbon (DLC), diamond like carbon with tungsten additive (DLC-W), titanium nitride (TiN), titanium carbide (TiC), silicon carbide (SiC), chromium nitride (CrN), carbon nitride (CNx). The coatings tested were deposited in vacuum to a stainless steel substrate with the use of several methods, each suited to the coating material; The methods were the following: cathode arc evaporation (ARC), magnetron sputtering (MAG), plasma assisted chemical vapour deposition (PACVD), impulse reactive magnetron sputtering (IRMS) and a combined method ARC-MAG-RF-PACVD (radio frequency assisted – RF); A multiple role PT-3 tribometer was used for flat on flat surface tests (ring shaped surface) and a reciprocating linear motion TPZ-1 tribometer for ball on flat surface tests and a CSEM REVETESTŽ Scratch Tester to perform standard scratch test in air on coatings. A set of results was obtained illustrating the limiting load for each coating (the load inflicting rapid destruction of the coating) and the endurance under light loading conditions. As lubricating agents distilled water and saline water solution were used. Test results examples are presented and discussed as an illustration of the method’s usability for the target application area.

Słowa kluczowe : ceramic coatings, tribological wear, tribometry, screening test,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 4(26)
Strony : 69 – 80
Bibliografia : 1. S. R. Hummel, B. Partlow, Comparison of threshold galling results from two testing methods, Tribology International Vol. 37, pp. 291–295 (2004).
2. H. Czichos, S. Becker, J. Lexow, Multilaboratory tribotesting: Results from the VAMAS Programme on wear test methods, Wear Vol. 114, 109-123 (1987).
3. W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempele, D. Scharnweber, K. Schulte, Functionally graded materials for biomedical applications, Materials Science and Engineering A362, pp. 40–60 (2003).
4. Z.M. Jin, M. Stone, E. Ingham, J. Fisher, Current Orthopaedics (2006) 20, mini-symposium: biomechanics for the frcs orth exam, pp. 32–40.
5. S. Affatato, M. Spinelli, M. Zavalloni, C. Mazzega-Fabbro, M. Viceconti, Tribology and total hip joint replacement: Current concepts in mechanical simulation, Medical Engineering & Physics Vol. 30, 1305–1317 (2008).
6. D. Dowson, A comparative study of the performance of metallic and ceramic femoral head components in total replacement of hip joints, Wear Vol. 190, pp. 171 – 183 (1995).
7. V. Gorokhovsky, B. Heckerman, P. Watson, N. Bekesch, The effect of multilayer filtered arc coatings on mechanical properties, corrosion resistance and performance of periodontal dental instruments, Surface & Coatings Technology Vol. 200, pp. 5614 – 5630 (2006).
8. B. Shi, O.O. Ajayi, G. Fenske, A. Erdemir, H. Liang, Tribological performance of some alternative bearing materials for artificial joints, Wear Vol. 255, pp. 1015–1021 (2003).
9. C. Richard, C. Kowandy, J. Landoulsi, M. Geetha, H. Ramasawmy, Corrosion and wear behavior of thermally sprayed nano ceramic coatings on commercially pure Titanium and Ti–13Nb–13Zr substrates, Int. Journal of Refractory Metals & Hard Materials Vol. 28, pp. 115–123, (2010)
10. W. Österle, D. Klaffke, M. Griepentrog, U. Gross, I. Kranz, Ch. Knabe, Potential of wear resistant coatings on Ti–6Al–4V for artificial hip joint bearing surfaces, Wear Vol. 264, pp. 505–517 (2008).
11. T. Lubinski, Testing of friction dynamics on a tribometer PT-3/96, Proc. 1st World Tribology Congress, London, 1997.
12. Wang X.-X., Yan W., Hayakawa S. i in.: Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid, Biomaterials 24 (2003) 4631-4637.
DOI :
Cytuj : Supernak, M. ,Reszczyńska, J. ,Zieliński, A. ,Ratanowski, E. ,Ratanowski, E. ,Zorn, J. ,Mężyk, D. ,Ossowska, A. ,Lubliński, J. , A Multi RIG Screening Test for Thin Ceramic Coatings in Bio – Tribological Applications. Advances in Materials Science Vol.10, nr 4(26)/2010
[Top]

Diagnostic Examination of P265GH Boiler Steel Plate Using the Barkhausen Method

Czasopismo : Advances in Materials Science
Tytuł artykułu : Diagnostic Examination of P265GH Boiler Steel Plate Using the Barkhausen Method

Autorzy :
Supernak, M.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland,, milena@shl.pl,
Reszczyńska, J.
1Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland,
Zieliński, A.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland, azielins@pg.gda.pl,
Ratanowski, E.
University of Technology and Life Science, Department of Mechanical Engineering, Sylwestra Kaliskiego 7, 85-796 Bydgoszcz, Poland,
Ratanowski, E.
University of Technology and Life Science, Department of Mechanical Engineering, Sylwestra Kaliskiego 7, 85-796 Bydgoszcz, Poland,
Zorn, J.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland, asia.zorn@gmail.com,
Mężyk, D.
Institute of Power Engineering, Warsaw, Poland, dariusz.mezyk@ien.com.pl,
Ossowska, A.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland,
Lubliński, J.
Department of Machine and Automotive Design, Faculty of Mechanical Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdansk, 80-233, Poland,
Garstka, T.
Częstochowa University of Technolgy, Faculty of Materials Processing Technology and Applied Physics, Częstochowa, Poland, tomasz.garstka@wip.pcz.pl,
Abstrakty : The article presents the results of diagnostic examination of P265GH boiler steel plate. During blanking, cutting and cold forming of elements from this plate, their spontaneous plastic deformation and warping took place, indicating an unfavourable internal stress state of a considerable magnitude occurring in the steel plate. In order to identify the causes of this situation, examinations were carried out, which included a microstructure assessment and a Vickers hardness test. In view of the absence of clear differentiation, in terms of both structure and hardness, in different steel plate areas, diagnostic examination was performed by the Barkhausen magnetic method, which included the determination of the principal direction of residual stresses and the determination of their anisotropy based on the measurement of the effective value of Barkhausen noise. As their result, a significant anisotropy of residual stresses was revealed on the steel plate surface. Moreover, the adverse phenomenon of perpendicularity of the principal directions of stresses was found to occur on the opposite plate surfaces, being the direct cause of warping of elements cut out from the plate.

Słowa kluczowe : Barkhausen effect, residual stress, anisotropy,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 4(26)
Strony : 81 – 92
Bibliografia : 1. Durin G., Zapperi S.: The Microscopical Origin of Barkhausen Noise: A Review of Recent Results, Materials of 4th International Conference on Barkhausen Noise and Micromagnetic Testing, July 3 – 4, (2003), Brescia – Italy.
2. Augustyniak B.: Zjawiska magnetosprężyste i ich wykorzystanie w nieniszczących badaniach materiałów. Wyd. Politechniki Gdańskiej, Gdańsk 2003.
3. Błachnio J.: Ocena stanu warstwy wierzchniej łopatek wirnika sprężarki metodą szumu Barkhausena. Wyd. ITWL, Warszawa 1998.
4. Bruns M. et al: Determination of residual stresses in steel weldments by micromagnetic measurements, Proceedings 5th ICBM – International Conference on Barkhausen Noise and Micromagnetic Testing, Petten, 2005, The Netherlands, 47-59.
5. Gauthier J., Krause T., Atherton D.: Mesurement of residual stress in steel using magnetic Barkhausen noise method, NDT&E International, Vol. 31, No. 1, 1998, 23-31.
6. Tremea A., Nardoni G., VengrinovichV.: Testing Barkhausen Noise Analysis to Measure Residual Stresses in Mill Roll Alloys, Proceedings of 4th ICBM, Brescia, 2003.
7. Augustyniak B., Sieciński J., Chmielewski M: Wyznaczanie za pomocą efektu Barkhausena rozkładów naprężeń własnych blach w przemyśle stoczniowym, Zeszyty Problemowe – badania nieniszczące, 3, 1998, 383-388.
8. Garstka T., Koczurkiewicz B., Snopek J.: Badania jakościowe blachy grubej ze stali S235JG z zastosowaniem metody Barkhausena, Pr. zbiorowa, Produkcja i Zarządzanie w Hutnictwie, Wyd. P. Częstochowskiej, Zakopane 2009, 160-163.
9. PN – EN 10028–2 Wyroby płaskie ze stali na urządzenia ciśnieniowe. Stale niestopowe i stopowe do pracy w podwyższonych temperaturach.
10. Garstka T.: System pomiarowy do badań właściwości wyrobów stalowych z wykorzystaniem zjawiska Barkhausena, Pomiary Automatyka Robotyka, 6, 2008, s. 58-61.
11. Garstka T., Jagieła K.: Kryterium doboru natężenia prądu magnesującego w metodzie Barkhausena pomiaru naprężeń własnych, Nowe Technologie i Osiągnięcia w Metalurgii i Inżynierii Materiałowej, Częstochowa 2008.
12. Garstka T.: Problemy pomiarów naprężeń własnych w wyrobach hutniczych metodą Barkhausena, Prace Komisji Naukowych, Polska Akademia Nauk, Oddział w Katowicach, Zeszyt 33, Katowice 2009, 113-116.
13. Rułka R.: Metoda oceny, własności i stanu materiałów ferromagnetycznych oparta na wykorzystaniu zjawiska Barkhausena. Praca doktorska, IPPT PAN, Warszawa 1980.
14. Vengrinovich V., Tsukerman V.L.: Stress and texture measurement using Barkhausen noise and angular scanning of driving magnetic field. Proceedings 15th WCDNT – World Conference on Nondestructive Testing, Montreal 2004.
15. Stefanita C. G., Atherton D. L., Clapham L.: Plastic versus elastic deformation effects on magnetic Barkhausen noise in steel, Acta Mater. 48 (2000) s. 3545-3551.
DOI :
Cytuj : Supernak, M. ,Reszczyńska, J. ,Zieliński, A. ,Ratanowski, E. ,Ratanowski, E. ,Zorn, J. ,Mężyk, D. ,Ossowska, A. ,Lubliński, J. ,Garstka, T. , Diagnostic Examination of P265GH Boiler Steel Plate Using the Barkhausen Method. Advances in Materials Science Vol.10, nr 4(26)/2010
[Top]

The experimental resistance parameter for TiN coating to cavitation action

Czasopismo : Advances in Materials Science
Tytuł artykułu : The experimental resistance parameter for TiN coating to cavitation action

Autorzy :
Krella, A.
The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Cavitation Group, ul. Fiszera 14, 80-231 Gdansk, Poland,
Abstrakty : A series of cavitation erosion tests were carried out to investigate the resistance of the TiN coatings to cavitation action. The TiN coatings were deposited at various deposition parameters on austenitic stainless steel, X6CrNiTi18-10, and with various thickness by means of the cathodic arc evaporation method (ARC PVD). Investigations were performed in a cavitation tunnel with a slot cavitator. The investigations show that hardness, Young’s modulus, adhesion and coating thickness have an influence on coating endurance to cavitation degradation. The obtained parameter H•LC2/E•h1/2 shows very good fitting to date points (R2=0.96). With the increase of the H•LC2/E•h1/2 parameter the mass loss decreases indicating a continuous improvement in the cavitation erosion resistance.

Słowa kluczowe : nanocrystalline TiN coatings, cavitation erosion, degradation, fracture, impact,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 1(23)
Strony : 4 – 18
Bibliografia : 1. Brennen Ch.E., Cavitation and bubble dynamics, The Oxford Engineering Science Series 44, Oxford University Press (1995).
2. Knapp R.T., Resent Investigations of cavitation and cavitation damage, Trans. ASME 77 (1955) 1045-1054.
3. Philipp A., Lauterborn W., Cavitation erosion by single laser-produced bubbles, J.Fluid Mech. 361 (1998) 75-116.
4. Bourne N.K., On the collapse of cavities, Shock Waves 11 (2002) 447-455.
5. Tabor D.: A theory of static and dynamic hardness. Engineering 165 (1948) 289-292.
6. Bourne N.K., Millett J.C.F., Gray III G.T., On the shock compression of polycrystalline metals, J. Mater. Sci. 44 (2009) 3319-3343.
7. Krella A., Influence of cavitation intensity on X6CrNiTi18-10 stainless steel performance in the incubation period. Wear 258 (2005) 1723-1731.
8. Iwai Y., Honda T., Yamaa H., Matsumura T., Larsson M., Hogmark S.: Evaluation of wear resistance of thin hard coatings by a new solid particle impact test. Wear (2001),pp. 861-867.
9. Yoon S.Y., Yoon S.Y., Chung W.S., Kim K.H.: Impact-wear behaviors of TiN and Ti-Al-N coatings na AISI D2 steel and WC-Co substrates. Surface and Coating Technology 177-178 (2004), pp.645-650.
10. Voevodin A.A., Bantle R., Matthews A.: Dynamic impact wear of TiCxNy and Ti-DLC composite coatings. Wear 185 (1995), pp.151-157.
11. Cairney J.M., Tsukano R., Hoffman M.J., Yang M.: Degradation of TiN coating under cyclic loading. Acta Materialia 52 (2004), pp. 3229-3237.
12. Ma L.W., Cairney J.M., Hoffman M., Munroe P.R.: Deformation mechanisms operating nanoindentation of TiN coatings on steel substrates. Surface & Coatings Technology 192 (2005), pp.11-18.
13. Münsterer S., Kohlhof K.: Cavitation protection by low temperature TiCN coatings. Surface and Coatings Technology 74-75 (1995), pp. 642-647
14. Marynin V.H.: Erosion of vacuum-arc Ti-N coatings. Materials Science 39 (2003), pp. 447-451
15. Krella A., Czyżniewski A.: Influence of the substrate hardness on cavitation erosion resistance of TiN coating. Wear 263 (2007), pp. 395-401.
16. Krella A., Czyżniewski A.: Investigation concerning the cavitation resistance of TiN coatings deposited on austenitic stainless steel at various temperatures. Wear 265 (2008), pp. 72-80.
17. Leyland A., Matthews A.: On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimized tribological behaviour. Wear 246 (2000), pp. 1-11.
18. Krella A., The influence of TiN coatings properties on cavitation erosion resistance, Surface & Coatings Technology 204 (2009) pp. 263–270.
19. Han S., Lin J.H., Kuo J.J., He J.L., Shih H.C.: The cavitation-erosion phenomenon of chromium nitride coatings deposited using cathodic arc plasma deposition on steel. Surface and Coating Technology 161 (2002), pp. 20-25.
20. Oliver W.C., Pharr G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7 (1992), pp. 1564-1583.
21. Batista C.A., Godoy C., Matthews A., Impact testing of duplex and non-duplex (TiN, Al)N and Cr–N PVD coatings, Surface and Coatings Technology 163–164 (2003), pp. 353–361.
22. Krella A.: Cavitation resistance of TiN nanocrystalline coatings with various thickness, Advances in Materials Science. Vol. 9, No. 2 (20), June 2009, pp.12-24.
DOI :
Cytuj : Krella, A. , The experimental resistance parameter for TiN coating to cavitation action. Advances in Materials Science Vol.10, nr 1(23)/2010
[Top]

Hydroxyapatite coatings on porous ti and ti alloys

Czasopismo : Advances in Materials Science
Tytuł artykułu : Hydroxyapatite coatings on porous ti and ti alloys

Autorzy :
Krella, A.
The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Cavitation Group, ul. Fiszera 14, 80-231 Gdansk, Poland,
Sobieszczyk, S.
Faculty of Mechanical Engineering, Department of Mechanical Engineering and Materials Strength, Gdansk University of Technology, 80-322 Gdansk, Poland,
Abstrakty : Deposition of hydroxyapatite coating on porous Ti and Ti alloys with electrochemical and biomimetic deposition approach is presented. The enhancement of phosphates deposition by well oriented and uniform titanium oxide nanotube array on the surface of titanium substrate is discussed.

Słowa kluczowe : bioactivity, electrochemical deposition, hydroxyapatite, surface modifications, SBF, titanium,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 1(23)
Strony : 19 – 28
Bibliografia : 1. Dumbleton J., Manley M.T.: Hydroxyapatite-Coated Prostheses in Total Hip and Knee Arthroplasty. J. Bone Joint Surg. Am. 86 (2004) 2526-2540.
2. Sobieszczyk S., Zieliński A.: Coatings in Arthroplasty. Advances in Materials Science, vol. 8, no 4 (2008) 35-54.
3. Epinette J-A., Manley M.T.: Fifteen Years of Clinical Experience with Hydroxyapatite Coatings in Joint Arthroplasty. Springer-Verlag, France (2004).
4. Pichugin V.F., Surmenev R.A., Shesterikov E.V., Ryabtseva M.A., Eshenko E.V., Tverdokhlebov S.I., Prymak O., Epple M.: The preparation of calcium phosphate coatings on titanium and nickel-titanium by rf-magnetron-sputtered deposition: Composition, structure and micromechanical properties. Surface & Coatings Technology 202 (2008) 3913-3920.
5. Yamaguchi T., Tanaka Y., Ide-Ektessabi A.: Fabrication of hydroxyapatite thin films for biomedical applications using RF magnetron sputtering. Nuclear Instruments and Methods in Physics Research B 249 (2006) 723-725.
6. Lu Y-P., Song Y-Z., Zhu R-F., Li M-S., Lei T-Q.: Factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment. Applied Surface Science 206 (2003) 345-354.
7. Yan L., Leng Y., Weng L-T.: Characterization of chemical inhomogeneity in plasma-sprayed hydroxyapatite coatings. Biomaterials 24 (2003) 2585-2592.
8. Man H.C., Chiu K.Y., Cheng F.T., Wong K.H.: Adhesion study on pulsed laser deposited hydroxyapatite coating on laser surface nitride titanium. Thin Solid Films 517 (2009) 5496-5501.
9. Blalock T., Bai X., Rabiei A.: A study on microstructure and properties of calcium phosphate coatings processed using ion beam assisted deposition on heated substrates. Surface & Coatings Technology 201 (2007) 5850-5858.
10. Xiao X.F., Liu R.F., Zheng Y.Z.: Characterization of hydroxyapatite/titania composite coatings codeposited by a hydrothermal-electrochemical method on titanium. Surface & Coatings Technology 200 (2006) 4406-4413.
11. Yousefpour M., Afshar A., Chen J., Zhang X.: Electrophoretic deposition of porous hydroxyapatite coatings using polytetrafluoroethylene particles as templates. Materials Science and Engineering C 27 (2007) 1482-1486.
12. Ben-Nissan B., Milev A., Vago R.: Morphology of sol-gel derived nano-coated coralline hydroxyapatite. Biomaterials 25 (2004) 4971-4975.
13. Vaahtio M., Peltola T., Hentunen T., Ylanen H., Areva S., Wolke J., Salonen J.I.: The properties of biomimetically processed calcium phosphate on bioactive ceramics and their response on bone cells. J Mater Sci: Mater Med 17 (2006) 1113-1125.
14. Jalota S., Bhaduri S., Bhaduri S.B., Tas A.C.: A protocol to develop crack-free biomimetic coatings on Ti6Al4V substrates. J. Mater. Res., 22 (6) (2007) 1593-1600.
15. Wang Y., Tao J., Wang L., He P, Wang T.: HA coating on titanium with nanotubular anodized TiO2 intermediate layer via electrochemical deposition. Trans. Nonferrous Met. Soc. China 18 (2008) 631-635.
16. Kar A., Raja K.S., Misra M.: Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surface & Coatings Technology 201 (2006) 3723-3731.
17. Oh S., Jin S.: Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Materials Science and Engineering C 26 (2006) 1301-1306.
18. Kim S.E., Lim J.H., Lee S. C., Nam S-C., Kang H-G., Choi J.: Anodically nanostructured titanium dioxides for implant applications. Electrochimica Acta 53 (2008) 4846-4851.
19. Zhang L., Chen Y., Rodriguez J., Fenniri H., Webster T.: Biomimetic helical rosette nanotubes and nonocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants. Int. Journal of Nanomedicine 3(3) (2008) 323-333.
20. Li M., Xiao X., Liu R.: Synthesis and bioactivity of highly ordered TiO2 nanotube arrays. Applied Surface Science 255 (2008) 365-367.
21. Maiyalagan T., Viswanathan B., Varadaraju U.V.: Fabrication and characterization of uniform TiO2 nanotube arrays by sol-gel template method. Bull. Mater. Sci., vol.29 (7) (2006) 705-708.
22. Raja K.S., Misra M., Paramguru K.: Deposition of calcium phosphate coating on nanotubular anodized titanium. Materials Letters 59 (2005) 2137-2141.
23. Yu X., Li Y., Wlodarski W., Kandasamy S., Kalantar-Zadeh K.: Fabrication of nanostructured TiO2 by anodization: A comparision between electrotyles and substrates. Sensors and Actuators B 130 (2008) 25-31.
24. Lee J-H., Kim S-E., Kim Y-J., Chi Ch-S., Oh H-J.: Effects of microstructure of anodic titania on the formation of bioactive compounds. Materials Chemistry and Physics 98 (2006) 39-43.
25. Zhang W., Li G., Li Y., Yu Z., Xi Z.: Fabrication of TiO2 nanotube arrays on biologic titanium alloy and properties. Trans. Nonferrous Met. Soc. China 17 (2007) 692-695.
26. Berger S., Jakubka F., Schmuki P.: Formation of hexagonally ordered nanoporous anodic zirconia. Electrochemistry Communications 10 (2008) 1916-1919.
27. Macak J.M., Schmuki P.: Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochemica Acta 52 (2006) 1258-1264.
28. Raja K.S., Gandhi T., Misra M.: Effect of water kontent of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochemistry Communications 9 (2007) 1069-1076.
29. Allam N.K., Grimes C.A.: Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays. Solar Energy Materials & Solar Cells 92 (2008) 1468-1475.
30. Xiao X., Tian T., Liu R., She H.: Influence of titania nanotube arrays on biomimetic deposition apatite on titanium by alkali treatment. Materials Chemistry and Physics 106 (2007) 27-32.
31. Zhao J., Wang X., Chen R., Li L.: Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Communications 134 (2005) 705-710.
32. Oh S-H., Finones R.R., Daraio C., Chen L-H., Jin S.: Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 26 (2005) 4938-4943.
33. Popat K.C., Leoni L., Grimes C.A., Desai T.A.: Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28 (2007) 3188-3197.
34. Macak J.M., Schmidt-Stein F., Schmuki P.: Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochemistry Communications 9 (2007) 1783-1787.
35. Bestetti M., Franz S., Cuzzolin M., Arosio P., Cavallotti P.L.: Structure of nanotubular titanium oxide templates prepared by electrochemical anodization in H2SO4/HF solutions. Thin Solid Films 515 (2007) 5253-5258.
36. Sieber I., Hildebrand H., Friedrich A., Schmuki P.: Formation of self-organized niobium porous oxide on niobium. Electrochemistry Communications 7 (2005) 97-100.
37. Vega V., Cerdeira M.A., Prida V.M., Alberts D., Bordel N., Pereiro R., Mera F., Garcia S., Hernandez-Velez M., Vazquez M.: Electrolyte influence on the anodic synthesis of TiO2 nanotube arrays. Journal of Non-Crystalline Solids 354 (2008) 5233-5235.
38. Crawford G.A., Chawla N., Das K., Bose S., Bandyopadhyay A.: Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomaterialia 3 (2007) 359-367.
39. Crawford G.A., Chawla N.: Tailoring TiO2 nanotube growth during anodic oxidation by crystallographic orientation of Ti. Scripta Materialia 60 (2009) 874-877.
40. Zhao J., Wang X., Sun T., Li L.: Crystal phase transition and properties of titanium oxide nanotube arrays prepared by anodization. Journal of Alloys and Compounds 434-435 (2007) 792-795.
41. Bauer S., Kleber S., Schmuki P.: TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes. Electrochemistry Communications 8 (2006) 1321-1325.
42. Macak J.M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P.: Current Opinion in Solid State and Materials Science 11 (2007) 3-18.
43. Yang Y., Wang X., Li L.: Synthesis and growth mechanism of graded TiO2 nanotube arrays by two-step anodization. Materials Science and Egnineering B 149 (2008) 58-62.
44. Ghicov A., Tsuchiya H., Hahn R., Macak J.M., Munoz A.G., Schmuki P.: TiO2 nanotubes: H+ insertion and strong electrochromic effects. Electrochemistry Communications 8 (2006) 528-532.
45. Munoz A.G.: Semiconducting properties of self-organized TiO2 nanotubes. Electrochimica Acta 52 (2007) 4167-4176.
46. Hokkanen B., Funk S., Burghaus U., Ghicov A., Schmuki P.: Adsorption kinetics of alkanes on TiO2 nanotubes array – structure – activity relationship. Surface Science 601 (2007) 4620-4628.
47. Balaur E., Macak J.M., Taveira L., Schmuki P.: Tailoring the wettability of TiO2 nanotube layers. Electrochemistry Communications 7 (2005) 1066-1070.
48. Tsuchiya H., Macak J.M., Ghicov A., Tang Y.Ch., Fujimoto S., Niinomi M., Noda T., Schmuki P.: Nanotube oxide coating on Ti-29Nb-13Ta-4.6Zr alloy prepared by self-organizing anodization. Electrochimica Acta 52 (2006) 94-101
49. Yasuda K., Schmuki P.: Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (HN4)2SO4/NH4F electrolytes. Electrochimica Acta 52 (2007) 4053-4061.
50. Wang N., Li X., Wang Y., Hou Y., Zou X., Chen G.: Synthesis of ZnO/TiO2 nanotube composite film by a two-step route. Materials Letters 62 (2008) 3691-3693.
51. Ryu W.H., Park C.J., Kwon H.S.: Synthesis of highly ordered TiO2 nanotube in malonic acid solution by anodization. Journal of Nanoscience and Nanotechnology 8 (2008) 1-4.
52. Tian T., Xiao X., Liu R., She H., Hu X.: Study on titania nanotube arrays prepared by titanium anodization in HN4F/H2SO4 solution. Journal of Materials Science 42 (2007) 5539-3342.
53. Tian T., Xiao X-F., She H-D., Liu R-F.: Biomimetic growth of apatite on titania nanotube arrays fabricated by titanium anodization in HN4F/H2SO4 electrolyte. Materials Science-Poland, vol.8, no.3 (2008) 487-494.
54. Ghicov A., Tsuchiya H., Macak J.M., Schmuki P.: Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochemistry Communications 7 (2005) 505-509.
55. Luo B., Yang H., Liu S., Fu W., Sun P., Yuan M., Zhang Y., Liu Z.: Fabrication and characterization of self-organized mixed oxide nanotube arrays by electrochemical anodization of Ti-6Al-4V alloy. Materials Letters 62 (2008) 4512-4515.
56. Macak J.M., Tsuchiya H., Ghicov A., Schmuki P.: Formation and properties of anodic TiO2 nanotube layers. Electrochemical Communications 7 (2005) 1133-1137.
57. Kunze J., Muller L., Macak J.M., Greil P., Schmuki P., Muller F.A.: Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochimica Acta 53 (2008) 6995-7003.
58. Narayanan R., Seshadri S.K., Kwon T.Y., Kim K.H.: Electrochemical nano-grained calcium phosphate coatings on Ti-6Al-4V for biomaterial applications. Scripta Materialia 56 (2007) 229-232.
59. Ban S., Maruno S.: Hydrothermal-electrochemical deposition of hydroxyapatite. J. Biomed Mater Res 42 (1998) 387-395.
60. Feng B., Chu X., Chen J., Wang J., Lu X., Weng J.: Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate. J Porous Mater, Springer (2009) Article in progress.
61. Kokubo T., Takadama H.: How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27 (2006) 2907-2915.
62. Kodama A., Bauer S., Komatsu A., Asoh H., Ono S., Schmuki P.: Bioactivation of titanium surfa ces Rusing coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomaterialia (2009), Article in progress.
63. Bohner M., Lemaitre J.: Can bioactivity be tested in vitro with SBF solution? Biomaterials 30 (2009) 2175-2179.
64. Kong L., Gao Y., Lu G., Gong Y., Zhao N., Zhang X.: A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. European Polymer Journal 42 (2006) 3171-3179.
65. ISO Standard: ISO 13779-4: 2002. Implants for surgery-hydroxyapatite-part 4: determination of coating adhesion strength. http://www.iso.org/iso/catalogue_detail.htm?csnumber=30723
DOI :
Cytuj : Krella, A. ,Sobieszczyk, S. , Hydroxyapatite coatings on porous ti and ti alloys. Advances in Materials Science Vol.10, nr 1(23)/2010
[Top]

Surface modifications of ti and its alloys

Czasopismo : Advances in Materials Science
Tytuł artykułu : Surface modifications of ti and its alloys

Autorzy :
Krella, A.
The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Cavitation Group, ul. Fiszera 14, 80-231 Gdansk, Poland,
Sobieszczyk, S.
Faculty of Mechanical Engineering, Department of Mechanical Engineering and Materials Strength, Gdansk University of Technology, 80-322 Gdansk, Poland,
Sobieszczyk, S.
Faculty of Mechanical Engineering, Department of Mechanical Engineering and Materials Strength, Gdansk University of Technology, 80-952 Gdansk, Poland,
Abstrakty : This article reviews the various surface modification techniques pertaining to titanium and titanium alloys including physical treatment, mechanical treatment, and chemical and electrochemical treatment. The proper surface modification expands the use of titanium and its alloys in the biomedical field for long-term implants retaining the excellent properties of substrate material and improving the specific surface properties required by clinical applications.

Słowa kluczowe : bioactivity, osteoconductivity, osseointegration, surface modifications, titanium,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 1(23)
Strony : 29 – 42
Bibliografia : 1. Liu X., Chu P.K., Ding Ch.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering, vol.47 (2004) 49-121.
2. Molitor P., Barron V., Young T.: Surface treatment of titanium for adhesive and adhesives. Vol. 21 (2) (2001) 129-136.
3. Citeau A., Guicheux J., Vinatier C., Layrolle P., Nguyen T.P., Pilet P., Daculsi G.: In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting. Biomaterials 26 (2005) 157-165.
4. Liang C.Y., Yang X.J., Wei Q., Cui Z.D.: Comparison of calcium phosphate coatings formed on femtosecond laser-induced and sand-blasted titanium. Applied Surface Science 255 (2008) 515-518.
5. Gbureck U., Masten A., Probst J., Thull R.: Tribochemical structuring and coating of implant metal surfaces with titanium oxide and hydroxyapatite layers. Materials Science and Engineering C 23 (2003) 461-465.
6. Hryniewicz T., Rokicki R., Rokosz K.: Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing. Surface & Coatings Technology 203 (2009) 1508-1515.
7. Strnad J., Strnad Z., Sestak J.: Physico-chemical properties and healing capacity of potentially bioactive titanium surface. Journal of Thermal Analysis and Calorimetry, vol. 88 (3) (2007) 775-779.
8. Mohammadi Z., Ziaei-Moayyed A.A., Sheikh-Mehdi Mesgar A.: Grit blasting of Ti-6Al-4V alloy: Optimization and its effect on adhesion strength of plasma-sprayed hydroxyapatite coatings. Journal of Materials Processing Technology 194 (2007) 15-23.
9. Lu X., Zhao Z., Leng Y.: Biomimetic calcium phosphate coatings on nitric-acid-treated titanium surfaces. Materials Science and Engineering C 27 (2007) 700-708.
10. Yousefpour M., Afshar A., Chen J., Xingdong Z.: Bioactive layer formation on alkaline-acid treated titanium in simulated body fluid. Materials and Design 28 (2007) 2154-2159.
11. Pattanayak D.K., Kawai T., Matsushita T., Takadama H., Nakamura T., Kokubo T.: Effect of HCl concentrations on apatie-forming ability of NaOH-HCl – and heat-treated titanium metal. J Materials Science: Materials in Medicine (2009) published on-line: http://www.springerlink.com/content/m7l108m885m83056/
12. Assis S.L., Costa I.: The Effect of Hydrogen Peroxide on the Electrochemical Behaviour of Ti-13Nb-13Zr Alloy in Hanks’ Solution. Materials Research 9 (4) (2006) 425-429.
13. Han J.Y., Zu Z.T., Zhou L.: Hydroxyapatite/titania composite bioactivity coating processed by sol-gel method. Applied Surface Science 255 (2008) 455-458.
14. Nguyen H.Q., Deporter D.A., Pilliar R.M., Valiquette N., Yakubovich R.: The effect of sol-gel formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants. Biomaterials 25(5) (2004) 865-876.
15. Wierzchoń T., Czarnowska E., Krupa D.: Inżynieria powierzchni w wytwarzaniu biomateriałów tytanowych. Oficyna Wyd. Politechniki Warszawskiej. Warszawa 2004.
16. Wilks R.G., Santos E., Kurmaev E.Z., Yablonskikh M.V., Moewes A., Kuromoto N.K., Soares G.A.: Characterization of oxide layers fordem on electrochemically treated Ti by Rusing soft X-ray absorption measurements. J Electron Spectroscopy and Related Phenomena 169 (2009) 46-50.
17. Diamanti M.V., Pedeferri M.P.: Effect of anodic oxidation parameters on the titanium oxides formation. Corrosion Science 49 (2007) 939-948.
18. Cui X., Kim H.-M., Kawashita M., Wang L., Xiong T., Kokubo T., Nakamura T.: Preparation of bioactive titania films on titanium metal via anodic oxidation. Dental materials 25 (2009) 80-86.
19. Bauer S., Park J., Mark K., Schmuki P.: Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomaterialia 4 (2008) 1576-1582.
20. Goto T.: Surface coating technology for biomaterials – morphology and nono-structure control. International Congress Series 1284 (2005) 248-256.
21. Sevilla P., Aparicio C., Planell J.A., Gil F.J.: Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications. J Alloys and Compounds 439 (2007) 67-73.
22. Trommer R.M., Santos L.A., Bergmann C.P.: Alternative technique for hydroxyapatite coatings. Surface & Coatings Technology 201 (2007) 9587-9593.
23. Kim D.S., Han S.J., Kwak S.-Y.: Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size. J Colloid and Interface Science 316 (2007) 85-91.
24. Baram N., Starosvetsky D., Starosvetsky J., Epshtein M., Armon R., Ein-Eli Y.: Enhanced inactivation of E.coli bacteria using immobilized porous TiO2 photoelectrocatalysis. Electrochimica Acta 54 (2009) 3381-3386.
25. Lewis G., McVay B.: Effect of Thermal Spray Process for Deposition Hydroxyapatite Coating on a Titanium Alloy on its Fatigue Performance. 17th Southern Biomedical Engineering Conf (1998) 119.
26. Gledhill H.C., Turner I.G., Doyle C.: In vitro dissolution behavior of two morphologically different thermally sprayed hydroxyapatite coatings. Biomaterials 22 (2001) 695-700.
27. Li H., Khor K.A.: Characteristics of the nanostructures in thermal sprayed hydroxyapatite coatings and their influence on coating properties. Surface & Coatings Technology 201 (2006) 2147-2154.
28. Lima R.S., Khor K.A., Li H., Cheang P., Marple B.R.: HVOF spraying on nanostructured hydroxyapatite for biomedical applications. Materials Science and Engineering A 396 (2005) 181-187.
29. Goana M., Lima R.S., Marple B.R.: Influence of particle temperature and velocity on the microstructure and mechanical behavior of high velocity oxy-fuel (HVOF) – sprayed nanostructured titania coatings. J Materials Processing Technology 198 (2008) 426-435.
30. Hoseini M., Jedenmalm A., Boldizar A.: Tribological investigation of coatings for artificial joints. Wear 264 (2008) 958-966.
31. Chiu S-M., Chen Z-S., Yang K-Y., Hsu Y-L., Gan D.: Photocatalytic activity of moped TiO2 coatings prepared by sputtering deposition. J Materials Processing Technology 192-193 (2007) 60-67.
32. Krupa D., Baszkiewicz J., Rajchel B., Barcz A., Sobczak J.W., Biliński A., Borowski T.: Effect of calcium-ion implantation on the corrosion resistance and bioactivity of the Ti6Al4V Allom. Vacuum 81 (2007) 1310-1313.
33. Xie Y., Liu X., Huang A., Ding Ch., Chu P.K.: Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation. Biomaterials 26 (2005) 6129-6135.
34. Jo Y.J., Lee C.M., Jang H.S., Lee N.S., Suk J.-H., Lee W.H.: Mechanical properties of fully porous and porous-surfaced Ti-6Al-4V implants fabricated by electro-discharge-sintering. J Materials Processing Technology 194 (2007) 121-125.
35. An Y.B., Lee W.H.: Synthesis of porous titanium implants by environmental-electro-discharge-sintering process. Materials Chemistry and Physics 95 (2006) 242-247.
36. Lausmaa J. in Brunette D.M., Tengvall P., Textor M., Thomsen P. (Eds.): Titanium in Medicine, Springer, Berlin (2001) 231-266.
37. Albrektsson T., Wennerberg A.: Part 1 – review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. International J Prosthodontosis. 17(5) (2004) 536-543.
38. Cook S.D., Thomas K.A., Kay J.F., Jarcho M.: Hydroxyapatite-coated titanium for orthopedic implant applications. Clinical Orthopaedic and Related Research (1988) 225-243.
39. Ronald H.J., Ellingsen J.E.: Effect of micro-roughness produced by TiO2 blasting-tensile testing of bone attachment by using coin-shaped implants. Biomaterials 23 (2002) 4211-4219.
40. Fini M., Savarino L., Aldini N.N., Martini L., Giaveresi G., Rizzi G., Martini D., Ruggeri A., Giunti A., Giardino R.: Biomechanical and histomorphometric investigation on two morphologically differing titanium surfaces with and without frluorohydroxyapatite coating: an experimental study in sheep tibiae. Biomaterials 24 (2003) 3183-3192.
41. Andrade M.C., Bastos I.N., Filgueiras M.R.T., Ogasawara T.: Behavior of hydroxyapatite coated titanium as a function of NaOH pretreatment. Revista Cientifica Internacional, 1(3) (2008) 1-16.
42. Conforto E., Caillard D., Muller L., Muller F.A.: The structure of titanate nanobelts used as seeds for the nucleation of hydroxyapatite at the surface of titanium implants. Acta Biomaterialia 4 (2008) 1934-1943.
43. Ho W-F., Lai Ch-H., Hsu H-Ch., Wu S-Ch.: Surface modification of low-modulus Ti-7.5Mo Allom treated with aqueous NaOH. Surface & Coatings Technology 203 (2009) 3142-3150.
44. Kim H.M., Miyaji F., Kokubo T., Nakamura T.: Preparation of bioactive Ti and its alloys via Simple chemical surface treatment. J Biomedical Materials Research, 32 (3) (1996) 409-417.
45. Lu X., Leng Y., Zhang X., Xu J., Qin L., Chan Ch-W.: Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo. Biomaterials 26 (2005) 1793-1801.
46. Nebe J.B., Muller L., Luthen F., Ewald A., Bergemann C., Conforto E., Muller F.A.: Osteoblast response to biomimetically altered titanium surfaces. Acta Biomaterialia 4 (2008) 1985-1995.
47. Takeuchi M., Abe Y., Yoshida Y., Nakayama Y., Okazaki M., Akagawa Y.: Acid pretreatment of titanium implants. Biomaterials 24 (10) (2003) 1821-1827.
48. Tas A.C.: Formation of calcium phosphate whiskers in hydrogen peroxide (H2O2) solutions AT 90oC. J Americal Ceramics Society 90(8) (2007) 2358-2362.
49. Shukla A.K., Balasubramaniam R.: Effect of surface treatment on electrochemical behavior of CP Ti, Ti-6Al-4V and Ti-13Nb-13Zr alloys in simulated human body fluid. Corrosion Science 48 (2006) 1696-1720.
50. Oh S-H., Finones R.R., Daraio C., Chen L-H., Jin S.: Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 26 (2005) 4938-4943.
51. Sobieszczyk S., Zieliński A.: Coatings in Arthroplasty. Advances in Materials Science, vol. 8, no 4 (2008) 35-54.
52. Li P., Groot K.: A calcium phosphate formation within sol-gel-prepared titania in vitro and in vivo. J Biomedical Science Research 27 (1993) 1495-1500.
53. Wen C.E., Xu W., Hu W.Y., Hodgson P.D.: Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications. Acta Biomaterialia 3 (2007) 403-410.
54. Ben-Nissan B., Milev A., Vago R.: Morphology of sol-gel derived nano-coated coralline hydroxyapatite. Biomaterials 25 (2004) 4971-4975.
55. Maiyalagan T., Viswanathan B., Varadaraju U.V.: Fabrication and characterization of uniform TiO2 nanotube arrays by sol-gel template method. Bull. Mater. Sci., vol.29 (7) (2006) 705-708.
56. Kim H-W., Koh Y-H., Li L-H., Lee S., Kim H-E.: Hydroxyapatite coating on titanium substrate with titania Buffet layer processed by sol-gel method Biomaterials 25 (2004) 2533-2538.
57. Feng B., Chu X., Chen J., Wang J., Lu X., Weng J.: Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate. J Porous Materials (2009) published on-line: http://www.springerlink.com/content/793488162u28q61t/
58. Narayanan R., Seshadri S.K.: Phosphoric acid anodization of Ti-6Al-4V – Structural and corrosion aspects. Corrosion Science 49 (2007) 542-558.
59. Oh S., Jin S.: Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Materials Science and Engineering C 26 (2006) 1301-1306.
60. Wei D., Zhou Y., Yang Ch.: Characteristic, cell response and apatite-induction ability of microarc oxidized TiO2-based coating containing P on Ti6Al4V before and after chemical-treatment and dehydration. Ceramics International 35 (2009) 2545-2554.
61. Sun J., Han Y., Huang X.: Hydroxyaptite coatings prepared by micro-arc oxidation in Ca- an P-containing electrolyte. Surface & Coatings Technology 201 (2007) 5655-5658.
62. Wei D., Zhou Y., Jia D., Wang J.: Effect of heat treatment on the structure and in vitro bioactivity of microarc-oxidized (MAO) titania coatings containing Ca P ions. Surface & Coatings Technology 201 (2007) 8723-8729.
63. Park I.S., Woo T.G., Jeon W.Y., Park H.H., Lee M.H., Bae T.S., Seol K.W.: Surface characteristics of titanium anodized in the four different types of electrolyte. Electrochimica Acta 53 (2007) 863-870.
64. Nolan M.G.: Design and commissioning of an off-line APCVD coater to deposit titanium dioxide self-cleaning films. SIMTech technical reports, 9 (2) (2008) 75-80.
65. Romanuja N., Levy R.A., Dharmadhikari S.N., Ramos E., Pearce W., Menasian S.C., Schamberger P.C., Collins C.C.: Synthesis and characterization of low pressure chemically vapor deposited titanium nitride films using TiCl4 and NH3. Materials Letters 57(2) (2002) 261-269.
66. Cruz N.C., Rangel E.C., Wang J., Trasferetti B.C., Daranzo C.U., Castro S.G., Morges M.A.B.: Properties of titanium oxide films obtained by PECVD. Surface & Coating Technology 126 (2-3) (2000) 123-130.
67. Jóźwik K., Karczemska A.: The new generation Ti6Al4V artificial heart valve with nanocrystalline diamond coating on the ring and with Derlin disc after long-term mechanical fatigue examination. Diamond & Related Materials 16 (2007) 1004-1009.
68. Kugler C., Fink M., Laimer J., Stori H.: Dynamics of pulsed d.c. discharges used for PACVD – effect of additional high voltage pulses. Surface & Coatings Technology 142-144 (2001) 424-428.
69. Tosatti S., Michel R., Textor M., Spencer N.D.: Self-assembled monolayers of dodecyl and hydroxyl-dodecyl phosphates on both smooth and rough titanium and titanium oxide surfaces. Langmuir 18(9) (2002) 3537-3548.
70. Zhang Z.H., Feng Ch.L.: Immobilization/hybridization of amino-modified DNA on plasma-polymerized allyl chloride. Applied Surface Science 253 (22) (2007) 8915-8922.
71. Ishikawa K., Suzuki T., Kitamura Y., Tobe S.: Corrosion resistance of thermal sprayed titanium coatings in chloride solution. J Thermal Spray Technology 8(2) (2007) 273-278.
72. Liu X., Poon R.W.Y., Kwok S.C.H., Chu P.K., Ding Ch.: Plasma surface modification of titanium for hard tissue replacements. Surface & Coatings Technology 186 (2004) 227-233.
73. Nakashima Y., Hayashi K., Inadome T., Uenoyama K., Hara T., Kanemaru T., Sugioka Y., Noda I.: Hydroxyapatite-coating on titanium arc sprayed titanium implants. J Biomedical Materials Research Part A 35(3) (1998) 287-298.
74. Rajesekaran B., Ganesh S.R.S., Joshi S., Sundararajan G.: Performance of plasma sprayed and detonation gun sprayed Cu-Ni-In coatings on Ti-6Al-4V under plain fatigue and fretting fatigue loading. Materials Science & Engineering 479 (1-2) (2008) 83-92.
75. Bray M., Cockburn A., O’Neill W.: The Laser-assisted Cold Spray process and deposition charactrisation. Surface & Coatings Technology 203 (19) (2009) 2851-2857.
76. Chiu Ch-Y., Hsu H-Ch., Tuan W-H.: Effect of zirconia addition on the microstructural evolution of Poros hydroxyapatite. Ceramics International 33 (2007) 715-718.
77. Wiklund U., Larsson M.: Low friction PVD titanium-carbon coatings. Wear 241 (2) 234-238.
78. Giolli C., Borgioli F., Credi A., et.al.: Characterization of TiO2 coatings prepared by a modified electric arc-physical vapor deposition system. Surface & Coatings Technology 202 (2007) 13-22.
79. Sobiecki J.R., Wierzchoń T.: Structure and properties of plasma carbonitrided Ti-6Al-2Cr-2Mo Alloy. Surface & Coatings Technology 200 (14-15) 4363-4367.
80. Moller W., Mukherjee S.: Plasma-based ion implantation. Current Science 83 (3) (2002) 237-253.
81. Zhao X., Liu X., Ding Ch., Chu P.K.: Effects of plasma treatment on bioactivity of TiO2 coatings. Surface & Coatings Technology 201 (2007) 6878-6881.
82. Valencia-Alvarado R., Piedad-Beneitez A., Lopez-Callejas R., Barocio S.R., Mercado-Cabrera A., Pena-Equiluz R., Munoz-Castro A.E., Rosa-Vazquez J.: Oxygen implantation and diffusion in pure titanium by an rf inductively coupled plasma. Vacuum 83 (Supp 1) (2009) 264-267.
83. Gurrappa I., Monara D., Gerlach J.W., Mandl S., Rauschenbach B.: Influence of nitrogen implantation on the high temperature oxidation of titanium-based alloys. Surface & Coatings Technology 201 (6) (2006) 3536-3546.
84. Johansson C.B., Lausmaa J., Rastlund T., Thomsen P.: Commercially pure titanium and Ti6Al4V implants with an without nitrogen-ion-implantation: surface characterization and quantitative studies in rabbit cortical bone. J Materials Science in Medicine 4 (2) (1993) 132-141.
85. Varela M., Garcia J.A., Rodriquez R., Caceres D., Ballesteros C.: Microstructure changes induced by low-energy high-temperature nitrogen ion implantation on vanadium-titanium alloys. Nanotechnology 3 (2003) 207-210.
86. Pham M.T., Matz W., Reuther H., Richter E., Steiner G.: Hydroxyapatite nucleation on Na ion implanted Ti surfaces. J Materials Science Letters 19 (2000) 1029-1031.
87. Cai K.Y.: Surface modification of titanium films with sodium ion implantation: surface properties and protein adsorption. Acta Metallurgica Sinica 20 (2) (2007) 148-156.
88. Asami K., Ohtsu N., Saito K., Hanawa T.: CaTiO3 films sputter-deposited under simultaneous Ti-ion implantation on Ti-substrate. Surface & Coatings Technology 200 (2005) 1005-1008.
89. Krupa D., Baszkiewicz J., Sobczak J.W., Biliński A., Barcz A., Rajchel B.: Influence of anodic oxidation on the bioactivity and corrosion resistance of phosphorous-ion implanted titanium. Vacuum 70 (2003) 109-113.
90. Wan Y.Z., Huang Y., He F., Wang Y.L., Zhao Z.G., Ding H.F.: Effect of Mg ion implantation on calcium phosphate formation on titanium. Surface & Coatings Technology 201 (2006) 2904-2909.
91. Krupa D., Baszkiewicz J., Kozubowski J.A., Barcz A., Sobczak J.W., Biliński A., Lewandowska-Szumiel M., Rajchel B.: Effect of dual Ion implantation of calcium and phosphorus on the properties of titanium. Biomaterials 26 (2005) 2847-2856.
92. Krupa D., Baszkiewicz J., Kozubowski J., Barcz A., Sobczak J., Biliński A., Rajchel B.: The influence of calcium and/Or phosphorous ion implantation on the structure and corrosion resistance of titanium. Vacuum 63 (2001) 715-719.
93. Hanawa T., Nakajima S., Yamamoto A., Suzuki Y., Iwaki M.: Control of platelet and cell adhesion to titanium with helium ion implantation. European Cells and Materials 6 (Supp 1) (2003) 36.
94. Ma X., Sun Y., Wu P., Xia L., Yukimura K.: Structure of titanium films implanted with carbon by plasma-based ion implantation. Surface & Coatings Technology 169-170 (2003) 375-378.
DOI :
Cytuj : Krella, A. ,Sobieszczyk, S. ,Sobieszczyk, S. , Surface modifications of ti and its alloys. Advances in Materials Science Vol.10, nr 1(23)/2010
[Top]

Reliable method of assessing fracture properties of asymmetric bonded joints

Czasopismo : Advances in Materials Science
Tytuł artykułu : Reliable method of assessing fracture properties of asymmetric bonded joints

Autorzy :
Krella, A.
The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Cavitation Group, ul. Fiszera 14, 80-231 Gdansk, Poland,
Sobieszczyk, S.
Faculty of Mechanical Engineering, Department of Mechanical Engineering and Materials Strength, Gdansk University of Technology, 80-322 Gdansk, Poland,
Sobieszczyk, S.
Faculty of Mechanical Engineering, Department of Mechanical Engineering and Materials Strength, Gdansk University of Technology, 80-952 Gdansk, Poland,
Tysarczyk, J.
Faculty of Mechanical Engineering, Dept. of Material Science and Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland,
Abstrakty : Two methods of assessing fracture properties of adhesive joints were studied. Two wedge tests: with continuous deflection and with force measurements were compared. Asymmetric geometry of the bonded joint was considered, i.e. two different plates of aluminium alloys: Al-Cu and Al-Mg, were bonded with epoxy DGEBA adhesive. The analytical model is shown to estimate the values of fracture properties: crack position and critical fracture energy. It was found that both methods allow easy and reliable estimation and comparison of fracture properties, although some differences were observed.

Słowa kluczowe : bonded joints, adhesion, fracture, wedge test,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 1(23)
Strony : 43 – 52
Bibliografia : 1. Wegman R., Tullos T. R.: Handbook of Adhesive Bonded Structural Repair, Noyes Publications, 1992.
2. Täljsten B.: The Importance of Adhesive Bonding-An histiroci overview and future possibilities, Proceedings of the International Symposium on Bond Behaviour of FRP in Structures, ed. Chen and Teng, International Institute for FRP in Construction, 2005.
3. Licari J. J., Swanson D. W. : Adhesive Technology for electronic applications, William Andrew Publishing, 2005.
4. Rider A. N., Olsson-Jacques C. L., Arnott D. R.: Influence of Adherend Surface Preparation on Bond Durability, Surf. Interface Anal. 27, pp. 1055–1063, 1999.
5. Critchlow G., Brewis D. M.: Review of surface pretreatments for aluminium alloys, J. Adhesion and Adhesives, 16, pp. 255-275, 1996.
6. Irfan M. H.: Chemistry and Technology of Thermosetting Polymers in Construction Applications, Kluwer Academic Publishers, 1998.
7. Jin F. L., Park S. J.: Improvement in fracture behaviors of epoxy resins toughened with sulfonated poly(ether sulfone), Polymer Degradation and Stability, pp. 509-514, 2007.
8. Aymerich F., Lecca G., Priolo P.: Modelling of delamination growth in composite laminates by the virtual internal bond method, Composites: Part A 39 pp. 145–153, 2008.
9. Dillarad D. A.: Adhesion Science and Engineering, A. V. Pocius ed. , Eslevier Science, pp.1-45, 2002.
10. Bujanda A., Copeland C., Dibelka J., Forster A., Holmes L., Jensen R., Kosik W., McKnight S., Koellhoffer S., Gillespie Jr. J.: Analysis of Adhesively Bonded Ceramics Using an Asymmetric Wedge Test, ARL-TR-4665, 2008.
11. Goland M., Reissner E.: The stresses in cemented joints, J. Appl. Mech., Trans. ASME, 66, A17–A27, 1944.
12. Carpenter W. C.: Stresses in bonded connections using finite elements, Int. J. Numer. Methods Engng., 15, pp. 1659–1680, 1980.
13. Budzik M., Jumel J., Imielinska K., Shanahan M. E. R.: Accurate and continuous adhesive fracture energy determination using an instrumented wedge test, International Journal of Adhesion and Adhesives 29, pp. 694–701, 2009.
14. Griffith, A. A.: The phenomena of rupture and flow in solids, Philosophical Transactions of the Royal Society of London, A 221, pp. 163–198, 1922.
15. Irwin G.: Analysis of stresses and strains near the end of a crack traversing a plate, Journal of Applied Mechanics 24, pp. 361–364, 1957.
16. Aglan H, Abdo Z.: An innovative approach to fatigue disbond propagationin adhesive joints, J Adhes Sci Technol, 10, pp.183–98, 1998.
17. Sener J.-Y., Ferracin T.; Caussin L., Delannay F.: On the precision of the wedge-opened double cantilever beam method for measuring the debonding toughness of adhesively bonded plates, International Journal of Adhesion and Adhesives, Volume 22, Number 2, pp. 129-137, 2002.
DOI :
Cytuj : Krella, A. ,Sobieszczyk, S. ,Sobieszczyk, S. ,Tysarczyk, J. , Reliable method of assessing fracture properties of asymmetric bonded joints. Advances in Materials Science Vol.10, nr 1(23)/2010
[Top]

Temperature measurement using a Chx/porous silicon/Si structure encapsulated in a CO2 rich environment

Czasopismo : Advances in Materials Science
Tytuł artykułu : Temperature measurement using a Chx/porous silicon/Si structure encapsulated in a CO2 rich environment

Autorzy :
Chiali, A.
University, Bp 119, Tlemcen, ALGERIA,
Abstrakty : This work reports on the possible use of microporous silicon as a temperature sensor. This work is based on previous published works [7, 8, and 9]. The device is based on hydrocarbon group (CHx) / porous silicon (PS) /Si structure. The porous sample was coated with hydrocarbons groups deposited by the plasma of methane /argon mixture. Current–voltage characteristics have been investigated as a function of temperature in the range 200C-70°C.The results show that for a constant voltage in the range 0.7-1V, the current increases linearly with the environment temperature reaches a maximum at 70°C and then stabilizes. This result suggests that the developed structure can be used for sensing temperatures not exceeding 70°C.

Słowa kluczowe : porous silicon, temperature sensor, carbon dioxide,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 2(24)
Strony : 4 – 10
Bibliografia : 1. Chursanova M.V., Germash L.P., Yukhymchuk V.O., Dzhagan V.M., Khodasevich I.A., Cojoc D., Applied Surface Science, 256 (2010), 3369-3373.
2. Vitanov P., Goranova E., Stavrov V., Ivanov P., Singh P.K., Solar Energy Materials and Solar Cells, 93 (2009), 297-300.
3. Kanungo J., Saha H., Basu S., Sensors and Actuators B: Chemical, 140 (2009), 65-72.
4. Müller G, Friedberger A., Knese K., Handbook of Silicon Based MEMS Materials & Technologies (First edition), 2010, 409-431.
5. Bazrafkan I, Dariani R.S., Physica B: Condensed Matter, 404, 2009, 1638-1642.
6. Yuan Ming Huang, Fu-fang Zhou, Bao-gai Zhai, Lan-li Chen, Solid State Ionics, 179 (2008), 1194-1197.
7. Baranauskas V, Peterlevitz A.C., Chang D.C., Durrant S.F., Applied Surface Science, 185 (2001), 108-113.
8. Chursanova M.V., Germash L.P., Yukhymchuk V.O., Dzhagan V.M., Khodasevich I.A., Cojoc D., Applied Surface Science, 256 (2010), 3369-3373.
9. Gabouze N., Benzekkour N., Mahmoudi B., Belhousse S., Cheraga H., Ghellai N., Applied Surface Science 254 (2008), 3648–3652.
10. H. Cheraga, S. Belhousse, N. Gabouze. Applied Surface Science 238 (2004) 495–500.
11. Gabouze N, Belhousse S, Cheraga H, Ghellai N, Ouadah Y, Belkasem Y, Keffous A. Vacuum 80 (2006), 986-989.
12. Zito F., Aquilino F., Fragomeni L., Merenda M., Della Corten F., Sensors and Actuators A: Physical, 158 (2010), 169-175.
13. Il Young Han, Sung Jin Kim., Sensors and Actuators A: Physical, 141 (2008), 52-58.
14. Keränen K., Mäkinen J-T, Korhonen P., Juntunen E., Heikkinen V., Mäkelä J., Sensors and Actuators A: Physical, 158 (2010), 161-167.
15. Nanosilicon, 2008, 149-175 James L. Gole, Stephen E. Lewis
16. Handbook of Silicon Based MEMS Materials & Technologies (First edition), 2010, Pages 409-431. Gerhard Müller, Alois Friedberger, Kathrin Knese.
17. Ouchabane M, Aoucher M., Sekkal A., Henda K., Lahmar H., Proceeding of the 16th International Symposium on Plasma Chemistry, Taormina, Italy, 2003, p. 410.
18. Ouchabane M., Tadjine R., Lahmar H., Zekara M., Henda K., Kessi O., Proceeding of the 14th international Symposium on Plasma Chemistry, vol. IV, Prague, Czech Republic, 1999, p. 1709.
19. Tucci M., La Ferrara V., Della Noce M., Massera E., Quercia L., Non-Cryst J., Solids 338–340 (2004), 776.
20. Mulloni V. Gaburro Z., Pavesi L. Porous silicon microactivities as optical chemical sensor. Proceeding of Porous Semiconductors-Sciences and Technology, PSST-2, Madrid, Spain, 12-17 March, 2000, 101.
21. Jalkanen T., Tuura J., Mäkilä M, SalonenJ., Sensors and Actuators B: Chemical, In Press, Corrected Proof, Available online 9 March 2010.
22. Ait Hamouda K., Gabouze N., Hadjersi T., Benrekaa N., Outemzabet R., Cheraga H., Beldjilali K., Mahmoudi B.R., Sol. Energy Mater. Sol. Cells 76 (2003) 535.
23. Adamyan Z., Adamian V., Aroutiounian. Physica E, 38, (2007), 164-167 A.
DOI :
Cytuj : Chiali, A. , Temperature measurement using a Chx/porous silicon/Si structure encapsulated in a CO2 rich environment. Advances in Materials Science Vol.10, nr 2(24)/2010
[Top]

Failure analysis of the exhaust valve face in diesel marine engine

Czasopismo : Advances in Materials Science
Tytuł artykułu : Failure analysis of the exhaust valve face in diesel marine engine

Autorzy :
Chiali, A.
University, Bp 119, Tlemcen, ALGERIA,
Smoleńska, H.
Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Engineering, Gdansk, Poland,
Abstrakty : The exhaust valve from marine diesel engine which was damaged after 2000 hours of service was investigated. In order to prolong the service time the valve face was cladded with cobalt base alloy using laser technique. After failure microstructural and chemical analyses reviled that cladding process was conducted improperly. The chemical composition of the clad layer was far from the designed one and what more completely inhomogeneous. As a result the valve presented different properties in different regions which led to premature failure.

Słowa kluczowe : cobalt base alloy, laser cladding, wear,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 2(24)
Strony : 11 – 18
Bibliografia : 1. Qixian S., Yan S., Development of Laser Cladding Stellite F Alloy On Valve Face, Seoul 2000 FISITA World Automotive Congress ;June 12-15, 2000, Seoul, Korea.
2. Schlager D., Theiler C., Kohn H., Protection against high temperature corrosion with laser welded claddings, applied and tested on exhaust valve discs of large diesel engines burning heavy fuel oil, Materials and Corrosion 53 (2002), 103-110.
3. Nando, S.K., Roskilly, A.P., Exhaust valve failure under residual fuel operation, Journal of Marine Design and Operations, B2 (2003), 23-28.
4. Lijun H., Kaushik M. P., Liou F. W., Modeling of laser deposition and repair process, Journal of Laser Applications, 17 (2005), 89-99.
5. High-Temperature Oxide Regrowth on Mechanically Damaged Surfaces; P. J. Blau, T. M. Brummett; Tribol Lett., 32 (2008), 153–157.
6. A study of exhaust valve and seat insert wear depending on cycle numbers; Keyoung Jin Chun, Jae Hak Kim, Jae Soo Hong; Wear, 263 (2007), 1147–1157.
DOI :
Cytuj : Chiali, A. ,Smoleńska, H. , Failure analysis of the exhaust valve face in diesel marine engine. Advances in Materials Science Vol.10, nr 2(24)/2010
[Top]

Optimal Features of Porosity of Ti Alloys Considering their Bioactivity and Mechanical Properties

Czasopismo : Advances in Materials Science
Tytuł artykułu : Optimal Features of Porosity of Ti Alloys Considering their Bioactivity and Mechanical Properties

Autorzy :
Chiali, A.
University, Bp 119, Tlemcen, ALGERIA,
Smoleńska, H.
Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Engineering, Gdansk, Poland,
Sobieszczyk, S.
Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Mechanical Engineering and Materials Strength, 80-233 Gdańsk, Poland,
Abstrakty : This article reviews the influence of porosity and pore sizes of titanium and titanium alloys, used as orthopaedic materials, on bioactivity and mechanical properties of the porous structures. The optimal features of porous titanium scaffolds allow the reconstruction and regeneration of bone tissue in load-bearing applications.

Słowa kluczowe : bioactivity, mechanical properties, porosity, pore size, titanium,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 2(24)
Strony : 20 – 30
Bibliografia : 1. Gu Y.W., Yong M.S., Tay B.Y., Lim C.S.: Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2. Materials Science and Engineering, vol. C 29 (2009), 1515-1520.
2. Froimson M.I., Garino J., Machenaud A., Vidalain J.P.: Minimum 10-year results of a tapered, titanium, hydroxyapatite-coated hip stem. The Journal of Arthroplasty, 22, no.1 (2007), 1-7.
3. Spoerke E.D., Murray N.G., Li H., Brinson L.C., Dunand D.C., Stupp S.I.: A bioactive titanium foam scaffold for bone repair. Acta Biomaterialia, 1 (2005), 523-533.
4. Karageorgiou V., Kaplan D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26 (2005), 5474-5491.
5. Li J.P., Habibovic P., Doel M., Wilson C.E., Wijn J.R., Blitterswijk C.A., Groot K.: Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials, 28 (2007), 2810-2820.
6. Alvarez K., Hyun S.K., Nakano T., Umakoshi Y., Nakajima H.: In vivo osteocompatibility of Lotus-type porous nickel-free stainless steel in rats. Mater. Sci. Eng. C, 29 (2009), 1182-1190.
7. Galante J., Rostoker W.: Fiber metal composities in the fixation of skeletal prosthesis. J. Biomed. Mater. Res., 4 (1973), 43-61.
8. Galante J., Rostoker W., Lueck R.: Sintered fibre metal composites as a basis for attachment of implants to bone, J. Bone. J Surg., 53, A(1) (1971), 101-114.
9. Davis N.G., Teisen J., Schuh C., Dunand D.C.: Solid-state foaming of titanium by superplastic expansion of argon-filled pores. J. Mater. Res., 16 (2001) 1508-1539.
10. Li J.P., Li S.H., Van Blitterswijk C.A., De Groot K.: A novel porous Ti6Al4V: characterization and cell attachment. J. Biomed. Mater. Res., 73A (2005), 223-233.
11. Miyao R., Omori M., Watari F., Yokoyama A., Matsumo H., Hirai T., Kawasaki T.: Fabrication of functionally graded implants by spark plasma sintering and their properties. J. Japan Soc. Powder Metall., 47 (2000), 1239-1242.
12. Groza J.R., Zavaliangos A.: Sintering activation by external electrical field. Mater Sci. Eng. A., 287 (2000), 171-177.
13. Charriere E., Lemaitre J., Zysset Ph.: Hydroxyapatite cement scaffolds with controlled macroporosity: fabrication protocol and mechanical properties. Biomaterials, 24 (2003), 809-817.
14. Borisov A.A., De Luca L., Merzhanov A.: Self-propagating high-temperature synthesis. Combustion Science & Technology Book Series, vol.5, New York (2002).
15. Lopez-Heredia M.A., Sohier J., Gaillard C., Quillard S., Dorget M., Layrolle P.: Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials, 20 (2008), 2608-2615.
16. Li J.P., Wijn J.R., Blitterswijk C.A., Groot K.: Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment. Biomaterials, 27 (2006), 1223-1235.
17. Ravelingien M., Hervent A-S., Mullens S., Luyten J., Vervaet Ch., Remon J.P.: Influence of surface topography and pore architecture of alkali-treated titanium on in vitro apatite deposition. Applied Surface Science, 256 (2010), 3693-3697.
18. Mullen L., Stamp R.C., Brooks W.K., Jones E., Sutcliffe C.J.: Selective laser melting: A regular unit approach for the manufacture of porous titanium, bone ingrowth constructs, suitable for orthopaedic applications. J. Biomed. Mater. Res. B 2009 in press .
19. Lee J.-H., Kim H-E., Koh Y-H.: Highly porous titanium (Ti) scaffolds with bioactive microporous hydroxyapatite/TiO2 hybrid coating layer. Materials Letters 63 (2009), 1995-1998.
20. Vasconcellos L.M., Oliveira M.V., Graca M.L., Vasconcellos L.G.O., Carvalho Y.R., Cairo C.A.A.: Porous titanium scaffolds produced by powder metallurgy for biomedical applications. Mater Res., 11, (3), (2008), 275-280.
21. Shen H., Oppenheimer S.M., Dunand D.C., Brinson L.C.: Numerical Modeling of Pore Size and Distribution in Foamed Titanium. Mechanics of Mat. 38, (8-10) (2006), 933-944.
22. Bram M., Schiefer H., Bogdanski D., Koller M., Buchkremere H.P., Stover D.: Implant surgery: How bone bonds to PM titanium. Metal Powder R., (2006), 26-31.
23. St-Pierre J-P., Gauthier M., Lefebvre L-P., Tabrizian M.: Three-dimensional growth of differentiating MC3T3-E1. Biomaterials, 26 (2005), 7319-7328.
24. Cachinho S.C.P., Correia R.N.: Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behaviour. J. Mater. Sci: Mater. Med.,19 (2008) 451-457.
25. Liao S., Chan C.K., Ramakrishna S.: Stem cells and biomimetic materials strategies for tissue engineering. Mater. Sci. and Eng., C 28 (2008) 1189-1202.
26. Zhang E., Zou Ch.: Porous titanium and silicon-substituted hydroxyapatite biomodification prepared by a biomimetic process: Charakterization and in vivo evaluation. Acta Biomaterialia, 5 (2009), 1732-1741.
27. Hayakawa T., Takahashi K., Okada H., Yoshinari M., Hara H., Mochizuki Ch., Yamamoto H., Sato M.: Effect of thin carbonate-containing apatite (CA) coating of titanium fiber mesh on trabecular bone response. J. Mater. Sci: Mater. Med., 19 (2008), 2087-2096.
28. Fujibayashi S., Neo M., Kim H-M., Kokubo T., Nakamura T.: Osteoinduction of porous bioactive titanium metal. Biomaterials, 25 (2004) 443-450.
29. Muller U., Imwinkelried T., Horst M., Sievers M., Graf-Hausner U.: Do human osteoblasts grow into open-porous titanium? European Cells and Mat., 11 (2006) 8-15.
30. Zhang Q., Leng Y., Xin R.: A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium. Biomaterials, 26 (2005), 2857-2865.
31. Shen H., Li H., Brinson L.C.: Effect of microstructural configurations on the mechanical responses of porous titanium: A numerical design of experiment analysis for orthopaedic applications. Mechanics and Materials, 40 (2008), 708-720.
32. Li Ch., Zhu Z.: Dynamic Young’s modulus of open-porosity titanium measured by the electromagnetic acoustic resonance method. J. Porous Mater., 13 (2006) 21-26.
33. Ryan G.E., Pandit A.S., Apatsidis D.P.: Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials, 29 (2008), 3625-3635.
34. Zhao J., Lu X., Weng J.: Macroporous Ti-based composite scaffold prepared by polymer impregnating method with calcium phosphate coatings. Mater. Lett., 62 (2008), 2921-2924.
35. Chen X-B., Li Y-C., Hodgson P.D., Wen C.: The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation. Acta Biomaterialia, 5 (2009), 2290-2302.
36. Ahmad S., Muhamad N., Muchtar A., Sahari J., Jamaludin K.R, Ibrahim M.H., Mohamad Nor N.H., Murtadhahadi I.: Producing of titanium foam using titanium alloy (Al3Ti) by slurry method. Brunei Int. Conf. of Eng. And Techn. (BICET) 3-4.11.2008 Brunei (2008).
37. Esen Z., Bor S.: Processing of titanium foams using magnesium spacer particles. Scripta Materialia, 56 (2007), 341-344.
38. Kotan G., Bor A.S.: Production and Characterization of High Porosity Ti-6A-4V Foam by Space Holder Technique in Powder Metallurgy. Turkish J. Eng. Env. Sci. 31 (2007), 149-156.
39. Xiong J., Li Y., Wang X., Hodgson P., Wen C.: Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications. Acta Biomaterialia, 4 (2008), 1963-1968.
40. Lu Y-P., Li M-S., Li S-T., Wang Z-G., Zhu R-F.: Plasma-sprayed hydroxyapatite + titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials, 25 (2004), 4393-4403.
41. Liu X., Chu P.K., Ding Ch.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering, 47 (2004), 49-121.
42. Wen C.E., Xu W., Hu W.Y., Hodgson P.D.: Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications. Acta Biomaterialia, 3 (2007), 403-410.
43. Mayr H., Ordung M., Ziegler G.: Development of thin electrophoretically deposited hydroxyapatite layers on Ti6Al4V hip prosthesis. J. Mater Sci., 41 (2006, 8138-8143.
44. Wang C.X., Wang M., Zhou X.: Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedence spectroscopy study. Biomaterials, 24 (18) (2003), 3069-3077.
45. Sobieszczyk S.: Hydroxyapatite coatings on porous Ti and Ti alloys. Advances in Mater. Sci., 10 (1) (2010) 19-28.
46. Schmidt C., Kaspar D., Sarkar M.R., Claes L.E., Ignatius A.A.: A scanning electron microscopy study of human osteoblast morphology on five orthopaedic metals. J. Biomed. Mater. Res. (Appl. Biomaterials), 63 (2002), 252-261.
47. Annaz B., Hing K.A., Kayser M., Buckland T., Di Silvo L.: Porosity variation in hydroxyapatite and osteoblast morphology: a scanning electron microscopy study. J. of Microscopy, 215 (2004), 100-110.
48. Sun J., Han Y., Cui K.: Microstructure and apatite-forming ability of the MAO-treated porous titanium. Surface & Coatings Technology, 202 (2008) 4248-4256.
49. Lu Y-P., Song Y-Z., Zhu R-F., Li M-S., Lei T-Q.: Factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment. Applied Surf .Sci., 206 (2003), 345-354.
50. Feng B., Chu X., Chen J., Wang J., Lu X., Weng J.: Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate. J Porous Materials (2009) published on-line:
51. Jones J.R.: New trends in bioactive scaffolds: The importance of nanostructure. J European Cer. Soc., 29 (2009), 1275-1281.
52. Sridhar T.M., Eliaz N., Mudali U.K., Ray B.: Electrophoretic deposition of hydroxyapatite coatings and corrosion aspects of metallic implants. Corr. Rev., 20(4-5) (2002), 255-293.
53. Sobieszczyk S.: Surface modifications of Ti and Ti alloys. Advances in Materials Science, 10(1) (2010) 29-42.
54. Chen X.V., Nouri A., Li Y.C., Lin J.G., Hodgson P.D., Wen C.E.: Effect of surface roughness of Ti, Zr and TiZr on apatite precipitation from simulated body fluid. Biotechnol Bioeng, 101 (2008), 378-387.
55. Chen X.B., Li Y.C., Hodgson P.D., Wen C.E.: Microstructures and bond strengths of the calcium phosphate coatings formed on titanium from different simulated body fluids. Mater. Sci. Eng., C29 (2009), 165-171.
56. Wang X.J., Li Y.C., Lin J.G., Hodgson P.D., Wen C.E.: Apatite-inducing ability of titanium oxide layer on titanium surface: the effect of surface energy. J. Mater. Res., 23 (2008), 1682-1688.
57. Gibson L.J.: Biomechanics of cellular solids. J Biomechanics, 38 (3) (2005) 377-399.
58. Zhao C.Y., Zhu X.D., Yuan T., Fan H.S., Zhang X.D.: Fabrication of biomimetic apatite coating on porous titanium and their osteointegration in femurs of dogs. Mater. Sci. and Eng., C 30 (2010), 98-104.
59. Wen C.E., Yamada Y., Shimojima K., Chino Y., Asahina T., Mabuchi M.: Processing and mechanical properties of autogenous titanium implant materials. J Mater. Sci.: Mater in Medicine, vol.13(4) (2002), 397-401.
60. Oh I-H., Nomura N., Masahashi N., Hanada S.: Mechanical properties of porous titanium compacts prepared by powder sintering. Scripta Materialia, 49(12) (2003), 1197-1202.
61. Niemeyer T.C., Grandini C.R., Pinto L.M.C., Angelo A.C.D., Schneider S.G.: Corrosion behaviour of Ti-13Nb-13Zr alloy used as a biomaterial. J. Alloys and Comp., 476 (2009), 172-175.
62. Lacroix D., Chateau A., Ginebra M-P., Planell J.A.: Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials, 27 (2006), 5326-5334.
DOI :
Cytuj : Chiali, A. ,Smoleńska, H. ,Sobieszczyk, S. , Optimal Features of Porosity of Ti Alloys Considering their Bioactivity and Mechanical Properties. Advances in Materials Science Vol.10, nr 2(24)/2010
[Top]

Facture energy of bonded joints with 2D elastic adhesive layer

Czasopismo : Advances in Materials Science
Tytuł artykułu : Facture energy of bonded joints with 2D elastic adhesive layer

Autorzy :
Budzik, M.
Université Bordeaux 1, Laboratoire de Mécanique Physique LMP-UMR CNRS 5469, 351 Cours de la Libération, 33405 TALENCE Cedex, France,
Abstrakty : When bonded joint is subjected to mode I fracture loading, the adhesive joints analytical solutions treats the adhesive layer, usually, as not existing or 1D Hook elastic layer. In the case of 1D elastic layer, represented as Hooks spring element, is acting, only, in direction contrary to the applied load. Basing on the information yielded from sensitive laser profilometry technique, where deflections of bonded part of the joint were measured, within this contribution, 2D Finite Element Method model is introduced. The FEM allows adhesive layer to be simulated as two perpendicular-acting Hook's springs, thus in-plane shear compliance is enabled. Subsequently, appropriate analysis were carried out. Results, in terms of plate deflection, were compared with laser profilometry technique and common analytical solutions. It is concluded that linear 1D model is not sufficient for the asymmetric bonded joint configuration since the adhesive resists actively also in the in-plane shearing direction. Omitting shearing compliance effect can lead to valuable misinterpretation of the fracture energy, up to 20% in cases studied, and thus, cannot be ignored. Finally, power law based, correction factors are given promising fast and reliable data correction.

Słowa kluczowe : bonded joints, energy release rate, finite element analysis, 2D adhesive model,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 3(25)
Strony : 4 – 16
Bibliografia : 1. Allen K. W.: Papyrus – some ancient problems in bonding, International Journal of Adhesion and Adhesives, 16, pp. 47-51, 1996.
2. Licari J. J., Swanson D. W.: Adhesive Technology for electronic applications, William Andrew Publishing, 2005.
3. Täljsten B.: The Importance of Adhesive Bonding – An historic overview and future possibilities, Proceedings of the International Symposium on Bond Behaviour of FRP in Structures, ed. Chen and Teng, International Institute for FRP in Construction, 2005.
4. Higgins A.: Adhesive bonding of aircraft structures, International Journal of Adhesion and Adhesives, 20, pp. 367-376, 2000.
5. Erdman D., Battiste R., Boeman R., Klett L.: Characterization of a Structural Adhesive in Automotive Environments, Future Car Congress 2000, Engineering Technology Division, Oak Ridge National Laboratory, Society of Automotive Engineers, Inc., 2000.
6. Jie K., Rongchang N., Yusheng T.: Study on modification of epoxy resins with acrylate liquid rubber containing pendant epoxy groups, Journal of Material Science Letters, 41, pp. 1639–1641, 2006.
7. Rider A. N., Olsson-Jacques C. L., Arnott D. R.: Influence of Adherend Surface Preparation on Bond Durability, Surface and Interface Analysis, 27, pp. 1055–1063, 1999.
8. Budzik M. K., Jumel J., Imielinska K., Shanahan M. E. R.: Accurate and continuous adhesive fracture energy determination using an instrumented wedge test, International Journal of Adhesion and Adhesives 29, pp. 694–701, 2009.
9. Chen C. R., Kolednik O., Scheider I., Siegmund T., Tatschl A., Fischer F. D.: On the determination of the cohesive zone parameters for the modeling of micro-ductile crack growth in thick specimens, International Journal of Fracture, 120, pp. 517–536, 2003.
10. Fernlund G.: Stress analysis of bonded lap joints using fracture mechanics and energy balance, International Journal of Adhesion and Adhesives, 27, pp. 584–592, 2007.
11. Ikegami K., Fujii T., Kawagoe H., Kyogoku H., Motoie K., Nohno K., Sugibayashi T., Yoshida F.: Benchmark tests on adhesive strengths in butt, single and double lap joints and double-cantilever beams, International Journal of Adhesion and Adhesives, 16, pp. 219-226, 1996.
12. Tschegg E. K., Krassnitzer T.: Mode I fracturing properties of epoxy bonding paste, International Journal of Adhesion and Adhesives, 28, pp. 340–349, 2008.
13. Blackman B. R. K., Kinloch A. J., Paraschi M., Teo W.S.: Measuring the mode I adhesive fracture energy, GIC, of structural adhesive joints: the results of an international round-robin, International Journal of Adhesion and Adhesives, 23, pp. 293–305, 2003.
14. Cotterell B., Hbaieb K., Williams J. G., Hadavinia H., Tropsa V.: The root rotation in double cantilever beam and peel tests, Mechanics of Materials, 38, pp. 571–584, 2006.
15. Budzik M. K., Jumel J., Imielinska K., Shanahan M. E. R.: Effect of Adhesive Compliance in the Assessment of Soft Adhesives with the Wedge Test, Journal of Adhesion Science and Technology 0, pp. 1–19, 2010.
16. Jian S., Jun S., Zengjie D., Huijue Z.: The finite element analysis of deformation and stress triaxiality of a mixed I + II mode with elasticplastic crack tip, International Journal of Fracture, 87, pp. 47–58, 1997.
17. Chen B., Dillard D. A.: The effect of the T-stress on crack path selection in adhesively bonded joints, International Journal of Adhesion and Adhesives, 21, pp. 357-368, 2001.
DOI :
Cytuj : Budzik, M. , Facture energy of bonded joints with 2D elastic adhesive layer. Advances in Materials Science Vol.10, nr 3(25)/2010
[Top]

Assessment of fitness for service of Cr-Mo steel tubes in catalytic reforming charge heaters

Czasopismo : Advances in Materials Science
Tytuł artykułu : Assessment of fitness for service of Cr-Mo steel tubes in catalytic reforming charge heaters

Autorzy :
Budzik, M.
Université Bordeaux 1, Laboratoire de Mécanique Physique LMP-UMR CNRS 5469, 351 Cours de la Libération, 33405 TALENCE Cedex, France,
Hucińska, J.
Gdansk University of Technology, Mechanical Engineering Faculty, Gdansk, Poland,
Abstrakty : In this paper characteristic features of metal dusting corrosion in high temperature gas mixtures of high carbon activity in catalytic reforming units, including Continuous Catalyst Regeneration (CCR) platformer are presented. Examples of 2.25Cr-1Mo and 9Cr-1Mo steel tubes at advanced stages of metal dusting process after long-term service in charge heaters are used to prove that destructive examinations are necessary to provide certain information about possible mechanisms of damage, and are helpful in assessment of immediate fitness for purpose and long-term service capability of the components during and following shut-downs.

Słowa kluczowe : metal dusting, catalytic reformers, Cr-Mo steels, fitness for service,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 3(25)
Strony : 17 – 26
Bibliografia : 1. Hochman R.F.: Catastrophic Deterioration of high temperature alloys in carbonaceous atmospheres, in: Proceedings of the Symposium on Properties of High Temperature Alloys with Emphasis on Environmental Effects. Z.A. Foroulis and F.S. Pettit ed., The Electrochemical Society, Pennington NY 1977, pp. 715-732.
2. Lai G.Y.: High-temperature corrosion of engineering alloys. ASM International, Materials Park, Ohio, 1997.
3. Grabke H.J.: Metal dusting, in: Corrosion by carbon and nitrogen. Metal dusting, carburisation and nitridation. H.J. Grabke and M. Schütze ed., Woodhead Publishing Limited, Cambridge, England, 2007, pp. 1-24.
4. Grabke H.J.: Thermodynamics, mechanisms and kinetics of metal dusting. Materials and Corrosion 49 (1998), pp. 303-308.
5. Grabke H.J.: Mechanisms of metal dusting of low and high alloy steels. Solid State Phenomena 41 (1995), pp. 3-16.
6. Grabke H.J., Bracho-Troconis C.B, Müller-Lorenz E.M.: Metal dusting of low alloy steels. Materials and Corrosion 45 (1994), pp. 215-221.
7. Straub S., Grabke H.J.: Role of alloying elements in steels on metal dusting. Materials and Corrosion 49 (1998), pp. 321-327.
8. Grabke H.J.: Metal dusting of low- and high-alloy steels. Corrosion 9, (1995) pp. 711-720.
9. Pippel E., Woltersdorf J., Schneider R.: Micromechanisms of metal dusting on Fe-base and Ni-base alloys. Materials and Corrosion 49 (1998) pp. 309-316.
10. Pippel E., Woltersdorf J., Grabke H.J., Strauß S.: Microprocesses of metal dusting on iron. Steel Research 66 (1995) pp. 217-221.
11. Chun C.M., Ramanarayanan T.A.: Metal-Dusting Corrosion of Low-Chromium Steels. Oxidation of Metals 62 (2004) pp. 71-92.
12. Chun C. M., Mumford J.D., Ramanarayanan T.A.: Relationship between coking and metal dusting. Materials and Corrosion 50 (1999) pp. 634-639.
13. Dampc J., Grzesik Z., Hucińska J.: Metal dusting in CCR platforming unit. Materials and Corrosion 60 (2009), pp. 211-217.
14. Hucińska J., Gajowiec G., Derewnicka D.: Mechanism of carburisation and metal dusting of 2.25Cr-1Mo steel in catalytic reforming unit. W Proc. EUROCORR 2009, European Federation of Corrosion. Nice, France 2009.
DOI :
Cytuj : Budzik, M. ,Hucińska, J. , Assessment of fitness for service of Cr-Mo steel tubes in catalytic reforming charge heaters. Advances in Materials Science Vol.10, nr 3(25)/2010
[Top]

Cavitation degradation model of hard thin pvd coatings

Czasopismo : Advances in Materials Science
Tytuł artykułu : Cavitation degradation model of hard thin pvd coatings

Autorzy :
Budzik, M.
Université Bordeaux 1, Laboratoire de Mécanique Physique LMP-UMR CNRS 5469, 351 Cours de la Libération, 33405 TALENCE Cedex, France,
Hucińska, J.
Gdansk University of Technology, Mechanical Engineering Faculty, Gdansk, Poland,
Krella, A.
The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Cavitation Group, ul. Fiszera 14, 80-231 Gdansk, Poland,
Abstrakty : A cavitation degradation process and fatigue phenomenon were described. Similarly to fatigue phenomenon, cavitation pulses division into three fractions was suggested. The action of each fraction was respectively compared to low-cycle fatigue, high-cycle fatigue and low-amplitude fatigue. The action of each fraction was described separately. Detailed analysis of the influence of each fraction on the degradation process shows that besides mechanical loading also thermal loading occurs. The cavitation erosion is assumed to be the sum of degradation of each fraction. Thus, the model of PVD coatings degradation under action of cavitation pulses include variable-amplitude and variable-temperature fatigue.

Słowa kluczowe : hard PVD coatings, cavitation, fatigue fracture, impact,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 3(25)
Strony : 27 – 36
Bibliografia : 1. Brennen Ch.E., Cavitation and bubble dynamics, The Oxford Engineering Science Series 44, Oxford University Press (1995).
2. Bourne N.K., On the collapse of cavities, Shock Waves 11 (2002) 447-455.
3. Momber A. W., Cavitation damage to geomaterials in a flowing system, Journal of Materials Science 38 (2003) 747 – 757.
4. Krella A., Czyżniewski A., Cavitation erosion resistance of nanocrystalline TiN coating deposited on stainless steel, Wear 265 (2008) 963-970.
5. Knapp R.T., Resent Investigations of cavitation and cavitation damage, Trans. ASME 77 (1955) 1045-1054.
6. Philipp A., Lauterborn W., Cavitation erosion by single laser-produced bubbles, J.Fluid Mech. 361 (1998) 75-116.
7. Schijve J., Fatigue of structures and materials in the 20th century and the state of the art, International Journal of Fatigue 25 (2003) 679-702.
8. Kocańda S., Szala J., Podstawy obliczeń zmęczeniowych, PWN, Warszawa 1997.
9. Ma L.W., Cairney J.M., Hoffman M., Munroe P.R., Deformation mechanisms operating during nanoindentation of TiN coatings on steel substrates, Surface and Coatings Technology 192 (2005) 11–18.
10. Strawbridge A., Evans H.E., Mechanical failure of thin brittle coatings, Eng. Failure Analysis 2 (1995) 85-103.
11. Cairney J.M., Tsukano R., Hoffman M.J., Yang M., Degradation of TiN coating under cyclic loading, Acta Materialia 52 (2004) 3229-3237.
12. Wyrzykowski J.W., Pleszakow E., Sieniawski J., Odkształcenie i pękanie metali, WNT, Warszawa 1999.
13. Krella A., Influence of cavitation intensity on X6CrNiTi18-10 stainless steel performance in the incubation period. Wear 258 (2005) 1723-1731.
14. Louchet F., From individual dislocation motion to collective behaviour, Journal of Materials Science 41 (2006) 2641 – 2646.
DOI :
Cytuj : Budzik, M. ,Hucińska, J. ,Krella, A. , Cavitation degradation model of hard thin pvd coatings. Advances in Materials Science Vol.10, nr 3(25)/2010
[Top]

Reactions on the Surface of the Implant Under the Influence of Biofilm

Czasopismo : Advances in Materials Science
Tytuł artykułu : Reactions on the Surface of the Implant Under the Influence of Biofilm

Autorzy :
Supernak, M.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland,, milena@shl.pl,
Abstrakty : The contact of a biomaterial with the biological environment in in vitro and in vivo tests leads to the production of a particular ecosystem in which the active roles perform both, the material surface and the extracellular matrix protein forming a biofilm. Proteins affect cell and bacteria adhesion processes, biological activity of cells and activation of inflammatory response. The knowledge of the reaction mechanisms active on the surface of the material and the contacting tissues enables definite modification of the material surface layer eliminating their disadvantages, giving new, desired properties, affecting the biology of cells. Testing the biocompatibility of titanium materials emphasises their reactivity with proteins and cells and the possibility of modifying the biological reactivity of the surface by changing its properties by biochemical and surface engineering methods. This article presents results of previous studies on this problem.

Słowa kluczowe : biofilm, implants,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 4(26)
Strony : 5 – 11
Bibliografia : 1. J. W. Costerton i Philip S. Stewart.: Threatening biophile elementsT, Świat Nauki, October 2001.
2. A. A. Salyers, D. D. Whitt.: Microbiology – variety and habitat. PWN, Warszawa 2003.
3. Ratner B.D.: Biomaterials Science. An introduction to materials in medicine. Ed. Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E. Academic Press, 1996.
4. Lutton P.P., Ben-Nisan B.: The status of biomaterials for orthopedic and dental applications, Mat. Tech.1997.
5. Bachuła A.: Bacteria in Biofilm. Bioinfo.mal.uj.edu.pl
6. Bartoszewicz M., Rygiel A.: Biofilm as Basic mechanism of infection site operatem. Methods bout in local treatment. VIA MEDICA, Chirurgia Polska 8, 3, 2006, 171-178.
7. http://www.erc.montana.edu/CBEssentials-SW/bf-basics-99/default.htm (Montana State University).
8. Wierzchoń T., Czarnowska E., Krupa D. :Surfach engineering in manufacturing of titanium biomaterials. Oficyna wydawnicza Politechniki Warszawskiej, Warszawa 2004.
9. Stachewicz P.: Biofilm as multicell organism cerated by bacteria. Biology.ug.gda.pl
10. Hiromoto S., Noda K., Hanawa T.: Development of electrolytic cell with cell-culture for metallic biomaterials. Corrosion Sci. 44 (2002), 955.
11. Walkowiak B. : Biomedical effects of exposure of tissue to the implant. Biomaterial Engineering, 38-43, 2004, 200-205.
DOI :
Cytuj : Supernak, M. , Reactions on the Surface of the Implant Under the Influence of Biofilm. Advances in Materials Science Vol.10, nr 4(26)/2010
[Top]

Preparation of Silver Nanoparticles in Reverse Micelles and Antibacterial Activity of Silver Modified-Paints

Czasopismo : Advances in Materials Science
Tytuł artykułu : Preparation of Silver Nanoparticles in Reverse Micelles and Antibacterial Activity of Silver Modified-Paints

Autorzy :
Supernak, M.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland,, milena@shl.pl,
Reszczyńska, J.
1Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland,
Abstrakty : Silver particles having fine or ultrafine sizes are one of the fastest growing research interests with wide applications. Here we report the preparation method of silver modified paints which revealed antimicrobial activity against gram-negative bacteria Escherichia coli, gram-positive Staphylococcus aureus, yeast Saccharomyces cerevisiae and pathogenic fungi belonging to Candida family. In this work, we choose heptane and cyclohexane, as the oil phase for preparation nanometer sized metallic particles. We have also studied the effect of different silver precursors – silver nitrate, silver citrate and different surfactants: anionic AOT, non-ionic Triton X100, Span 80 and Tween 85 for stabilization of obtained silver colloids. UV-VIS spectrum contained a strong plasmon band near 410 nm, which confirmed silver ions reduction to Ag° in microemulsion system or aqueous phases. Prepared samples contained from 500 to 2000 ppm of silver. The diameter size of silver nanoparticles was in the range from 16 nm to 82 nm and were stable for 3 months without precipitation.

Słowa kluczowe : silver, nanoparticle, paint, microemulsion,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 4(26)
Strony : 12 – 20
Bibliografia : 1. Zielinska A., Skwarek E., Gazda M., Zaleska A., Hupka J., Preparation of silver nanoparticles with controlled particle size, Procedia Chemistry 1 (2009) 1560–1566.
2. Kelsall R. W., Hamley I. W., Geoghegan M., K. Kurzydłowski Ed., Nanotechnologie, PWN, Warszawa 2008.
3. Rujitanaroj P., Pimpha N., Supaphol P.: Wound-dressing materials with antibacterial activityfrom electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49 (2008), pp. 4723-4732.
4. Davies R. L., Etris S.F.: The Tdevelopment and functions of silver in water purification and disease control. Catal. Today 36 (1997), pp. 107-114.
5. Pike-Biegunski M. J.: Nanotechnologia w medycynie i farmacji, Lek w Polsce 15 (2005), pp. 98-103.
6. Zhang W., Qiao X., Chen J., Wang H.: Preparation of silver nanoparticles in water-in-oil AOT reverse micelles. J. Coll. Int. Sci. 302 (2006), pp. 370-373.
7. Lopez-Quintela M. A.: Synthesis of nanomaterials in microemulsions: formation mechanism and growth control. Curr. Opin. Coll. Int. Sci. 8 (2003), pp. 137-144.
8. Mazur M.: Elecrochemically prepared silver nanoflakes and nanowires. Electrochem. Comm. 6 (2006) pp. 400-403.
9. Khaydarov R. A., Khaydarov R.R., Gapurova O., Estrin Y., Scheper T.: Electrochemical method for the synthesis of silver nanoparticles. J. Nanopart. Res. 11 (2009), pp. 1193-1200.
10. Song K. C., Lee S. M., Park T. S., Lee B. S.: Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J. Chem. Eng. 26 (2009), pp. 153-155.
11. Lee S. M., Song K. C., Lee B. S.: Antibacterial activity of silver nanoparticles prepared by a chemical reduction method. Korean J. Chem. Eng. 27 (2010), pp. 688-692.
12. Zhu Y., Wang X., Guo W., Wang J., Wang C.: Sonochemical synthesis of silver nanorods by reduction of silver nitrate. Ultrason. Sonochem. 17 (2010), pp. 675-679.
13. Ghosh S. K., Kundu S., Pal T.: Evolution, dissolution and reversible generation of gold and silver nanoclusters in micelle by UV-activation. Bull. Mater. Sci. 25 (2002), pp. 581-582.
14. Mallick K., Witcomb M. J., Scurrell M. S.: Polymer stabilized silver nanoparticles: A photochemical synthesis route. J. Mater. Sci. 39 (2004), pp. 4459-4463.
15. Barcikowski S., Hustedt M., Chichkov B.: Nanocomposite manufacturing using ultrashort-pulsed laser ablation in solvent and monomers. Polimery 53 (2008), pp. 657-662.
16. Kabashin A. V., Meunier M.: Laser ablation-based synthesis of functionalized colloidal nanomaterials in biocompatible solutions. J. Photochem. Phothobiol. A 182 (2006), pp. 330-334.
17. Zhang W., Qiao X., Chen J.: Synthesis of silver nanoparticles—Effects of concerned parameters in water/oil microemulsion. Mater. Sci. Eng. B 142 (2007), pp. 1–15.
18. Parameswari E., Udayasoorian C., S. Paul Sebastian and R.M. Jayabalakrishnan,International Research Journal of Biotechnology 1(3) (2010) pp.044-049.
19. Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., Mukherji S., Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater. 4(3) (2008) pp. 707-16.
20. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, The bactericidal effect of silver nanoparticles, Nanotechnology, 16 (2005) pp. 2346–53.
DOI :
Cytuj : Supernak, M. ,Reszczyńska, J. , Preparation of Silver Nanoparticles in Reverse Micelles and Antibacterial Activity of Silver Modified-Paints. Advances in Materials Science Vol.10, nr 4(26)/2010
[Top]

Biocompatibility and Bioactivity of Load-Bearing Metallic Implants

Czasopismo : Advances in Materials Science
Tytuł artykułu : Biocompatibility and Bioactivity of Load-Bearing Metallic Implants

Autorzy :
Supernak, M.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland,, milena@shl.pl,
Reszczyńska, J.
1Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland,
Zieliński, A.
Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland, azielins@pg.gda.pl,
Abstrakty : The main objective of here presented research is to develop the titanium (Ti) alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants, e.g. hip joint and knee joint endoprosthesis. The development of such materials is performed through: modeling the material behaviour in biological environment in long time and developing of new procedures for such evaluation; obtaining of a Ti alloy with designed porosity; developing of an oxidation technology resulting in high corrosion resistance and bioactivity; developing of technologies for hydroxyapatite (HA) deposition aimed at composite bioactive coatings; developing of technologies of precipitation of the biodegradable core material placed within the pores. The examinations of degradation of Ti implants are carried out in order to recognize the sources of both early allergies and inflammation, and of long term degradation. The theoretical assessment of corrosion is made assuming three processes: electrochemical dissolution through imperfections of the anodic oxide layer, diffusion of metallic ions through the oxide layer, and dissolution of oxides themselves. In order to increase the biocompatibility, the toxic elements, aluminium (Al) and vanadium (V) are eliminated. The experiments have shown that titanium – zirconium – niobium (Ti-Zr-Nb) alloy may be a such a material which can also be prepared by both powder metallurgy (P/M) technique and selective laser melting. The porous (scaffold) Ti-Zr-Nb alloy is now obtained by powder metallurgy, classical and with space holders used before melting and decomposed, or remained during melting and removed by subsequent water dissolution. The oxidation of porous materials is performed either by electrochemical technique in special electrolytes or by chemical and/or hydrothermal method in order to obtain the optimal oxide layer well adjacent to an interface, preventing the base metal against corrosion and bioactive because of its nanotubular structure, permitting injection of some species into the pores. The Ca, O and N ion implantation or deposition of zirconia sublayers may be used to increase the biocompatibility, bioactivity and corrosion resistance. The HA coating obtained by either electrophoretic, biomimetic or by sol-gel deposition should result in gradient structure similar to bone structure, possessing high adhesion strength. The core material of the porous material should result in a biodegradable material, allowing slower dissolution followed by stepwise growth of bone tissue and angiogenesis, preventing local inflammation processes, sustaining the mechanical strength close to that of non-porous material.

Słowa kluczowe : biocompatibility, hydroxyapatite, implants, porous materials, titanium alloys,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2010
Numer : Vol.10, nr 4(26)
Strony : 21 – 31
Bibliografia : 1. http://silver.neep.wisc.edu/~lakes/BME315N3.pdf.
2. Zieliński A.: Nowoczesne biostopy tytanu i kierunki ich rozwoju. Materiały i Technologie (Materials and Technologies) 2 (2004) 242-247.
3. Świeczko-Żurek B.., Ziemlański A.: Allergies to implant metal compounds. Advances in Materials Science No. 3, 9 (2009) 39-46.
4. Malluche H.H.: Aluminium and bone disease in chronic renal failure. Nephrology Dialysis Transplantation 17 (2002) 21-24.
5. Domingo J.L.: Vanadium and diabetes. What about vanadium toxicity? Molecular and Cellular Biochemistry 203 (2000) 185-187.
6. Sobieszczyk S.: Optimal features of porosity of Ti alloys considering their bioactivity and mechanical properties. Advances in Materials Science No. 2, 10 (2010) 20-30.
7. Ryan G., Pandit A., Apatsidis D.P.: Fabrication methods of porous materials for use in orthopaedic applications. Biomaterials 27 (2006) 2651-2670.
8. Okazaki Y., Gotoh E., Manabe T., Kobayashi K.: Comparison of metal concentrations in rat tibia tissues with various metallic implants. Biomaterials 28 (2004) 5913-6025.
9. M. Koike and H. Fuji, The corrosion resistance of pure titanium in organic acids, Biomaterials 22 (2001) 2931-2936.
10. M.A. Khan, R.L. Williams and D.F Williams, In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials 17 (1996) 2117-2126.
11. Y. Okazaki and E. Gotoh, Comparison of metal release from various metallic biomaterials in vitro, Biomaterials 26 (2005) 11-21.
12. Landor I., Vavrik P., Sosna A., Jahoda D., Hahn H., Daniel M.: Hydroxyapatite porous coating and the osteointegration of the total hip replacement. Arch. Orthop. Trauma Surg. 127 (2007) 81-89.
13. Burstein G.T., Liu C., Souto R.M.: The effect of temperature on the nucleation of corrosion pits on titanium in Ringer`s physiological solution. Biomaterials 26 (2005) 245-256.
14. Browne M., Gregson P.J.: Effect of mechanical surface pretreatment on metal ion release. Biomaterials 21 (2000) 385-392.
15. Zieliński A., Sobieszczyk S.: Corrosion of titanium biomaterials, mechanisms, effects and modelisation. Corrosion Reviews 26 (2008) 1-22.
16. Sobieszczyk S.: Self-organised nanotubular oxide layers on Ti and Ti alloys. Advances in Materials Science No. 2, 9 (2009) 25-41.
17. Carama O.R., Pauli C.P., Giordano M.C.: Potentiodynamic behavior of mechanically polished titanium electrodes. Electrochim. Acta 29 (1984) 1111-1117.
18. Felske A., Plieth W.J.: Raman spectroscopy of titanium dioxide layers. Electrochim. Acta 34 (1989) 75-77.
19. Głuszek J., Masalski J., Furman P., Nitsch K.: Structural and electrochemical examinations of PACVD TiO2 films in Ringer solution. Biomaterials 18 (1997) 789-794.
20. Nishiguchi S., Kato H., Fujita H., Oka M., Kim H.-M., Kokubo T., Nakamura T.: Titanium metals form direct bonding to bone after alkali and heat treatments. Biomaterials 22 (2001) 2525-2533.
21. Wang X.-X., Hayakawa S., Tsuru K., Osaka A.: Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials 23 (2002) 1353- 1357.
22. Takeuchi M., Abe Y., Yoshida Y., Nakayama Y., Okazaki M., Akagawa Y.: Acid pretreatment of titanium implants. Biomaterials 24 (2003) 1821-2827.
23. Sul Y.-T., Johansson C.B., Petronis S., Krozer A., Jeong Y., Wennerberg A., Albrektsson T.: Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configuration, surface roughness, crystal structure and chemical composition. Biomaterials 23 (2002) 491-501.
24. Frauchiger V.M., Schlottig F., Gasser B., Textor M.: Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials 25 (2004) 593-606.
25. MacDonald D.E., Rapuano B.E., Deo N., Strancik M., Somasundaran P., Boskey A.L.: Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. Biomaterials 25 (2004) 3135-314.
26. Yang B., Uchida M., Kim H.-M., Zhang H., Kokubo T.: Preparation of bioactive titanium metal via anodic oxidation treat ment. Biomaterials 25 (2004) 1003-1010.
27. Felske A., Plieth W.J.: Raman spectroscopy of titanium dioxide layers. Electrochim. Acta 34 (1989) 75-77.
28. Zhu X., Kim K.-H., Jeong J.: Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials 22 (2001) 2199-2206.
29. Krasicka-Cydzik E.: Gel-like layer development during formation of thin anodic films on titanium in phosphoric acid solutions. Corrosion Sci. 46 (2004) 2487-2502
30. Sobieszczyk S.: Hydroxyapatite coatings on porous Ti and Ti alloys. Advances in Materials Science No. 1, 10 (2010) 19-28.
31. Sobieszczyk S., Zieliński A.: Coatings in arthroplasty. Advances in Materials Science No. 4, 8 (2008) 35-54.
32. Mohammadi Z., Ziaei-Moayyed A.A., Sheikh-Mehdi Mesgar A.: Adhesive and cohesive properties by indentation method of plasma-sprayed hydroxyapatite coatings. Applied Surface Science 253 (2007) 4960-4965.
33. Stoch A., Jastrzębski W., Długoń E., Lejda W., Trybalska B., Stoch G.J., Adamczyk A.: Sol-gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V. Journal of Molecular Structure 744-747 (2005) 633-640.
34. Yamaguchi T., Tanaka Y., Ide-Ektessabi A.: Fabrication of hydroxyapatite thin films for biomedical applications using RF magnetron sputtering. Nuclear Instruments and Methods in Physics Research B 249 (2006) 723-725.
35. Giavaresi G., Ambrosio L., Battistion G.A., Casellato U., Gerbasi R., Finia M., Aldini N.N., Martini L., Rimondini L., Giardino R.: Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metal-organic chemical vapour depostion: an in vivo study. Biomaterials 25 (2004) 5583-5591.
36. Lee I-S., Zhao B., Lee G-H., Choi S-H., Chung S-M.: Industrial application of ion beam assisted deposition on medical implants. Surface and Coatings Technology 201 (2007) 5132-5137.
37. Kim H., Camata R.P., Lee S. i in.: Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings. Acta Mater. 55 (2007) 131-139.
38. Mayr H., Ordung M., Ziegler G.: Development of thin electrophoretically deposited hydroxyapatite layers on Ti6Al4V hip prosthesis. Journal of Material Science 41 (2006) 8138-8143.
39. Zheng X., Huang M., Ding Ch.: Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials 21 (2000) 841-849.
40. Khor K.A., Gu Y.W., Pan D., Cheang P.: Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings. Biomaterials 25 (2004) 4009-4017.
41. Lu Y-P., Li M-S., Li S-T., Wang Z-G., Zhu R-F.: Plasma-sprayed hydroxyapatite +titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials 25 (2004) 4393-4403.
42. Chou B-Y., Chang E.: Plasma-sprayed hydroxyapatite coating on titanium alloy with ZrO2 second phase and ZrO2 intermediate layer. Surface and Coating Technology 153 (2002) 84-92.
43. Fu L., Khor K.A., Lim J.P.: The evaluation of powder processing on microstructure and mechanical properties of hydoxyapatite (HA)/yttria stabilized zirconia (YSZ) composite coatings. Surface and Coatings Technology 140 (2001) 263-268.
44. Liao S., Watari F., Zhu Y., Uo M., Akasaka T., Wang W., Xu G., Cui F.: The degradation of the three layered nano-caronated hydroxyapatite/collagen/PLGA composite membrane in vitro. Dental Materials 23 (2007) 1120-1128.
45. Wang L., Li Ch.: Preparation and physicochemical properties of a novel hydroxyapatite/chitosan – silk fibroin composite. Carbohydrate Polymers 68 (2007) 740-745.
46. F.L.S., Borges Ch.S., Branco J.R.T., Pereira M.M.: Structural analysis of hydroxyapatite/bioactive glass composite coatings obtained by plasma spray processing. Journal of Non-Crystalline Solids 247 (1999) 64-68.
47. Jansen J.A., Vehof J.W.M., Ruhe P.Q., et al.: Growth factor-loaded scaffolds for bone engineering. Journal of Controlled Release 101 (2005) 127-136.
48. Eliaz N., Sridhar T.M., Kamachi Mudali U., Raj B.: Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic. Surface Engineering No. 3, 21 (2005) 238-242.
DOI :
Cytuj : Supernak, M. ,Reszczyńska, J. ,Zieliński, A. , Biocompatibility and Bioactivity of Load-Bearing Metallic Implants. Advances in Materials Science Vol.10, nr 4(26)/2010
[Top]

Plasma Nitriding as a Prevention Method Against Hydrogen Degradation of Steel

Czasopismo : Advances in Materials Science
Tytuł artykułu : Plasma Nitriding as a Prevention Method Against Hydrogen Degradation of Steel

Autorzy :
Ćwiek, J.
Gdańsk University of Technology, Faculty of Mechanical Engineering, Poland,
Abstrakty : Aim of this paper is evaluation of susceptibility of plasma nitrided structural steel to hydrogen absorption and degradation. Structural steel, nitrided at glow discharge in the gas mixture of various N2, H2, Ar content was subjected to cathodic hydrogen charging in acid solution simulating the aged engine oil. The effect of the nitrided layers on the hydrogen transport and on the irreversible trapping was evaluated by the measurements of the hydrogen permeation rate and by the vacuum extraction, respectively. Surfaces with modified layers were examined with the use of a scanning electron microscope (SEM) before and after hydrogen permeation tests. In the presence of the not defected compact nitride layer, no hydrogen permeation through the steel has been stated under the experimental conditions. Absorbed hydrogen was accumulated within this layer. Using the atmosphere of the higher nitrogen to hydrogen ratio at plasma assisted nitriding provides the formation of thin compact nitride zone, highly protective against corrosion and hydrogen degradation.

Słowa kluczowe : plasma nitriding, nitride layer, hydrogen permeation, hydrogen degradation,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2009
Numer : Vol. 9, nr 1(19)
Strony : 4 – 13
Bibliografia : 1. Y. Archakov, Vodorodoustojchivost stali, Metallurgia, Moskva, 1978.
2. E. Łunarska, O. Czerniajewa, A. Nakonieczny, Influence of surface treatments on 40HM steel resistance to general, pitting and stress corrosion, Surface Engineering 4 (2000) 12-19, (in Polish).
3. E. Łunarska, J. Michalski, Hydrogen behavior in the iron surface layer modified by plasma nitriding and ion boronising, Werkstoffe und Korrosion 51 (2000) 1-9.
4. P. Kula, The comparison of resistance to “hydrogen wear” of hardened surface layers, Wear 178 (1994) 117-121.
5. P. Kula, The “self-lubrication” by hydrogen during dry friction of hardened surface layers, Wear 201 (1996) 155-162.
6. T. Zakroczymski, N. Łukomski, J. Flis, The effect of plasma nitriding-base treatments on the absorption of hydrogen by iron, Corrosion Science 37 (1995) 811-822.
7. Nitriding Technology. Theory and Practice. Proc. 9th International Seminar, A. Nakonieczny (ed.), Institute of Precise Mechanics, Warsaw, Poland, 2003.
8. J. Michalski, J. Tacikowski, P. Wach, E. Łunarska, N. Tafta, T. Fraczek, The modern anticorrosion nitriding, International Journal of Physico-Chemical Mechanics of Materials 39 (2004) 541-547.
9. T. Burakowski, T. Wierzchoń, Surface Engineering, WNT, Warsaw, 2005, (in Polish).
10. M. Śmiałowski, Hydrogen in steel, WNT, Warsaw, 1961, (in Polish).
11. J. Ćwiek, K. Nikiforow, Hydrogen degradation of high-strength weldable steels in sea-water, Proceedings of Michal Smialowski International Symposium on Corrosion and Hydrogen Degradation „Advances in Corrosion Science and Application”, Zakopane, Poland, 9-13.09, 2003, 225-232.
12. J. Ćwiek, Research report of grant KBN 4 T08C 048 25 „Estimation of possibilities of increasing hydrogen degradation resistance of low-alloy steels by advanced thermo-chemical processes”, Gdańsk University of Technology, Gdańsk, 2006.
13. S.P. Lynch, Failures of structures and components by environmentally assisted cracking, Engineering Failure Analysis 1 (1994) 77-90.
14. PN-EN 10085:2003 Nitriding steels – Technical delivery conditions.
15. A. Bratkov, Teoreticheskie osnowy khimmotologii, Khimija, Moskva, 1980.
16. M.A.V. Devanathan, Z. Stachurski, W. Beck, A technique for the evaluation of hydrogen embrittlement characteristics of electroplating baths, Journal of the Electrochemical Society 110 (1963) 886-890.
17. E. Łunarska, K. Nikiforow, Topography of the environmental degradation of nitrided layers, Corrosion Protection 48 (2005) 62-65.
18. E. Łunarska, K. Nikiforow, E. Sitko, Stress corrosion cracking of bainite 0.3C-1Cr-1Mn-1Si-1Ni type steel in acid rain simulated solution, Werkstoffe und Korrosion 55 (2004) 373-380.
DOI :
Cytuj : Ćwiek, J. , Plasma Nitriding as a Prevention Method Against Hydrogen Degradation of Steel. Advances in Materials Science Vol. 9, nr 1(19)/2009
[Top]

The Effect of Nanoscale Bismuth Oxide on the Electrical and Mechanical Properties of Polyvinyl Acetate

Czasopismo : Advances in Materials Science
Tytuł artykułu : The Effect of Nanoscale Bismuth Oxide on the Electrical and Mechanical Properties of Polyvinyl Acetate

Autorzy :
Ćwiek, J.
Gdańsk University of Technology, Faculty of Mechanical Engineering, Poland,
El-Mossalamy, E.
Chemistry Department- Faculty of Science- King AbdulAziz University- P.O.Box.80203- Jeddah 21589 – Saudi Arabia;,
Abstrakty : Polyvinyl acetate (PVAc) loaded Bi2O3 nano-particles were successfully prepared at room temperature and ambient pressure. Transmission electron microscopy was used to characterize the final product. It was found that Bi2O3 nanoparticles were well dispersed and uniform in shape and the diameter of the particles was confined within 8 nm. Addition of small amounts (0.2 – 1 wt%) of nano-scales Bismuth oxide (Bi2O3) to polyvinyl acetate (PVAc) are increased the electrical conductivity as well as the modulus of elasticity. The deformation behavior after yielding of the nanocomposites, irrespective of Bi2O3 concentration is similar to the unfilled elastomer, implying that the mechanism of large deformation is mainly governed by the matrix.

Słowa kluczowe : nanoscale bismuth, polyvinyl acetate,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2009
Numer : Vol. 9, nr 1(19)
Strony : 14 – 22
Bibliografia : 1. Waleed E Mahmoud and H M El-Mallah, Physics D: Applied Physics 42 (2009) 035502.
2. Waleed E Mahmoud, M Hafez, N A El-Aal and F El-Tantawy, Polymer International 57 (2008) 35.
3. P K Khanna, N Singh, S Charan, A K Viswanath, K R Patil, Material Research Bulletin 42 (2007) 1414.
4. N B Pendyala, K S R Koteswara Rao, Luminescence 128 (2008) 826.
5. Novak I, Krupa I and Chodak I, Synthetic Metals, 131 (2002) 93.
6. Novak I, Krupa I and Chodak I, European Polymer, 39 (2003) 585.
7. Shuk, P.; Wiemhöfer, H.-D.; Guth, U.; Göpel, W.; Greenblatt, M. Solid State Ionics, 89 (1996) 179.
8. Leontie, L.; Caraman, M.; Visinoiu, A.; Rusu, G. I. Thin Solid Films, 473 (2005) 230.
9. Novak I., Krupa I. and Chodak I., Synthetic Metals, 131 (2002) 93.
10. Novak I., Krupa I. and Chodak I., European Polymer, 39 (2003) 585.
11. Mahmoud W. E., El-Eraki M. H. I., El- Lawindy A. M. Y. and Hassan H. H., Physics D: Applied Physics, 39 (2006) 541.
12. El-Eraki M. H. I., El- Lawindy A. M. Y., Hassan H. H. and Mahmoud W. E., Polymer Degradation and Stability, 91 (2006)1417.
13. Farago O. and Kantor Y., European physics Letters, 52 (2000) 413.
DOI :
Cytuj : Ćwiek, J. ,El-Mossalamy, E. , The Effect of Nanoscale Bismuth Oxide on the Electrical and Mechanical Properties of Polyvinyl Acetate. Advances in Materials Science Vol. 9, nr 1(19)/2009
[Top]

Effect of Chemical Composition and Microstructure on Mechanical Properties of BA1055 Bronze Sand Castings

Czasopismo : Advances in Materials Science
Tytuł artykułu : Effect of Chemical Composition and Microstructure on Mechanical Properties of BA1055 Bronze Sand Castings

Autorzy :
Ćwiek, J.
Gdańsk University of Technology, Faculty of Mechanical Engineering, Poland,
El-Mossalamy, E.
Chemistry Department- Faculty of Science- King AbdulAziz University- P.O.Box.80203- Jeddah 21589 – Saudi Arabia;,
Łabanowski, J.
Gdańsk University of Technology, Dept. of Materials Technology and Welding 11/12 Narutowicza. 80-925 Gdańsk, Poland,
Abstrakty : The effect of the chemical composition of BA1055 bronze on the mechanical properties has been investigated. It is important problem because many ship’s sand cast propellers are made of this alloy. Properties of over one hundred melts were analyzed. The metallographic investigations were performed on the samples taken from five sand cast bars. It was shown that even small changes in chemical composition can significantly alter the mechanical properties of BA1055 bronze. The effect of intermetallic ę-phase, i.e. its chemical composition, shape and dimensions of precipitates, seems to be the most important.

Słowa kluczowe : aluminum bronzes, microstructure, mechanical properties,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2009
Numer : Vol. 9, nr 1(19)
Strony : 23 – 29
Bibliografia : 1. Sokolov N.N., Lazarenko S.R., Żuravlev V.I.: Grebnye vinty iż aluminievoj bronzy. Sudostroenie. Leningrad 1981.
2. Kowarsch A., Zaczek Z.: Miedź i jej stopy w budownictwie okrętowym. Wydawnictwo Morskie. Gdańsk 1989.
3. Prowans S., Wysiecki M.: Wpływ żelaza na strukturę i przemiany fazowe brązów aluminiowych. Archiwum Hutnictwa. Tom XVII, Zeszyt 4, 1972, 379-393.
4. Berezina P.: Gefűgeumwaldungen und mechanische Eigenschaften der Mehrstoff-Aluminiumbronzen vom Typ CuAl10Fe5Ni5. Gisereiforschung, Jg.25,H.3, 1973. 125-234.
5. Berezina P.: Gefűgeumwaldungen und mechanische Eigenschaften der Mehrstoff-Aluminiumbronzen vom Typ CuAl10Fe5Ni5 (Schluss). Giesereiforschung, Jg.25,H.4, 1973, 1-10.
6. Crofts W.J., Towsend D.W., Bates A.P.: Sounness and reproducibility of properties of sand-cast complex aluminium bronzes (BS1400-AB2). The British Foundry man, Vol.57, part 2, 1964.
7. Tuschy E.: Nickel-Aluminium-Bronzen. London 1962.
8. BS1400:1985 Copper alloy ingot and high conductivity copper castings.
9. Al-Hashem A., Raid W.: The role of microstructure of Ni-Al- bronze alloy on its cavitation corrosion behavior in natural seawater. Materials Characterization 48, 2002, 37-41.
DOI :
Cytuj : Ćwiek, J. ,El-Mossalamy, E. ,Łabanowski, J. , Effect of Chemical Composition and Microstructure on Mechanical Properties of BA1055 Bronze Sand Castings. Advances in Materials Science Vol. 9, nr 1(19)/2009
[Top]

Properties of Thermal Spraying Ni-Al Alloy Coat